合肥工业大学计算机组成原理实验报告

合肥工业大学计算机组成原理实验报告
合肥工业大学计算机组成原理实验报告

实验一基本运算器实验

一、实验目的

了解运算器的组成结构;掌握运算器的工作原理。

二、实验内容

1、连线说明:

ALU单元:S0..S3(JP18) ——开关区单元:K20..K23(JP89)

ALU单元:Wa、wB、rALU、CN_I(JP19) ——开关区单元:K15..K12(JP92)

ALU单元:ALU_D0..ALU_D7(JP25) ——扩展区单元:JP62

ALU单元:IN0..IN7(JP22) ——开关区单元:K0..K7(JP97)

2、打开实验仪电源,按CON单元的nRST按键,将ALU的A、B、FC、FZ、FS、I清零;如果EXEC键上方指示灯不亮,请按一次EXEC键,点亮指示灯,表示实验仪在运行状态。

3、给暂存器A赋初值

(1)拨动开关区单元的K7..K0开关,形成二进制数01011000(或其它值);指示灯亮,表示该位是‘1’,灭为‘0’。

(2)拨动开关区单元K15(wA)、K14(wB)、K13(rALU)、K12(CN_I)开关,赋wA=0(允许写A)、wB=1(禁止写B)、rALU=1(不允许ALU输出)、CN_I=0,按CON单元的STEP按键一次,产生一个T1的下降沿,将二进制数01011000写入暂存器A中,ALU单元的A_7…A_0LED 上显示A中的值

4、给暂存器B赋初值

(1)拨动开关区单元的K7..K0开关,形成二进制数10101011(或其它值)。

(2)赋wA=1(禁止写A)、wB=0(允许写B)、rALU=1(不允许ALU输出)、CN_I=0,按CON单元的STEP按键一次,产生一个T2的下降沿,将二进制数10101011写入暂存器B 中,ALU单元的R_7…R_0LED上显示B中的值

5、赋wA=1(禁止写A)、wB=1(禁止写B)、rALU(K10)=0,按uSTEP键,进入T3节拍,

节拍DS169 DS168

T1、T2、T3无效

0 0

(T1=0、T2=0、T3=0)

T1

0 1

(T1=1、T2=0、T3=0)

T2

1 0

(T1=0、T2=1、T3=0)

T3

1 1

(T1=0、T2=0、T3=1)

说明:1-亮;0-灭

当rALU(K13)=0,如果S3S2S1S0的值是0000时,T2、T3节拍时,允许ALU结果输出;S3S2S1S0的值是其它数值,T3节拍时,允许ALU结果输出,显示于扩展区的二位数码管、DS94..DS101的LED上。

6、根据后边的“运算结果表”,改变K20(S0)、K21(S1)、K22(S2)、K23(S3)、K12(CN_I)的值,观察并记录运算器的输出。例如:S0=0,S1=0,S2=0,S3=0,ALU的D7_D0 = 58H;FC、FZ、FS、I不变。

注意:只有按CON单元的STEP按键一次,产生一个T3的下降沿,ALU才将标志位FC、FZ、FS、I写入标志寄存器PSW中,才能在ALU单元的FZ、FC、FS、I指示灯上看到结果。

如果实验仪、PC联机操作,则可通过软件中的数据通路图来观测实验结果,方法是:打开软件,在星研软件的工具条中选择“运算器实验”,打开运算器实验的数据通路图。

进行上面的手动操作,点击工具条上单节拍或单周期命令图标,数据通路图会反映当前运算器所做的操作。

三、实验结果及分析

运算结果表

运算类型 A B S3 S2 S1 S0 CN_I 结果

逻辑运算58 AB 0000 0 ALU=(58) FC=(0 )FZ=(0 ) FS=(0 ) 58 AB 0000 1 ALU=(AB) FC=(0 )FZ=( 0) FS=(0 ) 58 AB 0001 X ALU=(FB) FC=( 0)FZ=(0 ) FS=(0 )

0010 X ALU=(08 ) FC=( 0)FZ=(0 ) FS=(0 )

0011 X ALU=(F3 ) FC=( 0)FZ=(0 ) FS=(0 )

0100 X ALU=( A7 ) FC=(0 )FZ=(0 ) FS=( 0)

移位运算

0101 0 ALU=( 0B ) FC=(0 )FZ=( 0) FS=( 0) 0101 1 ALU=( 2C ) FC=(0 )FZ=( 0) FS=(0 ) 0110 0 ALU=( 2C) FC=( 0)FZ=( 0) FS=(0 ) 0110(FC=0)

1

ALU=(2C ) FC=(0 )FZ=( 0) FS=( 0) 0110(FC=1) ALU=(AC ) FC=( 0)FZ=( 0) FS=(0 ) 0111 0 ALU=( B0 ) FC=( 1)FZ=( 0) FS=(0 ) 0111(FC=0)

1

ALU=( B0 ) FC=(0)FZ=(0) FS=(0) 0111(FC=1) ALU=( B1 ) FC=( 1)FZ=(0) FS=(0)

