2Te3)-热电纳米材料碲化铋(Bi2Te3).doc

2Te3)-热电纳米材料碲化铋(Bi2Te3).doc
2Te3)-热电纳米材料碲化铋(Bi2Te3).doc

2Te3)> 热电纳米材料碲化铋(Bi2Te3) -

热电材料是一种在固体状态下就可使热能与电能相互转换(静态能量转换)的材料。它能做成重量轻、体积小的微型半导体制冷器,解决计算机技术、航天技术、超导技术及微电子技术等高技术领域的制冷难题。目前,热电半导体产业已延伸至国际上最为热门的新材料、新能源等高新产业。商用热电行业的原料主要是Bi2Te3 基热电半导体材料。Bi2Te3基热电半导体材料以炼铜的副产物铋、碲、硒等为原料,按一定的配比和特殊的掺杂经定向生长得到Bi2Te3基热电半导体晶棒。

目前,用低维化和纳米化来实现电、声输运特性的协同调控,从而优化材料的热电性能,是热电材料领域的一个重要研究方向。主要通过外混、原位复合等方式引入纳米颗粒,纳米颗粒的散射中长波长的声子,从而降低材料的晶格热导率,同时纳米化有助于载流子在费米能级附近态密度的提高,纳米颗粒构成的界面所产生的界面势垒能有效过滤低能量载流子,从而增大赛贝克系数。

本书综述了热电纳米材料碲化铋(Bi2Te3)的最新研究进展,包括最新的合成方法、结构表征方法、热电性能及理论模型分析,另外,书中还介绍了热电材料器件应用于不同的新能源发电设备以及分析热电材料的商业潜能。

全书共12章:1.热电材料的概述。包括热电材料的Seebeck 效应、Peltier效应等三种热电效应,半导体材料等内容;2.电沉积法制备Bi2Te3基薄膜和纳米线;3.Bi2Te3纳米线电沉积于高

分子径迹蚀刻膜的合成和表征;4.V2VI3薄膜纳米合金材料的合成和结构及传输性能表征;5.Bi2Te3 薄膜材料结构和传输性能研究;6.Bi2Te3 基块体纳米材料的合成方法、热电性能分析;

7.Bi2Te3 纳米线、纳米复合材料及纳米块体材料的高能X射线和中子散射分析方法;8.Bi2Te3 纳米材料的结构分析,包括单晶纳米线的化学计量分析、化学模拟分析及电子传输系数的计算等;9.Bi2Te3晶体点缺陷的密度函数理论研究;10.基于玻尔兹曼理论从头开始描述热电性质;11.VVI复合薄膜和纳米线的热导性测试方法及热电价值分析;12.用于表征纳米材料结构及单根纳米线热电性能研究的热电纳米线表征平台(TNCP)的发展。

本书作者团队的前沿科研项目得到了德国科学基金支持,作者团队具有国际化的科研水平。第1编者Oliver Eibl是Tubingen 大学应用物理学教授,负责高温超导和太阳能电池等项目,至今发表过100多篇科研,10多项发明专利,是德国热电协会成员。第2编者Kornelius Nielsch是德国汉堡大学教授,他是麻省理工的博士后,主要涉足纳米线、纳米管等领域的研究。

这是第一本关于热电材料纳米结构分析的综述类著作,具有开创性价值。书中分析了纳米材料的热电性能及传统热电材料的最新进展,内容全面丰富。

本书适合纳米复合材料领域的研究生和学者,对热电材料、纳米结构表征、Bi2Te3基热电材料、热电器件的应用等研究领域的相关人员有很大的参考价值。

半导体的热电效应及热电材料研究与应用

半导体的热电效应及热电材料研究与应用 摘要:据半导体热电效应以及制冷原理进行了分析,并分析了提高半导体热电材料热电优值的方法介绍了当今国内外半导体热电材料研究和热电材料制冷方面的应用。 关键词:热电效应;半导体热电材料;塞贝克系数;电导率;热导率;热电优值,半导体制冷; 正文: 一.热电效应 把热能转换为电能的所谓热电效应的发现已有一个半世纪的历史,这是与温度梯度的存在有关的现象,其中最重要的是温差电现象。但是,由于金属的温差电动势很小,只是在用作测量温度的温差电偶方面得到了应用。半导体出现后,发现它能得到比金属大得多的温差电动势,在热能与电能的转换上,可以有较高的效率,因此,在温差发电、温差致冷方面获得了发展。由于温度梯度及电流同时存在时引起的一些现象——主要是塞贝克效应、珀尔帖效应和汤姆逊效应。 (1)塞贝克效应 塞贝克(Seeback)效应,又称作第一热电效应,它是指由于两种不同电导体或半导体的温度差异而引起两种物质间的电压差的热电现象。在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。塞贝克效应的实质在于两种金属接触时会产生接触电势差,该电势差取决于金属的电子逸出功和有效电子密度这两个基本因素。半导体的温差电动势较大,可用作温差发电器。 产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有负电荷,冷端有正电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势。自然,p型半导体的温差电动势的方向是从低温端指向高温端(Seebeck系数为负),相反,n型半导体的温差电动势的方向是高温端指向低温端(Seebeck系数为正),因此利用温差电动势的方向即可判断半导体的导电类型。可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi

热电材料项目分析

热电空调项目 分析报告 一、项目背景 进入21 世纪以来,随着全球环境污染和能源危机的日益严重,以及对人类可持续发展的广泛关注,开发新型环保能源替代材料已越来越受到世界各国的重视。 1、能源短缺 随着全球工业化的进程,人类对能源消耗的需求不断增长,回顾近100 年能源工业的发展历史,可以清楚地看到,整个能源工业的消耗主要以化石类能源为主。人类正在消耗地球50 万年历史中积累的有限能源资源,煤和石油作为能源的载体,极大地解放了生产力,推动了全球工业化的进程,同时也向人类敲响了警钟:常规能源己面临枯竭。由于常规能源的有限性和分布的不均匀性,造成了世界上大部分国家能源供应不足,不能满足其经济发展的需要。从长远来看,全球已探明的石油储量只能用到2020 年,天然气也只能延续到2040 年左右,即使储量丰富的煤炭资源也只能维持二三百年。因此,如不尽早设法解决化石能源的替代能源,人类迟早将面临化石燃料枯竭的危机局面。 2、环境污染 当前由于燃烧煤、石油等化石燃料,仅我国每年就将有近百万吨C O 2、二氧化硫、氮氧化物等有害物质抛向天空,使大气环境遭到严重污染,导致温室效应和酸雨,恶化地球环境。直接影响人类的身体健康和生活质量,严重污染水土资源。这些问题最终将迫使人们改变能源结构,依靠利用太阳能等可再生洁净能源来解决。 3、温室效应 化石能源的利用不仅造成环境污染,同时由于排放大量的温室气体而产生温室效应,引起全球气候变化。这一问题已提到全球的议事日程,其影响甚至已超过了对环境的污染,有关国际组织已召开多次会议,限制各国C O 2 等温室气体的排放量。 二、热电材料介绍 什么是热电材料呢热电材料是一种利用固体内部载流子运动实现热能和电能直接相互转换的功能材料。人们对热电材料的认识具有悠久的历史。1823年,德国人塞贝克(Seebeck)发现了材料两端的温差可以产生电压,也就是通常所说的温差电现象。1834年,法国钟表匠