算术运算

1000 0 ALU=( 03 ) FC=(0)FZ=(0) FS=(0) 1000(FC=0)

1

ALU=( 03 ) FC=(0)FZ=(0) FS=(0) 1000(FC=1) ALU=( 04 ) FC=(1 )FZ=(0) FS=(0) 1001 0 ALU=( AD ) FC=(0)FZ=(0) FS=(0) 1001(FC=0)

1

ALU=( AD ) FC=(0)FZ=(0) FS=(0) 1001(FC=1) ALU=( AC ) FC=( 1)FZ=(0) FS=(0) 1010

0 ALU=( 59 ) FC=( 1)FZ=(0) FS=(0)

1 ALU=( 58 ) FC=( 1)FZ=(0) FS=(0)

1011 X ALU=( 57 ) FC=(1 )FZ=(0) FS=(0)

其它1100 X FC=(1 )1101 X EI=( 0)

四、思考题

1.本实验系统中A寄存器的写入在什么时刻进行?B寄存器的写入在什么时刻进行?

能否在一个机器周期内将A、B寄存器写入不同的数据?

答:

①按住STEP,CK由高变低,寄存器A的黄色灯亮,表明选择A寄存器。放开STEP,CK由低变高,产生上升沿,数据55H被写入A寄存器。

②按住STEP,CK由高变低,寄存器B 的黄色灯亮,表明选择B寄存器。放开STEP ,CK 由低变高,产生上升沿,数据33H 被写入B 寄存器。

③不允许在一个机器周期内将A、B寄存器写入不同的数据。

2.本实验系统中ALU的求补功能与8086CPU的求补指令功能是否相同?

答:

本实验系统中ALU可对8位位变量进行逻辑“AND”、“OR”、“XOR”循环、求补、清零等

基本操作,还可以进行加、减、乘、除等基本运算。而8086处理器的逻辑运算是16位。

实验二存储器实验

1、实验目的

1、掌握简单运算器的数据传送组成原理。

2、验证算术逻辑运算功能发生器74LS181的组合功能。

二、实验原理

1、总线原理:由于本系统内使用8根地址线,8根数据线,所以使用1拍你74LS255作为数据总线,另一片74LS244作为地址总线,总线把整个系统分为内部数据、地址总线和外部数据、地址总线,由于数据总线需要进行由内、外部数据交换,所以由BUS信号来控制数据流向,当BUS=1时数据由内到外,当BUS=0时,数据由外到内。

2、由于本系统内使用8根地址线,8位数据线,所以6264的A8~A12接地,其实际容量为256,6264的数据、地址总线已经接在总线单元的外部总线上。存储器有3个控制信号:地址总线设置存储地址,RM=0时,把存储器中的数据读出到总线上;当WM=0,并且EMCK有一个上升沿,把外部总线上的数据写到存储器中。

图7-6-1 存储器实验原理图

实验所用的半导体静态存储器电路原理如图7-6-1所示,该静态存储器由一片6116(2Kx8)构成,其数据线(D7~D0)以8芯扁平线方式和数据总线(D7~D0)相连接,地址线由地址锁存器(74LS273)给出,该锁存器的输入/输出通过8芯扁平线分别连至数据总线接口和存储器地址接口。地址显示单元显示AD7~AD0的内容。数据开关经一三态门(74LS245)以8芯扁平线方式连至数据总线接口,分时给出地址和数据。6116有3根控制线:CS(片选线)、OE(读线)、WR(写线)。当片选有效CS=0时,OE=0时进行读操作,WR=0时进行写操作。本实验中将OE引脚接地,在此情况下,当CS=0、WR=1时进行读操作,CS=0、WR=0时进行写操作,其写时间与T3脉冲宽度一致。实验时T3脉冲由【单步】命令键产生,其它电平控制信号由二进制开关模拟,其中CE、SW-B、LDAR 为高电平有效,而WE为读/写(W/R)控制信号,当WE=0时进行读操作,当WE=1时进行写操作。

图7-6-2 实验连线示意图

按图7-6-2所示,连接实验电路:

①总线接口连接:用8芯扁平线

连接图7-6-2中所有标明“”或“”或“”

图案的总线接口。

②控制线与时钟信号“”连接:用

双头实验导线连接图7-6-2中所有标明“”或“”图案的插孔(注:Dais-CMH的时钟信号已作内部连接)。

在闪动的“P.”状态下按动【增址】命令键,使LED显示器自左向右第4位显示提示符“L”,表示本装置已进入手动单元实验状态。(若当前处“L”状态,本操作可略)。

(一)内部总线数据写入存储器

给存储器的00、01、02、03、04地址单元中分别写入数据11、12、13、14、15,具体操作步骤如下(以向00地址单元写入数据11为例):

注:【单步】键

的功能是启动时

序电路产生

T1~T4四拍单周

期脉冲

(二)读存储器的数据到总线上

依次读出第00、01、02、03、04号单元中的内容,观察上述各单元中的内容是否与前面写入的一致。具体操作步骤如下(以从00地址单元读出数据11为例):

注:【单

步】键的功

能是启动时

序电路产生

T1~T4四拍单周期脉冲

三、实验结果及分析

实验所得结果与理论分析结果基本一致。

四、思考题

1.本实验系统中所使用的存储芯片6116的容量有多大?系统中实际可访问的空间是多大?