铂纳米微粒制备方法的研究

铂纳米微粒制备方法的研究 李明元1,毛立群2,郭建辉2,黄在银1 (1.广西大学化学化工学院,广西,南宁 530004;2.河南大学化学化工学院,河南,开封 475001) 摘 要:分散型铂纳米微粒和负载型铂纳米微粒都是重要的催化剂。制备尺度可控、粒度分布均一的铂纳米微粒,对提高其催化活性和选择性,以及延长其使用寿命具有重要的意义。本文介绍了分散型和负载型铂纳米微粒常用的制备方法,讨论了各方法的制备原理及其优缺点。 关键词:纳米铂;制备方法;分散型;负载型 1 前言 铂及其合金在石油和化学工业中主要用作催化剂,对加氢反应,氧化反应具有较好的催化性能[1-2]。近年来随着纳米科学与技术研究的不断深入,研究工作者发现纳米铂由于具有比表面积高和因而显示出的更高的催化活性,使得关于纳米铂的制备及催化性能研究成为热点[3-5]。铂纳米微粒的制备方法大致分为两类,即化学法(化学还原法、微乳液法等)和物理方法(真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米微粒的催化性能与其制备方法密切相关,微粒的尺度、形貌、化合价等对其催化性能起着至关重要的作用[6],此外,对于载体型纳米铂催化剂而言,载体的性质也同样对纳米铂的催化性能也会产生影响。本文简述了铂纳米微粒的制备方法,主要介绍各种制备方法的原理及其优缺点,以及运用这些方法制备*铂纳米微粒所取得的进展。 2 分散型铂纳米微粒的制备 分散型铂纳米微粒的制备方法主要有化学还原法、微乳液法、吸氢多次还原法等。目前关于负载型铂纳米微粒的制备研究较多,而分散型铂纳米微粒的制备研究相对较少。 2.1 化学还原法 化学还原法制备纳米铂微粒,一般是在含有金属铂的盐或者酸里面加入还原剂还原高价铂到铂单质,然后经过洗涤、过滤、干燥、煅烧等处理后得到催化剂铂纳米粉体。常用的还原剂有甲醛[7]、多聚甲醛[8]、硼氢化钠[9]、硫代硫酸钠、连二亚硫酸钠、乙醇、乙二醇、柠檬酸、葡萄糖、水合肼等。化学还原法具有操作简单,反应条件温和,对仪器的要求低等优点。但是用化学还原法制备铂纳米微粒需要加入还原剂、保护剂等,在后处理过程中需采用高温焙烧的方法将它们除去。而在焙烧过程中容易造成保护剂的碳化和铂纳米微粒的团聚[10],因此化学还原法不容易得到小尺度,且粒度均一的铂纳米微粒。保护剂主要有聚合物、有机配合物、壳聚糖、表面活性剂等[11]。通常,保护剂的加入量对铂纳米微粒尺度有重要影响,铂纳米微粒的团聚程度随着保护剂的加入量的增加而减小。 唐浩林等[12]在碱性条件下(pH=8.5)用无水乙醇还原氯铂酸,并采用Nafion聚离子对生成的铂纳米微粒进行表面修饰,得到平均粒径为4nm的铂纳米微粒。Nafio n憎水性极强的高分子主链和亲水性的磺酸基团对铂纳米微粒具有良好的化学修饰作用,且Nafion聚离子对铂存在位阻作用,使铂纳米微粒稳定吸附在Nafion聚离子上而彼此分散开。陈卫等[13-14]在碱性条件下用甲醇做还原剂还原氯铂酸,分别在加入保护剂聚乙烯吡咯烷酮(PVP)和没有加入保护剂的条件下制得了平均粒径为2.5nm 的球状铂纳米微粒。杨玉琴等[15]在加入保护剂PVP 下,用两种还原剂乙醇和硼氢化钠还原氯铂酸制得铂纳米微粒。他们的研究表明,加入的保护剂越多,得到的铂纳米微粒就越小,分散性也越好,但是保护剂加入的越多,制备的铂纳米颗粒的催化性能就越低。他们还发现,用硼氢化钠做为还原剂制备的铂纳米微粒较小并且很少有团聚现象。吕高孟等[16]以吡啶为保护剂,在室温条件下以硼氢化钾为还原剂制得了粒径在2.0~3.0nm的铂纳米微粒。用吡啶作保护剂解决了空气对保护剂的破坏从而使胶体纳米铂可以较长时间地存在。但胶体纳米铂难以分离,因此他们所制备的铂纳米粒子并没有从胶体中分离出来。由Fox研究小组[17]用聚芳醚二硫树枝状分子作保护剂得到启发,张伟等[18]用聚芳醚三乙酸铵树枝分子作为保护剂制得了平均粒径为2.5nm的铂纳米微粒。聚芳醚三乙酸铵树枝分子上的羟基与铂纳米微粒之间有较强的相互作用,使其具有较好的稳定性,不宜发生团聚。 2.2 微乳液法 微乳液中油包水型(W/O)的水核尺寸小且彼此分离,不同水核内不能进行物质交换,因此适当的微乳液可以制备出尺寸和大小都比较均一且分散性好的纳米微粒[19]。微乳液中组分的比例对纳米微粒 5  2007年第12期 内蒙古石油化工 收稿日期:2007-08-14 基金项目:河南省教育厅资助项目(2007150007)

热电材料(全面的)

热电材料 thermoelectric material 将不同材料的导体连接起来,并通入电流,在不同导体的接触点——结点,将会吸收(或放出)热量.1834年,法国物理学家佩尔捷(J.C.A.Peltier)发现了上述热电效应.1838年,俄国物理学家楞次(L.Lenz)又做出了更具显示度的实验:用金属铋线和锑线构成结点,当电流沿某一方向流过结点时,结点上的水就会凝固成冰;如果反转电流方向,刚刚在结点上凝成的冰又会立即熔化成水. 热电效应本身是可逆的.如果把楞次实验中的直流电源换成灯泡,当我们向结点供给热量,灯泡便会亮起来.尽管当时的科学界对佩尔捷和楞次的发现十分重视,但发现并没有很快转化为应用.这是因为,金属的热电转换效率通常很低.直到20世纪50年代,一些具有优良热电转换性能的半导体材料被发现,热电技术(热电制冷和热电发电)的研究才成为一个热门课题. 目前,在室温附近使用的半导体制冷材料以碲化铋(Bi2Te3)合金为基础.通过掺杂制成P 型和N型半导体.如前所述,将一个P型柱和一个N型柱用金属板连接起来,便构成了半导体制冷器的一个基本单元,如果在结点处的电流方向是从N型柱流向P型柱,则结点将成为制冷单元的“冷头”(温度为Tc),而与直流电源连接的两个头将是制冷单元的“热端”(温度为Th). N型半导体的费米能级EF位于禁带的上部,P型的则位于禁带的下部.当二者连接在一起时,它们的费米能级趋于“持平”.于是,当电流从N型流向P型时(也就是空穴从N到P;电子从P到N),载流子的能量便会升高.因此,结点作为冷头就会从Tc端吸热,产生制冷效果. 佩尔捷系数,其中是单位时间内在结点处吸收的热量,I是电流强度,Π的物理意义是,单位电荷在越过结点时的能量差.在热电材料研究中,更容易测量的一个相关参数是泽贝克(Seebeck)系数α,,其中T是温度.显然,α描述单位电荷在越过结点时的熵差. 对于制冷应用来说,初看起来,电流越大越好,佩尔捷系数(或泽贝克系数)越大越好.不幸的是,实际非本征半导体的性质决定了二者不可兼得:电流大要求电导率σ高,而σ和α都是载流子浓度的函数.随着载流子浓度的增加,σ呈上升趋势,而α则下跌,结果ασ只可能在一个特定的载流子浓度下达到最大(注:由热激活产生的电子-空穴对本征载流子,对提高热电效益不起作用). 半导体制冷单元的P型柱和N型柱,都跨接在Tc和Th之间.这就要求它们具有大的热阻.否则,将会加大Tc和Th间的漏热熵增,从而抵消从Tc端吸热同时向Th端放热的制冷效果.最终决定热电材料性能优劣的是组合参数,其中κ是材料的热导率.参数Z和温度T的乘积ZT无量纲,它在评价材料时更常用.目前,性能最佳的热电材料,其ZT值大约是1.0.为要使热电设备与传统的制冷或发电设备竞争,ZT值应该大于2. Glen Slack把上述要求归纳为“电子-晶体和声子-玻璃”.也就是说,好的热电材料应该具有晶体那样的高电导和玻璃那样的低热导.在长程有序的晶体中,电子以布洛赫波的方式运动.刚性离子实点阵不会使传导电子的运动发生偏转.电阻的产生来源于电子同杂质、晶格缺陷以及热声子的碰撞.因此,在完善的晶体中σ可以很大. 半导体中的热导包含两方面的贡献:其一由载流子(假定是电子)的定向运动引起的(κe);其二是由于声子平衡分布集团的定向运动(κp).根据维德曼-弗兰兹定律,κe∝σ.人们不可能在要求大σ的同时,还要求小的κ e.减小热导的潜力在于减小κp,它与晶格的有序程度密切相关:在长程有序的晶体中,热阻只能来源于三声子倒逆(umklapp)过程和缺陷、

纳米铂

纳米铂-L半胱氨酸修饰玻碳电极对 对苯二酚的检测研究 姓名:陈盼盼学号:201004034032 班级:化学一、文献综述 化学工业对人类社会和物质文明做出了重大贡献,人们在享受现代科学与技术给人们带来巨大的便利和快乐的同时,也逐渐意识到人类未来面临的巨大生存危机和困难。20世纪,人们逐步认识化学品的不当生产和使用会对人的健康、社区环境、生态环境产生危害性。据统计,世界每年生产的人工合成有毒化合物约50万种,共400万t,所有这些物质,近一半留在大气江河、湖、海内,另外每年还有将近18万t的铅和磷,3000万t的汞和各种有毒重金属流入水体内,200万t石油流进海洋。中国化学工业排放的废水、废气和固体废物分别占全国工业排放总量的22.5%、7.82%和5.93%,造成环境严重恶化,直接危害人类,又破坏生物圈,长期的影响着人类的生存。 对苯二酚,又名氢醌.化学名1,4-苯二酚,英文名 1,4-Dihydroxybenzene ; Hydroquinone。对苯二酚为白色针状结晶,分子式C6H4(OH)2,分子量110.11,比重1.332,熔点172℃,沸点286℃,闪点165℃,溶于水、乙醇及乙醚,微溶于苯。可燃。自燃点516℃。长期接触对二苯酚蒸气、粉尘或烟雾可刺激皮肤、粘膜,并引起眼的水晶体混浊。操作现场空气中最高容许浓度2mg/m3。 对苯二酚是一种重要的化工原料且应用广泛【1】主要用于显影剂、蒽醌染料、偶氮染料、合成氨助溶剂、橡胶防老剂、阻聚剂、涂料和