答:

①存储器6116芯片容量2K*8位。

②实际可访存空间:2K。

2.本实验系统中存储器的读写控制信号如何得到的?它们各自在什么时候有效?

答:

①在CS=0下,OE=0时进行读操作,WR=0时进行写操作。

②OE引脚接地下,当CS=0、WR=1时进行读操作,CS=0、WR=0时进行写操作,其写时间与T3脉冲宽度一致。

③实验时T3脉冲由【单步】命令键产生,其它电平控制信号由二进制开关模拟,其中CE、SW-B、LDAR为高电平有效,而WE为读/写(W/R)控制信号,当WE=0时进行读操作,当

WE=1时进行写操作。

实验三系统总线和具有基本输入输出功能的总线接口实验

一、实验目的

1、理解总线的概念及其特性。

2、掌握控制总线的功能和应用。

二、实验内容

由于存储器和输入、输出设备最终是要挂接到外部总线上,所以需要外部总线提供数据信号、地址信号以及控制信号。在该实验平台中,外部总线分为数据总线、地址总线和控制总线,分别为外设提供上述信号。外部总线和 CPU 内总线之间通过三态门连接,同时实现了内外总线的分离和对于数据流向的控制。地址总线可以为外部设备提供地址信号和片选信号。由地址总线的高位进行译码,系统的 I/O 地址译码原理如图 4-1(在地址总线单元)。由于使用 A6、 A7 进行译码, I/O 地址空间被分为四个区,如表 4-1 所示

了实现

于 ME

M 和

外设的

读写操

作,还

需要一

个读写

控制逻

辑,使

得 CP

U 能控

制 ME

M

和 I/O 设备的读写,实验中的读写控制逻辑如图 4-2 所示,由于 T3 的参与,可以保证写脉宽与 T3 一致,T3 由时序单元的 TS3 给出(时序单元的介绍见附录 2)。IOM 用来选择是对 I/O 设备还是对 MEM 进行读写操作,IOM=1 时对 I/O 设备进行读写操作,IOM=0 时对 MEM 进行读写操作。RD=1 时为读,WR=1 时为写。

1.读写控制逻辑

设计实验。

(1)按照图4-4

实验接线图进行连

线。

首先将时序与

操作台单元的开

关 KK1、KK3 置为

…运行?档,开

关 KK2 置为…单拍?

档,按动 CON 单元

的总清按钮 CLR,并

执行下述操作。

①对 MEM 进行读操作(WR=0,RD=1,IOM=0),此时 E0 灭,表示存储器读功能信号有效。

②对 MEM 进行写操作(WR=1,RD=0,IOM=0),连续按动开关ST,观察扩展单元数据指示灯,指示灯显示为 T3 时刻时,E1 灭,表示存储器写功能信号有效。

③对 I/O 进行读操作(WR=0,RD=1,IOM=1),此时 E2 灭,表示 I/O 读功能信号有效。

④对 I/O 进行写操作(WR=1,RD=0,IOM=1),连续按动开关ST,观察扩展单元数据指示灯,指示灯显示为 T3 时刻时,E3 灭,表示 I/O 写功能信号有效。 2.基本输入输出功能的总线接口实验。

3、实验结果:

(1)根据挂在总线上的几个基本部件,设计一个简单的流程:①输入设备将一个数打入 R0 寄存器。②输入设备将另一个数打入地址寄存器。

③将 R0 寄存器中的数写入到当前地址的存储器中。④将当前地址的存储器中的数用 LED 数码管显示。(2)按照图 4-5 实验接线图进行连线。

(3)具体操作步骤图示如下:进入软件界面,选择菜单命令“【实验】—【简单模型机】”,打开简单模型机实验数据通路图。

将时序与操作台单元的开关 KK1、KK3 置为…运行?档,开关 KK2 置为…单拍?档,CON 单元所有开关置 0(由于总线有总线竞争报警功能,在操作中应当先关闭应关闭的输出开关,再打开应打开的输出开关,否则可能由于总线竞争导致实验出错),按动 CON 单元的总清按钮 CLR,然后通过运行程序,在数据通路图中观测程序的执行过程。

①输入设备将 11H 打入 R0 寄存器。将 IN 单元置 00010001,K7 置为 1,关闭 R0 寄存器的输出;K6 置为 1,打开 R0 寄存器的输入;WR、RD、IOM 分别置为 0、1、1,对 IN 单元进行读操作;LDAR 置为 0,不将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭(运行一个机器周期),观察图形界面,在 T4 时刻完成对寄存器 R0 的写入操作。