香精的稳定剂、抗氧剂等。对苯二酚因具有毒性,而且在自然条件下,不易降解,对人体环境有较大的危害, 因此受到人们的普遍关注,但其微量不容易不检测出来,因而需要更加灵敏的方法来检测目前,微量对二苯酚的测定方法有荧光谱法【2】、薄层色谱法【3】高效液相色谱法【4】动力学光度法【5】因为对苯二酚具有电学活性,可用电化学方法测定其含量,因此用选择性好、灵敏度有高的化学修饰电极测量对对苯二酚已有报道【6-7】,但是因为修饰过程复杂,干扰过多,灵敏度等问题。所以要设计更好的修饰方法来对微量对苯二酚的检测。 玻碳电极,是电化学研究中使用最为频繁的碳材料基础电极【8】。它的表面具有多变的性质,极易受实验条件的影响而发生变化。玻碳电极在应用与电化学研究时,在每次试验前需要对电极进行前处理,以改善其电化学相应信号的重现性【8】。目前,世界上几乎所有的实验室,对玻碳电极最为常采用的的前处理程序都是先在Al2O3磨料浆中打磨电极,随后在超声水浴中清洗。但这样的处理方法再重现性上不尽人意。因次,在这里我们要进行电化学活化以此来满足电分析实验室所需的各种高要求,各种有效的电化学活化方法均采用一个叫高阳极极化电位。电化学活化既可以在酸性、中性溶液中【9】也可以在碱性溶液中【10】,动力学研究表明活化电极的电子传导性质的改善可能以表面的亲水性【11】、清洁度【12】、含氧基团【13】等因素有关。 纳米材料具有表面效应【14】、体积效应【15】和介电限域效应登

热电材料及其应用

科技日报/2004年/08月/30日/ 热电材料及其应用 热电材料是一种将“热”和“电”直接转换的功能材料。其工作原理是固体在不同温度下具有不同的电子(或空穴)激发特征,当热电材料两端存在温差时,材料两端电子或空穴激发数量的差异将形成电势差(电压)。 人们对热电材料的认识具有悠久的历史。1823年德国人T.Seebeck发现了材料两端的温差可以产生电压(通常称:温差电现象)。1834年法国人J.C.A.Peltier在法国王宫演示了温差电现象的“逆效应”:通电使一端制冷而另一端发热(通常称:Peltier效应)。 热电材料也具有长久的研究历史。20世纪上半叶对热电材料的研究奠定了近代半导体学科的基础。国内外半导体研究领域的许多著名学者都是在上世纪五十年代后期开始从热电材料转向以硅为代表的微电子半导体材料研究的。 热电材料的主要应用主要包括:温差发电,半导体制冷,以及作为传感器和温度控制器在微电子器件和M EMS中的应用等。 在温差发电方面的应用领域包括: 1)特殊场合使用的电源。例如:放射性同位素温差发电器(Radioiso2 tope Thermoelectric G ener鄄ators,简称R TG)。美国NASA从Apollo飞船至Pioneer、Voyager、G alileo和Ulysses,已在20多个航天器上使用R TG作为电源。在俄罗斯,有1000余个类似的R TG装置用于北极圈附近的海洋灯塔,具有免维护运行20年设计寿命。另外,利用燃油或木材等燃烧热的小型发电装置,可以为边远地区、野战小部队等提供小功率电源。 2)在工业余热、废热和低品位热温差发电方面的潜在应用。美国能源部(DOE)于2003年11月12日公布一个“工业废热温差发电用先进热电材料”资助项目,主要应用对象是利用冶金炉等工业高温炉的废热发电以降低能耗。今年3月又发布了项目指南,计划开展汽车发动机余热温差发电的研究。欧洲20余个研究机构也已联合进行了汽车发动机余热发电方面的预研,并正在组织“纳瓦到兆瓦热电能量转换”大型科研项目。 用热电材料制造的温差发电装置和制冷装置具有:无运动部件,无污染,无噪声,无磨损,免维护,对形状大小和使用条件的限制小,适用面广等突出优点。目前制约其大规模应用的关键因素是热电材料的性能。 热电材料的性能用“热电优值”Z=a2s/k 表征。其中,a是温差电势系数(即Seebeck系数),s是电导率,k是热导率。在保持足够高的a和s值的前提下,最大幅度地降低k是提高热电材料性能的关键。已有研究表明,材料的纳米化、低维化(一维纳米线、二维薄膜等)以及结构空穴都有助于降低材料的热导率,是提高热电材料性能的最有效途径之一。 纳米管具有许多特征的物理、化学特性,是目前材料、物理、化学等领域的国际学术研究热点。纳米管结构同时具有纳米量子效应、低维局域效应和空心管对热传导的限制作用,对提高热电材料性能而言,是一种理想的微观结构形态。目前常见的碳、硅、碳化硼等纳米管不具有热电材料所需的特殊能带结构。 最近,在国家自然科学基金和“863计划”纳米专项的资助下,成功合成了具有纳米管和纳米囊(薄壁粗短管)形态的Bi2Te3,制备了纳米复合结构块状热电材料,在热电性能方面取得了一定进展(比国际先进水平提高20%)。这项工作的意义是多方面的: 1)Bi

纳米铂基本性质及生产应用介绍

纳米铂基本性质及生产应用介绍 2016-10-28 14:05来源:内江洛伯尔材料科技有限公司作者:研发部 【产品说明】 中文名称:纳米铂粒子

英文名称:Platinum nanoparticles 中文别名:铂纳米、铂金纳米、纳米铂金溶液 CAS号:7440-06-4 【产品特性】 外观:黑色液体 PH:7.0±0.5 粒径:3nm 铂金纯度:99.95% 包装规格:按客户要求包装 保存方法:置于阴凉、干燥处 【详细介绍】 铂纳米颗粒(Platinum nanoparticles)一般是指大小在2-20nm的铂颗粒分散在水内的悬浮体或胶体,与其他金属纳米材料类似由于其形貌和尺寸的原因铂纳米颗粒具有一般金属纳米材料的表面效应、体积效应、量子尺寸效应及宏观量子隧道效应等性质。在形貌调控方面,目前已经报道的铂纳米结构包括:纳米球、纳米线、纳米管、纳米立方体、纳米轮、和纳米笼等;在尺寸调控方面,传统的调控方法为加晶种法,首先合成特定形貌的晶种,包括纳米球、纳米棒、纳米立方体和纳米多面体等,然后将晶种加入合成体系中分离成核与生长过程,保证每个成核中心有大致相同的生长时间,实现铂纳米材料粒径均一性的调控,并通过调变晶种与铂金属前体的比例控制粒径的大小。 铂纳米颗粒的制备方法大致分为两类,即化学法( 化学还原法、微乳液法、吸氢多次还原法等) 和物理方法( 真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米材料作为一种功能性材料,在催化、传感器、燃料电池、光学、电子学、电磁学等领域具有重要的应用价值。应用于各种生物催化剂、宇航服制作、汽车尾气净化装置、食品及化妆品防腐剂、抗菌剂、美容产品等。