②将 R0 中的数据 11H 打入存储器 01H 元。将 IN 单元置 00000001(或其他数值)。K7 置为 1,关闭 R0 寄存器的输出;K6 置为 0,关闭 R0 寄存器的输入;WR、RD、IOM 分别置为 0、1、1,对 IN 单元进行读操作;LDAR 置为 1,将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭,观察图形界面,在 T3 时刻完成对地址寄存器的写入操作。

先将 WR、RD、IOM 分别置为 1、0、0,对存储器进行写操作;再把 K7 置为 0,打开 R0 寄存器的输出;K6 置为 0,关闭 R0 寄存器的输入; LDAR 置为 0,不将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭,观察图形界面,在 T3 时刻完成对存储器的写入操作。

③将当前地址的存储器中的数写入到 R0 寄存器中。

将 IN 单元置 00000001(或其他数值)

,K7 置为1。关闭R0寄存器的输出;K6置为0,关闭 R0 寄存器的输入;WR、RD、IOM 分别置为 0、1、1,对 IN 单元进行读操作;LDAR 置为 1,将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭,观察图形界面,在 T3 时刻完成对地址寄存器的写入操作。将 K7 置为 1,关闭 R0 寄存器的输出;K6 置为 1,打开 R0 寄存器的输入;WR、RD、 IOM 分别置为 0、1、0,对存储器进行读操作;LDAR 置为 0,不将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭,观察图形界面,在 T3 时刻完成对寄存器 R0 的写入操作。

④将 R0 寄存器中的数用 LED 数码管显示。

先将 WR、RD、IOM 分别置为 1、0、1,对 OUT 单元进行写操作;再将 K7 置为 0,打开

R0 寄存器的输出;K6 置为 0,关闭 R0 寄存器的输入; LDAR 置为 0,不将数据总线的数打入地址寄存器。连续四次点击图形界面上的“单节拍运行”按扭,观察图形界面,在T3时刻完成对 OUT 单元的写入操作。

三、实验结果及分析

1、存储器和输入、输出设备最终是要挂接到外部总线上,因此需要外部总线提供数据信号、地址信号以及控制信号。

2、外部总线和 CPU 内总线之间通过三态门连接,同时实现了内外总线的分离和对于数据流向的控制。而地址总线可以为外部设备提供地址信号和片选信号。

3.为了实现对于 MEM 和外设的读写操作,还需要一个读写控制逻辑,使得 CPU 能控制 MEM和 I/O 设备的读写

4、WR=0,RD=1,IOM=0时 E0 灭,表示存储器读功能信号有效。 WR=1,RD=0,IOM=0)连续按动开关ST,当指示灯显示为 T3 时刻时,E1 灭,表示存储器写功能信号有效。

WR=0,RD=1,IOM=1时,E2 灭,表示 I/O 读功能信号有效。

WR=1,RD=0,IOM=1)时,观察扩展单元数据指示灯,指示灯显示为 T3 时刻时,E3 灭,表示 I/O 写功能信号有效。

5、在接线时为了方便,可将管脚接到 CON 单元闲置的开关上,若开关打到 1,等效于接到VCC;若开关打到0,等效于接到GND。

四、思考题

1.本实验系统中外设的读写控制信号如何得到的?对外设的读、写控制信号能不能同时发出?对存储器呢?

答:为了实现对于MEM 和外设的读写操作,需要一个读写控制逻辑,使得CPU 能控制MEM和I/O 设备的读写。

2.总线上的部件输出数据时为什么要加三态门?

答:外部总线和CPU 内总线之间通过三态门连接,同时实现了内外总线的分离和对于数据流向的控制。而地址总线可以为外部设备提供地址信号和片选信号。

实验四具有中断控制功能的总线接口实验

具有DMA控制功能的总线接口实验

1、实验目的

1.掌握中断控制信号线的功能和应用。

2.掌握在系统总线上设计中断控制信号线的方法。

2、实验内容

1、实验原理:

为了实现中断控制,CPU 必须有一个中断使能寄存器,并且可以通过指令对该寄存器进行操作。设计下述中断使能寄存器,其原理如图4-2-1 所示。其中EI 为中断允许信号,CPU 开中断指令STI 对其置1,而CPU 关中断指令CLI 对其置0。每条指令执行完时,若允许中断,CPU 给出开中断使能标志STI,打开中断使能寄存器,EI 有效。EI 再和外部给出的中断请求信号一起参与指令译码,使程序进入中断处理流程。

本实验要求设计的系统总线具备有类X86 的中断功能,当外部中断请求有效、CPU 允许响应中断,在当前指令执行完时,CPU 将响应中断。当CPU 响应中断时,将会向8259 发送两个连续的INTA 信号,请注意,8259 是在接收到第一个INTA 信号后锁住向CPU 的中断请求信号 INTR(高电平有效),并且在第二个INTA 信号到达后将其变为低电平(自动EOI 方式),所以,中断请求信号IR0 应该维持一段时间,直到CPU 发送出第一个INTA 信号,这才是一个有效的中断请求。8259 在收到第二个INTA 信号后,就会将中断向量号发送到数据总线,CPU 读取中断向量号,并转入相应的中断处理程序中。在读取中断向量时,需要从数据总线向CPU 内总线传送数据。所以需要设计数据缓冲控制逻辑,在INTA 信号有效时,允许数据从数据总线流向 CPU 内总线。其原理图如图4-2-2 所示。其中RD 为CPU 从外部读取数据的控制信号。

在控制总线部分表现为当CPU 开中断允许信号STI 有效、关中断允许信号CLI 无效时,中断标志EI 有效,当CPU 开中断允许信号STI 无效、关中断允许信号CLI 有效时,中断标志EI 无效。EI 无效时,外部的中断请求信号不能发送给CPU。

2、实验步骤:

(1)按照图4-2-3 实验接线图进行连线。

(2)

具体操

作步骤

图示如

下:

①对

总线进

行置中

断操作

(K6=1

K7=0),

观察控

制总线

部分的

中断允

许指示灯EI,此时EI 亮,表示允许响应外部中断。按动时序与操作台单元的开关KK,观察控制总线单元的指示灯INTR,发现当开关KK 按下时INTR 变亮,表示总线将外部的中断请求送到CPU。使用电压表测量数据缓冲 74LS245 的DIR(第1 脚),显示为低,表示CPU 允许外部送中断向量号。

②对总线进行清中断操作(K6=0,K7=1),观察控制总线部分的中断允许指示灯EI,此时EI 灭,表示禁止响应外部中断。按动时序与操作台单元的开关KK,观察控制总线单元的指示灯INTR,发现当开关KK 按下时INTR 不变,仍然为灭,表示总线锁死了外部的中断请求。使用电压表测量数据缓冲74LS245 的DIR(第1 脚),显示为低,表示CPU 允许外部送中断向量号。

三、实验结果及分析

1.按实验接线图接线时,注意与K5相接的是INTA’而非INTA.

2.在步骤一中,时序与操作台的KK开关的按下表示将中断请求送入CPU中。

3.外部总线与CPU之间通过三态门连接,其三态门芯片是74LS245。三态分别为:截至,导通,高阻。 4.EI表示中断允许指示灯,EI灭表示当前禁止响应外部中断。

5.当EI熄灭时,按动时序与控制台上的KK,发现KK按下时,INTR灯仍然为灭,此时为中断锁死了外部中断请求。

四、思考题

1.CPU响应中断的条件是什么?

答:1、有中断源发出的中断请求;

2、中断总允许位EA=1,即CPU开中断;

3、申请中断的中断源的中断允许位为1,即中断没有被屏蔽;

4、无同级或更高级中断正在被服务;

5、当前的指令周期已经结束.

2.中断源的中断向量地址是通过数据线还是地址线送给CPU?

答:中断源的中断向量地址是通过数据总线送入PC,因为PC会指出下一个指令所在的地址,相当于一个跳转,直接跳转到中断服务程序,所以存入PC以后,直接通过PC取出下一条指令,而这条指令其实就是中断服务程序的指令。

3.CPU响应DMA请求后,其地址线、数据线和控制线引脚出现什么状态?

答:当DMAC要进行DMA传送时,DMAC向CPU发出DMA请求信号,迫使CPU在

现行的总线周期(机器周期)结束后,使其地址总线、数据总线和部分控制总线处于高阻态,

从而让出对总线的控制权,并给出DMA响应信号。DMAC接到该响应信号后,就可以控制总线,进行数据传送的控制工作,直到DMA操作完成,CPU再恢复对总线的控制权,继续执行被中断的程序。

实验五微程序控制器实验

一、实验目的

⒈掌握时序产生器的组成方式。

⒉熟悉微程序控制器的原理。

⒊掌握微程序编制及微指令格式。

二、实验内容

⒈微程序控制电路

微程序控制器的组成见图7-7-1,其中控制存储器采用4片6116静态存储器,微命令寄存器32位,用三片8D触发器(273)和一片4D(175)触发器组成。微地址寄存器6位,用三片正沿触发的双D触发器(74)组成,它们带有清零端和置位端。在不判别测试的情况下,T2时刻打入微地址寄存器的内容即为下一条微指令地址。当T4时刻进行测试判别时,转移逻辑满足条件后输出的负脉冲通过置位端将某一触发器输出端置为“1”状态,完成地址修改。

⒉微指令格式

表7-7-1

M25 M24 M23 M22 M21 中M19 M18 M17 M16 M15 M14 M13 M12 M11 M10 M9 M8 C B A AR 保留PX3 A9 A8 CE LOA CN M S0 S1 S2 S3 PX2 LDA

M7 M6 M5 M4 M3 M2 8 7 6 5 4 3 M1 M0 LDPC LDIR LDDR2 LDDR1 LDR0 WE UA0 UA1 UA2 UA3 UA4 UA5 PX1 SW-B A字段B字段

C B A 选择

0 0 0 禁止

0 0 1 PC-B

0 1 0 ALU-B

0 1 1 299-B

1 0 0 Rs-B

1 0 1 Rd-B

1 1 0 保留位

1 1 1 保留位

中断M9 M1

选择测试字

PX3 PX2 PX1

0 0 0 关闭测试

0 0 1 P (1) 识别操作码

0 1 0 P (2) 判寻址方式

0 1 1 P (Z) Z标志测试

1 0 0 P (I) 中断响应

1 0 1 P (D) 中断服务

1 1 0 P (C) C标志测试

1 1 1 保留位

其中UA5~UA0为6位的后续微地址,A、B二译码字段,分别由6个控制位译码输出多位。B段中的PX3、PX2、PX1 三个测试字位,其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的微地址入口,从而实现微程序的顺序、分支、循环运行。