铂纳米团簇用于制作双功能电催化剂

铂纳米团簇用于制作双功能电催化剂 2016-05-26 13:32来源:内江洛伯尔材料科技有限公司作者:研发部 多孔钙钛矿锰氧化物负载纳米铂催化剂示意图 质子交换膜燃料电池(Proton Exchange MembraneFuel Cell,简称:PEMFC),又称固体高分子电解质燃料电池(Polymer ElectrolyteMembrane Fuel Cells ),是一种以含氢燃料与空气作用产生电力与热力的燃料电池,运作温度在50℃至100℃,无需加压或减压,以高分子质子交换膜为传导媒介,没有任何化学液体,发电后产生纯水和热。 燃料电池中,质子交换膜燃料电池相对低温与常压的特性,加上对人体无化学危险、对环境无害,适合应用在日常生活,所以被发展应用在运输动力型(Transport)、现场型(Stationary)与便携式(Portable)等机组。 燃料电池商品化的催化剂以Pt/C最具代表性。然而,Pt/C催化剂使用过程中,碳基底容易被腐蚀,进而导致铂纳米颗粒团聚、电化学活性比表面积急剧下降;另一方面,Pt价格昂贵、资源稀缺,极大地限制了此类催化材料的规模应用。因此,寻找低铂载量、高活性和高稳定性的电催化材料成为重要课题。 针对Pt/C催化剂中碳载体易被腐蚀、稳定性差这一关键问题,过渡金属氧化物被研究用来替代碳载体负载铂纳米颗粒。其中,锰基氧化物特别是复合锰氧化物由于价格低廉、储量丰富、环境友好以及自身具有氧催化性能而受到关注。 最近,南开大学科研人员设计开发了一种新型氢化Pt纳米簇/多孔CaMnO3复合电催化材料,相比于普通Pt/C催化剂,在碱性体系中,对氧还原催化反应表现出5倍的质量活性、11倍的比表面积活性以及更佳的稳定性,同时对氧析出反应性能优异。研究表明,该材料的高活性源于以下因素:第一,Pt与CaMnO3的协同效应,优化了催化剂表面对含氧物种的吸脱附;第二,高分散和小粒径的铂纳米簇有利于氧分子的活化与解离;第三,氢化处理在氧化物中引入了氧缺陷,不仅提高了材料的电导率,而且导致Mn的混合价态,促进电催化过程。该材料优异的催化稳定性可归因于两个方面:首先,钙钛矿型CaMnO3载体自身在碱性溶液中具有更好的化学稳定性以及抗腐蚀能力;其次,多孔结构的限域作用有效阻止了Pt纳米簇的团聚。研究结果有助于促进低铂载量、高活性、长寿命复合电催化材料的研制。

热电材料应用

热电材料 关键字:热电材料分类探究与展望 热电材料是一种能将热能和电能相互转换的功能材料,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。 较好的热电材料必须具有较高的Seebeck系数,从而保证有较明显的热电效应,同时应有低的热导率,使能量能保持在接头附近。另外还要求热阻率较小,使产生的焦耳热量小。目前限制热电材料得以大规模应用的问题是其热电转换效率太低。热电材料的热电转换效率可用无量纲热电优值—ZT值来表征,ZT= S2Tσ/λ, ZT越大, 热电材料的性能越好,这里的T为绝对温度,Z=S2σ/λ,式中S为材料的热电系数,即材料的Seebeck系数,σ为材料的电导率,S2σ 又称为材料的功率因子,它决定了材料的电学性能。由Z的表达式可以看出,要提高材料的热电转换效率,应选用同时具有较大功率因子和尽可能低热导率的热电材料。影响热电材料的优值Z的3个参数Seebeck系数、热导率、电导率都是温度的函数。同时优值Z又敏感地依赖于材料种类、组分、掺杂水平和结构。因此每种热电材料都有各自的适宜工作温度范围。 1半导体金属合金型热电材料 金属材料的热电效应非常小,除在测温方面的应用外,其他没有实际的应用价值。直到20世纪50年代,人们发现小带隙(small band gap)掺杂半导体比金属大很多热电效应,研制温差电源和热电制冷器已具有现实意义。这类材料以Ⅲ,Ⅳ,Ⅴ族及稀土元素为主。目前,研究较为成熟并且已经应用于热电设备中的 材料主要是金属化合物及其固溶体合金如Bi 2Te 3 /Sb 2 Te 3 、PbTe、SiGe、CrSi等, 这些材料都可以通过掺杂分别制成P型和n型材料。有报道称在实验室得到的最 高ZT值达到2.2 (AgPb m SbTe 2+m , 800K) 到2.4(Bi 2 Te 3 /Sb 2 Te 3 超晶格, 300K)。通 过调整成分、掺杂和改进制备方法可以进一步提高这些材料的ZT,通过化学气相 沉积( CVD )过程得到综合两维Sb 2Te 3 /Bi 2 Te 3 超晶格薄膜的ZT高达2.5,ZT的 研究还在继续进行。但是这些热电材料存在制备条件要求较高,需在一定的气体保护下进行,不适于在高温下工作以及含有对人体有害的重金属等缺点[1]。 2方钴矿(Skutterudite)热电材料 Skutterudide是CoSb 3的矿物名称,名称为方钴矿,是一类通式为AB 3 的化 合物(其中A是金属元素,如Ir、Co、Rh、Fe等;B是V族元素,如As、Sb、P 等)。二元Skutterudite化合物是窄带隙半导体,其带隙仅为几百毫电子伏,同时此类化合物具有较高的载流子迁移率和中等大小的反Seebeek系数,但热导率比传统的热电材料要高.此类化合物的显著特点是,外来小原子可以插入晶体结构的孔隙,在平衡位置附近振动,从而可以有效地散射热声子,大大降低晶格 热导率。最初的研究集中在等结的IrSb 3, RhSb 3 和CoSb 3 等二元合金,其中CoSb 3 的热性能相比较而言最好。尽管二元合金有良好的电性能,但其热电数据受到热 导率的限制。因此对多元合金的研究得到了重视,实验得到P型CeFe 3.5Co 0.5 Sb 12 方钴矿化合物ZT值在620K时达到1.4。目前进一步提高Skutterudite材料热电性能的途径有两条:(l)通过各种拾杂调节电学性能,(2)引入额外的声子散射降低晶格热导率[2]。