⒊微程序流程与代码

图7-7-3为几条机器指令对应的参考微程序流程图,将全部微程序按微指令格式变成二

进制代码,可得到

模型机(一)所列

举的8位指令代

码。

图7-7-3 微

程序流程图

(1)微程序

的编

为了解决微程

序的编写,本装置

设有微程序读写命

令键,学生可根据

微地址和微指令格

图7-7-1微控制器原理图

式将微指令代码以快捷方式写入到微程序控制单元。具体的操作方法是按动位于本实验装置右中侧的复位按钮使系统进入初始待令状态。再按动【增址】命令键使工作方式提示位显示“H”。

微程序存贮器读写的状态标志是:显示器上显示8个数字,左边1、2位显示实验装置的当前状态,左边3、4位显示区域号(区域的分配见表7-7-2),左边5、6位数字是微存贮单元地址,硬件定义的微地址线是ua0~ua5共6根,因此它的可寻址范围为00H~3FH;右边2位数字是该单元的微程序,光标在第7位与第8位之间,表示等待修

改单元内容。

表7-7-2

区域号微程序区对应位空间对应位控制功能

0 31··············24 C B A AR 保留PX3 A9 A8

1 23··············16 CE AD CN M S0 S1 S

2 S3

2 15···············8 PX2 AR PC IR DR2 DR1 Ri WE

3 7················0 U0 U1 U2 U3 U

4 U

5 PX1 SW

用【读】命令键可以对微程序存贮器进行检查(读出)或更改(写入)。对微程序存贮器读写,一般应先按MON,使实验系统进入初始待命状态。然后输入所要访问的微程序区域地址,再按【读】命令键,实验系统便以该区域的00H作为起始地址,进入微程序存贮器读写状态。

下面举例说明操作规程:

按键8位LED显示说明【返回】 D Y - H P. 返回初始待命状态

【读】 D Y - H P. 初始待命状态,按【读】键无效

0 D Y - H 0 按数字键0,从0区域0地址开始

【读】 C n 0 0 0 0 X X 按【读】命令键,进入微程序读状态,左边第3位起显示00(区域号)、00(微地址)、XX(该微程序单元的内容),光标闪动移至第7位

55 C n 0 0 0 0 5 5 按55键,将内容写入00区域00H单元【增址】 C n 0 0 0 1 X X 按【增址】命令键,读出00区域下一个单元

01H,光标重新移至第7位AA C n 0 0 0 1 A A 按AA键,将内容写入00区域01H单元【返回】 D Y - H P. 返回初始待命状态

1 D Y - H 1 再按数字键1,从1区域0地址开始

【读】 C n 0 1 0 0 X X 按【读】命令键,进入微程序读状态,左边第3位起显示01(区域号)、00(微地址)、XX(该微程序单元的内容),光标闪动移至第7位

55 C n 0 1 0 0 5 5 按55键,将内容写入01区域00H单元

【增址】 C n 0 1 0 1 X X 按【增址】命令键,读出01区域下一个单元

01H,光标重新移至第7位

AA C n 0 1 0 1 A A 按AA键,将内容写入01区域01H单元

【返回】 D Y - H P. 按【返回】退出存储操作返回初始状态按以上所说明的操作规程,通过键盘在微地址00H单元所对应的四个区域地址分别输入55H,在微地址01H单元所对应的四个区域地址分别输入0AAH。

(二)手动方式下的微地址打入操作

微程序控制器的组成见图7-7-1,其中微命令寄存器32位,用三片8D触发器(273)和一片4D(175)触发器组成。它们的清零端由CLR来控制微控制器的清零。它们的触发端CK接T2,在时序节拍的T2时刻将微程序的内容打入微控制寄存器(含下一条微指令地址)。

⑴微地址控制原理

MATLAB实验报告

MATLAB程序设计语言 实 验 报 告 专业及班级:电子信息工程 姓名:王伟 学号:1107050322 日期 2013年6月20日

实验一 MATLAB 的基本使用 【一】 实验目的 1.了解MATALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境; 2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力; 3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。 【二】 MATLAB 的基础知识 通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取 五. MATLAB 的数值计算功能 六. 程序流程控制 七. M 文件 八. 函数文件 九. MATLAB 的可视化 【三】上机练习 1. 仔细预习第二部分内容,关于MATLAB 的基础知识。 2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍 3. 已知矩阵???? ??????=??????????=123456789,987654321B A 。求A*B ,A .* B ,比较二者结果是否相同。并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以 及最大值。 程序代码: >> A=[1 2 3;4 5 6;7 8 9]; >> B=[9 8 7;6 5 4;3 2 1]; >> A*B ans =

30 24 18 84 69 54 138 114 90 >> A.*B ans = 9 16 21 24 25 24 21 16 9 两者结果不同 >> [m,n]=size(A) m = 3 n = 3 >> b=sum(A) b = 12 15 18 >> a=length(A) a = 3 >>max(A) ans =

铸造残余应力的测定实验报告

铸造残余应力的测定实验报告 1. 实验目的 (1) 了解铸造残余应力的产生原因。 (2) 了解用应力框测定铸造残余应力的方法。 (3) 了解退火对消除残余应力的效果。 2. 实验原理 2.1 铸造应力 铸件在凝固和冷却过程中由于各部分体积变化不一致导致彼此制约而引起的应力称为铸造应力。铸造应力可分为三种,即热应力、相变应力和收缩应力。铸造应力可能是暂时性的,当引起应力的原因消除以后,应力随之消失,称为临时应力;否则为残余应力。铸造应力对铸件质量有重要影响,如果铸造应力超过材料的屈服强度,铸件则产生变形;如果铸造应力超过材料的强度极限时,铸件则产生裂纹。残余应力还会降低铸件的使用性能,如失去精度、在使用过程中造成断裂或产生应力腐蚀等。 2.2 铸造应力的测定方法——应力框试验法 图1为测定铸造残余应力的框形铸件,由于I 杆和II 杆截面尺寸差别大,因而铸造后细杆I 中形成压应力,粗杆II 中形成拉应力。若在A-A 截面处将粗杆锯开,锯至一定程度时,由于截面变小,粗杆被拉断。受弹性拉长的粗杆长度较自由收缩条件下的长度缩短,其缩短量?L 和铸造残留应力成正比,其值可根据锯断前、后粗杆上小凸台的长度(L 0 ,L 1)差求出,即?L =L 1一L 0。铸造残留应力σ1和σ2的计算公式为: 细杆残留应力σ1=-E )21(2101F F L L L +-,粗杆残留应力σ2=-E ) 21(1 2 1F F L L L +- 图1应力框铸件图 式中: σ1,σ2——细杆、粗杆中的铸造应力(MPa ); L 0,L 1——锯断前、后小凸台的长度(mm );

F1,F 2——细杆、粗杆的横截面积(mm2); L——杆的长度,L=130mm; E——弹性模量,普通灰铸铁取9×104MPa,球墨铸铁取1.8×105MPa。 2.3减小及消除残余应力的方法 铸造应力导致铸件翘曲变形甚至开裂,特别是铸件中的残余应力,如不消除,将降低零件的加工精度,在使用中会继续变形,降低机械性能和使用性能。因此应设法减小和消除残余应力。 (1)减小铸造应力的措施和途径 ①选用弹性模量E和热膨胀系数α小的合金作为铸件材质。 ②减小铸件冷却过程中的温差: (a)在铸件厚实部位放置冷铁或蓄热系数大的型砂,加速厚实部分的冷却。 (b)对铸件厚实部分的铸型或砂芯实行强制冷却。 (c)在铸件壁薄处开内浇道,使铸件各部分温度趋于一致。 (d)提高浇注时铸型的温度。 (e)将铸件于红热状态开箱取出,尽快置于已加热到500~600℃的保温炉中,保持一定时间使铸件各部分温度趋于一致,然后随炉缓冷至200~250℃出炉。 ③改善铸型和砂芯的溃散性。 ④改进铸件结构,避免形成较大应力和应力集中。 (2)消除铸件中残余应力的方法 消除铸件中残余应力的方法有自然失效、人工时效和共振时效等方法。 ①自然失效 将有残余应力的铸件放置在露天场地,经半年乃至一年以上,让残余应力逐渐自然消退,这种方法称为自然时效。 ②人工时效 人工时效又称热时效或消除内应力退火。把铸件加热到合金的弹塑性状态的温度范围内,保持一定时间,使残余应力得以消除,然后缓慢冷却,以免重新产生残余应力。 ③共振时效 共振时效的原理是:在激振器的周期性外力即激振力作用下,与铸件发生共振,因而使铸件获得相当大的振动能量。在共振过程中交变应力与残余应力叠加,产生局部屈服,引起塑性变形,使铸件中的残余应力逐渐松弛甚至消失,达到稳定铸件尺寸的目的。 3.实验内容 本次实验测定应力框铸件(灰口铸铁)铸态及其退火热处理后的残余应力,测定步骤如下: (1)造型(3个应力框试样); (2)浇注(铁水温度为1330~1350℃); (3)用热分析装置测试一个铸型中应力框铸件厚、薄壁的冷却曲线。 (4)浇注后30min打箱,用钢丝刷刷去应力框铸件表面型砂; (5)将其中1个应力框放入热处理炉中,在550℃保温3小时后炉冷; (6)将上述2个应力框铸件的粗杆小凸台上成锐角相交的四个棱柱面锉平; (7)用卡尺测量小凸台长度L0; (8)在小凸台A-A截面处从1、2、3三面依次锯开粗杆(见图1),注意各锯口应在垂 直于杆轴线的同一平面内。