碲化铋

低温热电材料碲化铋 摘要 热电材料利用材料本身的物理效应来实现电热之间的转换,既可以利用塞贝克效应将热能转化为电能,也可以利用帕尔贴效应用于制冷领域。在常温环境里,碲化铋()系合金材料是研究最成熟、应用最广泛的一类热电材料,性能比其他材料优异。进一步提高 的热电性能及其微型热电器件的制备技术是目前研究的热点。本文简要介绍了 基半导体合金的基本构成、热电性能和制备方法。 Abstract Thermoelectric(TE) materials can realize the directly convention of electricity and thermal by the physical effect of the material, which is either used for power generations grounding on Seebeck coefficient or for cooling by Peltier effect. Bismuth telluride()-based alloys are one of the most widely studied and used thermoelectric materials,whose thermoelectric properties are better than other materials.Currently,much attention has been paid to the improvement of the thermoelectric properties of and the preparation of its thermoelectric micro-devices. This thesis introduced Bismuth telluride()-based alloys’chemical constitution, thermoelectric properties and manufacturing methods. 新能源材料和技术是二十一世纪人类可继续发展不可缺少的重要物质和技术基础之一。热电材料是一种新型的、环境友好的新能源材料,在热电致冷和热电发电方面的应用越来越广泛。由于热电发电在低温废热回收利用上具备独特的优势,而成为未来热电行业的主力发展方向。 热电材料是通过半导体材料的塞贝克(Seebeck)效应和帕尔贴(Peltier)效应实现热能与电能直接相互耦合、相互转化的一类功能材料。随着能源危机与环境污染的日益严重,热电材料因其自身具有无污染、无噪音、体积小、寿命长、可精确控制等优点引起了人们广泛的关注。不论在发电方面(如利用深层空间作业的宇宙飞船的发送机内外温差建立自动发电系统供长期宇航作业),还是从环境保护、无震动、无噪声、微型化、易于控制、可靠性、寿命长等角度出发,热电材料都具有不可取代的优点。目前,热电材料已经成功应用到人造卫星,太空飞船,高性能接收器和传感器等领域。 基半导体合金是目前知道的室温下性能最好的热电材料。Bi和Te分别是V族和VI族元素,即为它们构成了化合物半导体。是一种天然的层状结构材料,晶体结构为R-3m斜方晶系。化合物为六面层状结构,在单胞C轴方向,Bi和Te的原子层

金属铂纳米颗粒的形貌控制合成

金属铂纳米颗粒的形貌控制合成 Shape-controlled Synthesis of Metal Platinum Nanoparticles 【摘要】金属纳米颗粒的形貌控制合成是金属纳米材料研究领域倍受关注的难题。铂黑是化工领域重要的催化剂。铂纳米颗粒的催化性能优于铂黑,其性质与形貌、粒径和结构密切相关。近年来,铂纳米颗粒的形貌控制合成虽然取得了一定进展,但所得到的多数铂纳米颗粒形貌不单一,大小不均匀。 为此,本论文采用多醇还原法制备形貌、粒径及二级结构可控的铂纳米颗粒,探索了不同反应条件对铂纳米颗粒形貌粒径的影响,并对纳米颗粒形成机理进行了初步探讨,采用多种分析手段对产物进行了表征。采用晶种两步生长法制得具有链状二级结构的铂纳米颗粒。 以六水合氯铂酸为前驱体,以乙二醇和三缩四乙二醇为混合溶剂及还原剂,以聚乙烯吡咯烷酮(PVP)为稳定剂,微波加热制备铂纳米晶种,然后在油浴中进一步生长成链状二级结构的铂纳米颗粒,并用紫外-可见光谱(UV-vis)、透射电子显微镜(TEM)、粉末X-射线衍射(XRD)以及X-射线光电子能谱(XPS)对产物进行了表征。对链状结构形成机理进行了初步探讨,认为颗粒呈链状分布是由于PVP的支架剂功能。 采用微波辐照加热法,以六水合氯铂酸为前驱体,以乙二醇和三缩四乙二醇混合溶液为溶剂及还原剂,利用聚乙烯吡咯烷酮(PVP)和十六烷基三甲基溴化铵(CTAB)作为协同稳定剂,在适量KOH存在下微波加热100秒,制备出“爆米花”状的铂纳米颗粒; 考察了反应参数对“爆米花”状的铂纳米颗粒控制合成的影响;以γ-Al2O3为载体,初步探讨了γ-Al2O3负载的“爆米花”状的铂纳米颗粒的催化活性。以氯铂酸钾(K2PtCl6)作为前驱体,利用PVP和CTAB作为形貌控制剂,以乙二醇作为溶剂及还原剂,在一定量NaNO3存在下制备出分布较均匀的自组装铂纳米颗粒。探讨了铂纳米颗粒自组装体的形成机理,认为PVP长链包围在CTAB的一端,形成链-球状软模板,将氯铂酸钾包围其中,当Pt(IV)被还原后因PVP链的桥联作用使得分散的铂纳米颗粒相互靠近,有序聚集成自组装体。 【Abstract】Much attention has been paid to the shape-controlled synthesis of metal nanoparticles in the field of metallic nanomaterials. Platinum black is an important catalyst for chemical industry. The catalytic property of platinum nanoparticles is much higher than the platinum black, but its intrinsic properties are strongly dependent on its size, morphology and structure. In recent yeas, though the shape-controlled synthesis of platinum nanoparticles has made a much progress, few of uniform platinum 。。。。 【关键词】铂;纳米颗粒;形貌;微波;自组装体;乙二醇;三缩四乙二醇;聚乙烯吡咯烷酮;十六烷基三甲基溴化铵;透射电子显微镜; 【Key words】Platinum;Nanoparticles;Morphology;Microwave;Self-assembly;Ethylene glycol;Teraethylene glycol;Cetyltrimethylammonium bromide;Polyvinylpyrrolidone;Transmission electron microscopy; 【网络出版投稿人】中南民族大学【网络出版年期】2011年S2期 【DOI】CNKI:CDMD:2.2009.226793

碲化铋热电材料

1、铋系热电材料概述: 进入21 世纪以来,随着全球工业化的发展,人类对能源的需求不断增长,在近百年中,工业的消耗主要以化石类能源为主。人类正在消耗地球50 万年历史中积累的有限能源资源,常规能源已面临枯竭。全球已探明的石油储量只能用到2020 年,天然气只能延续到2040 年左右,煤炭资源也只能维持2300 年左右。且这两种化石燃料,在使用时排放大量的CO2、SO2、NO、NO2等有害物质,严重污染了大气环境、导致温室效应和酸雨。引起全球气候变化,直接影响人类的身体健康和生活质量,严重污染水土资源。因此,开发新型环保能源替代材料已越来越受到世界各国的重视。 其中发展新型的、环境友好的可再生能源及能源转换技术引起了世界发达国家的高度重视。热电半导体是采用热电效应将热能和电能进行直接转换的一种无污染的绿色能源产品。其中温差发电是利用热电材料的Seebeck效应, 将热能直接转化为电能, 不需要机械运动部件, 也不发生化学反应。热电制冷是利用Peltier效应, 当电流流过热电材料时, 将热能从低温端排向高温端, 不需要压缩机, 也无需氟利昂等致冷剂。因而这两类热电设备都无振动, 无噪音, 也无磨损, 无泄漏, 体积小, 重量轻, 安全可靠寿命长, 对环境不产生任何污染, 是十分理想的电源和制冷器。于是美国能源部、日本宇宙航天局等发达国家的相关部门都将热电技术列入中长期能源开发计划, 我国也将热电列入国家重点基础研究发展计划(973)的大规模发展的新能源计划中。在21世纪全球环境和能源条件恶化、燃料电池又难以进入实际应用的情况下, 热电技术更成为引人注目的研究发展方向。热电半导体行业在全球来说作为一个新兴行业,每年以超过1倍的速度增长。目前, 已经商用的热电行业的原料最主要的是Bi2Te3基热电半导体材料。

纳米铂的应用价值

纳米铂的应用价值 1、治疗氧化应激相关疾病的应用 动力学参数分析表明,PtNPs在较宽的pH值和温度范围内具有活性。在H2O2的极端浓度下,PtNP的效率保持不变,这将抑制天然的HRP和CAT。与生物酶相比,PtNPs对TMB具有更高的亲和力,可能被较大的NP表面面积所增强。总体而言,PtNPs自由基猝灭能力的最新研究结果清楚地显示了它们在纳米医学、氧化应激相关疾病清除剂等方面的巨大潜力,以及它们作为人工酶在纳米诊断中的应用前景[1]。 2、基于PtNP的皮肤制剂的开发 PtNPs的重要转化医学应用可能是在紫外线照射下保护角质形成细胞免受ROS诱导的细胞凋亡。局部应用基于PtNP的凝胶保护模型小鼠的光敏性皮炎免受UVA诱导的皮肤损伤。基于PtNP的皮肤制剂的开发可对医疗和化妆品市场产生巨大影响[2]。 3、PtNPs作为抗氧化剂治疗动脉粥样硬化等血管疾病 HSA-PtNP配合物具有较高的氧亲和力和抗氧化活性,为氧在血液中的转运开辟了新的前景。这已被描述为替代红细胞(RBCs)输血在一些临床病理。 此外,还证明了2-4nm的PtNPs与2-氨基-6-巯基嘌呤、3-氨基-1,2,4-三唑-5-硫醇和2-巯基-咪唑等小分子抗氧化剂的协同清除作用[3]。 4、预防肝缺血 PtNPs作为纳米颗粒被建议用于清除肝枯否细胞中的ROS,预防肝脏缺血[4]。还能抑制人淋巴U937和HH细胞热诱导的凋亡[5]。 5、治疗罕见疾病 最近,在一种罕见的脑血管氧化应激相关疾病-脑海绵状畸形细胞模型中描述了柠檬酸冠状PtNPs作为自由基清除材料的应用。低浓度的PtNPs能在48小时内完全恢复细胞的生理平衡,为治疗罕见疾病提供了新的途径[6]。 6、纳米诊断 (1)、近年来,PtNPs的其他特性在生物医学领域引起了人们的广泛关注。例如,荧光铂纳米团簇被成功地合成为用于诊断的新型生物兼容生物成

热电材料

碲化铋及其合金:这是目前被广为使用于热电致冷器的材料,其最佳运作温度<450℃。 碲化铅及其合金:这是目前被广为使用于热电产生器的材料,其最佳运作温度大约为1000℃。 硅锗合金:此类材料亦常应用于热电产生器,其最佳运作温度大约为1300℃。 本图显示的是直接将热能转化成电能的实验设备。这种设备在实际应用中可以将任何高温损耗热量转化为有用的电能。图片左侧的是一个热电极,它像任何发热金属一样,该热电极表面覆盖着电镀层,如果它接触到冰冻的物体表面,便会产生电能。然而在一般情况下,在高温热电极下却很少产生电流。热电转换材料是一种可以将热能和电能相互转换的材料。目前常用的热电转换材料多以重金属铋、锑和铅等为原料,这些原料不仅在自然界含量少、熔点低,而且还有剧毒,这在很大程度上影响了真正的实用化。 与热电发电相反,热电制冷利用Peltier效应可以制造热电制冷机。它具有机械压缩制冷机所没有的一些优点:尺寸小、质量轻、无任何机械转动部分,工作无噪声,无液态或气态介质,因而不存在污染环境问题,可实现精确控温,响应速度快,器件使用寿命长。因此热电制

冷已用于很多领域。除冰箱、空调、饮水机等家用电器外,热电制冷更重要的应用是信息技术领域,如红外探测器、激光器、计算机芯片等。例如,俄罗斯米格战斗机配备的AA-8和AA-11系列导弹就采用热电制冷对红外探测系统进行温控。热电制冷也已用于医学,如半导体制冷运血箱、冷敷仪、冷冻切片机、呼吸机、N D:YAG激光手术器,PCR仪等。另外,热电制冷材料的一个可能具有实际应用意义的场合是为超导材料的使用提供低温环境。 方钴矿型热电材料 方钴矿( Skutterudite)是一类通式为AB3的化合物,其中A是金属元素,如Ir、C o、Rh、Fe等,B是V族元素,如P、As、Sb等。方钴矿(Skutterudite)化合物是立方晶系晶体结构,具有比较复杂的结构,如图1所示。一个单位晶胞包含了8个A岛分子,共32个原子,每个晶胞内还有两个较大的笼状孔隙。 半导体金属合金型 热电材料半导体金属合金型热电材料以Ⅲ、Ⅳ、V族及稀土元素为主,目前研究比较成熟。已用作热电设备的材料主要是金属化合物及固溶体合金。如:Bi 2Te3/Sb2Te3、PbTe、SiGe、CrSi等。

多媒体环境对大学生英语学习的影响

多媒体环境对大学生英语学习的影响随着信息技术的发展,多媒体环境不仅在大学英语教学中得到了广泛的应用,而且在大学英语学习中也得到广泛的应用。多媒体环境应用于大学英语学习,弥补了传统英语学习的不足,对大学生英语学习起到积极的推动作用。 英语学习比较枯燥,积极主动地学习,贵在坚持 利用多媒体环境学习,可以节省大量的物资。大量的学习材料,都可以储存在便携式的硬盘里,便于携带和保存。笔者所在的高校,每年大学英语的期中、期末大型考试,都是在多媒体环境下进行的,避免了印制大量的纸质试卷,不仅做到了低碳环保,而且效果良好。 多媒体环境下,英语学习材料较齐全,有助于学生更全面地学习英语专业知识;学习材料更新速度快,有助于学生及时地了解英语国家的文化和最新动态,能紧跟时代发展的潮流;而且,选择学习材料时也比较方便,能节省大量的时间,方便学生随时随地地学英语。多媒体环境下的英语学习材料,有视频、音频、文本、图片、电子书等多种格式,可以通过视觉、听觉、阅读等不同的方式全方面地提高英语的综合水平,效率高,效果好。专业的英语学习多媒体环境,有专门的听力训练、口语训练、翻译训练和四六级模拟实战等分类模块,使得英语的学习更有针对性,有的放矢。学习过程中,避免了师生直接的面对面接触,有效地消除了学生的心理障碍。在学习反馈上,能做到及时反馈,有助于学生及时发现问题,及时改

正。 西方文化价值观对学生产生的不良影响 在多媒体环境下,部分学习材料是国外的第一手资料,里面所包含的西方文化价值观与中国文化价值观是不一致的。学生在学习时如果缺乏相应的分辨力,可能会受到西方文化价值观的误导。 2.对于学习材料的选择,部分学生存在盲目性 多媒体环境下学习材料的多样性,让自主学习的学生选择起来有些眼花缭乱。部分学生在选择时可能没有目标或缺乏规划性、系统性,导致在学习时缺乏相应的完整性,而收不到预期的效果。 3.部分学生学习自觉性、主动性差,不能持之以恒 多媒体环境下学生学习英语,主要靠学生自觉、积极、主动地学。如果学生缺乏相应的自控能力,过度沉迷于英文电影、电视剧等故事情节上,则达不到应有的效果。部分学生不能坚持,“三天打鱼,两天晒网”,从而导致学习不能落到实处,教学效率低下。所以学习英语贵在持之以恒。 4.传统与现代相结合 学习英语,要利用先进的多媒体环境,不抛弃优质的传统精华。经典的著作要阅读,经典的学习方法要采纳。同时要与时俱进,学习先进的方法和技术,做到传统与现代相结合。 积极主动地学习,充分利用现有的多媒体环境和学习资源。在学习时,制订科学合理的学习计划和方案,选择对应的学习资源,系统

2Te3)-热电纳米材料碲化铋(Bi2Te3).doc

2Te3)> 热电纳米材料碲化铋(Bi2Te3) - 热电材料是一种在固体状态下就可使热能与电能相互转换(静态能量转换)的材料。它能做成重量轻、体积小的微型半导体制冷器,解决计算机技术、航天技术、超导技术及微电子技术等高技术领域的制冷难题。目前,热电半导体产业已延伸至国际上最为热门的新材料、新能源等高新产业。商用热电行业的原料主要是Bi2Te3 基热电半导体材料。Bi2Te3基热电半导体材料以炼铜的副产物铋、碲、硒等为原料,按一定的配比和特殊的掺杂经定向生长得到Bi2Te3基热电半导体晶棒。 目前,用低维化和纳米化来实现电、声输运特性的协同调控,从而优化材料的热电性能,是热电材料领域的一个重要研究方向。主要通过外混、原位复合等方式引入纳米颗粒,纳米颗粒的散射中长波长的声子,从而降低材料的晶格热导率,同时纳米化有助于载流子在费米能级附近态密度的提高,纳米颗粒构成的界面所产生的界面势垒能有效过滤低能量载流子,从而增大赛贝克系数。 本书综述了热电纳米材料碲化铋(Bi2Te3)的最新研究进展,包括最新的合成方法、结构表征方法、热电性能及理论模型分析,另外,书中还介绍了热电材料器件应用于不同的新能源发电设备以及分析热电材料的商业潜能。 全书共12章:1.热电材料的概述。包括热电材料的Seebeck 效应、Peltier效应等三种热电效应,半导体材料等内容;2.电沉积法制备Bi2Te3基薄膜和纳米线;3.Bi2Te3纳米线电沉积于高

分子径迹蚀刻膜的合成和表征;4.V2VI3薄膜纳米合金材料的合成和结构及传输性能表征;5.Bi2Te3 薄膜材料结构和传输性能研究;6.Bi2Te3 基块体纳米材料的合成方法、热电性能分析; 7.Bi2Te3 纳米线、纳米复合材料及纳米块体材料的高能X射线和中子散射分析方法;8.Bi2Te3 纳米材料的结构分析,包括单晶纳米线的化学计量分析、化学模拟分析及电子传输系数的计算等;9.Bi2Te3晶体点缺陷的密度函数理论研究;10.基于玻尔兹曼理论从头开始描述热电性质;11.VVI复合薄膜和纳米线的热导性测试方法及热电价值分析;12.用于表征纳米材料结构及单根纳米线热电性能研究的热电纳米线表征平台(TNCP)的发展。 本书作者团队的前沿科研项目得到了德国科学基金支持,作者团队具有国际化的科研水平。第1编者Oliver Eibl是Tubingen 大学应用物理学教授,负责高温超导和太阳能电池等项目,至今发表过100多篇科研,10多项发明专利,是德国热电协会成员。第2编者Kornelius Nielsch是德国汉堡大学教授,他是麻省理工的博士后,主要涉足纳米线、纳米管等领域的研究。 这是第一本关于热电材料纳米结构分析的综述类著作,具有开创性价值。书中分析了纳米材料的热电性能及传统热电材料的最新进展,内容全面丰富。 本书适合纳米复合材料领域的研究生和学者,对热电材料、纳米结构表征、Bi2Te3基热电材料、热电器件的应用等研究领域的相关人员有很大的参考价值。

相关文档
最新文档