原位测试实验报告概要

南华大学 实验报告 实验项目名称:荷载板实验实验成绩 实验同组人:方园,谢发全,李杰才,刘俊,陈伟,徐正洲 实验地点南华大学土工原位测试基地实验日期:2012年10月23日(下午) 一.实验目的 1.确定地基土的比例界限压力、极限承载力,评定地基土的承载力特征值; 2.确定地基土的变形模量; 3.估算地基土的不排水抗剪强度; 4.确定地基土机床反力系数。 二. 实验原理 在试验场地上将一定尺寸和几何形状(圆形或方形)的刚性板,安放在被测的地基持力层上,逐级增加荷载,并测得每一级荷载下的稳定沉降,直至达到地基破坏标准,由此可得到荷载(p)-沉降(s)曲线(即p-s曲线)。典型的平板载荷试验p-s曲线可划分为三个阶段:(1)直线变形阶段:p-s曲线为直线段(线性关系),对应于此段的最大压力P0,称为比例界限压力(也称为临塑压力),土体以压缩变形为主。

(2)剪切变形阶段:当压力超过P0,但小于极限压力P u时,压缩变形所占比例逐渐减少,而剪切变形逐渐增加,p-s线由直线变为曲线,曲线斜率逐渐增大。 (3)破坏阶段:当荷载大于极限压力P u时,即使维持荷载不变,沉降也会急剧增大,始终达不到稳定标准。 直线变形阶段:受荷土体中任意点产生的剪应力小于土体的抗剪强度,土的变形主要由土中空隙的压缩引起,并随时间趋于稳定。可以用弹性理论进行分析。 剪切变形阶段:土体除了竖向压缩变形之外,在承压板的边缘已有小范围内土体承受的剪应力达到或超过了土的抗剪强度,并开始向周围土体发展。此阶段土体的变形主要由压缩变形和土粒剪切变形共同引起。可以用弹塑性理论进行分析。 破坏阶段:即使荷载不再增加,承压板仍会不断下沉,土体内部开始形成连续的滑动面,承压板周围土体面上各点的剪应力均达到或超过土体的抗剪强度。 三. 实验仪器设备 1.加载系统:油压式千斤顶 2.反力系统:地锚和反力梁 3.量测系统:百分表

北京邮电大学数电实验一实验报告

北京邮电大学数字电路与逻辑 设计实验 学院: 班级: 作者: 学号:

实验一 Quartus II原理图输入法设计 一、实验目的: (1)熟悉Quartus II原理图输入法进行电路设计和仿真 (2)掌握Quartus II 图形模块单元的生成与调 (3)熟悉实验板的使用 二、实验所用器材: (1)计算机 (2)直流稳压电源 (3)数字系统与逻辑设计实验开发板 三、实验任务要求 (1)用逻辑门设计实现一个半加器,仿真验证其功能,并生成新的半加器图形模 块单元。 (2)用(1)中生成的半加器模块和逻辑门设计实现一个全加器,仿真验证其功能, 并下载到实验板测试,要求用拨码开关设定输入信号,发光二极管显示输出信号。 (3)用3线-8线译码器(74LS138)和逻辑门设计实现函数 ,仿真验证其功能,并下载到实验板测试。要求用拨码开关设定输入信号,发光二极管显示输出信号。 四、设计思路和过程 (1)半加器的设计 半加器电路是指对两个输入数据位进行加法,输出一个结果位和进位,不产生进位输入的加法器电路。是实现两个一位二进制数的加法运算电路。数据输入AI被加数、BI加数,数据输出SO和数(半加和)、进位C0。 在数字电路设计中,最基本的方法是不管半加器是一个什么样的电路,按组合数字电路的分析方法和步骤进行。 1.列出真值表 半加器的真值表见下表。表中两个输入是加数A0和B0,输出有一个是和S0,另一个是进位C0。

2 该电路有两个输出端,属于多输出组合数字电路,电路的逻辑表达式如下函数的逻辑表达式为:SO=AI⊕BI CO=AB 所以,可以用一个两输入异或门和一个两输入与门实现。

matlab实验报告

MATLAB 数学实验报告 指导老师: 班级: 小组成员: 时间:201_/_/_

Matlab 第二次实验报告 小组成员: 1 题目:实验四,MATLAB 选择结构与应用实验 目的:掌握if 选择结构与程序流程控制,重点掌握break,return , pause语句的应用。 问题:问题1:验证“哥德巴赫猜想” ,即:任何一个正偶数(n>=6)均可表示为两个质数的和。要求编制一个函数程序,输入一个正偶数,返回两个质数的和。 问题分析:由用户输入一个大于6 的偶数,由input 语句实现。由if 判断语句判断是否输入的数据符合条件。再引用质数判断函数来找出两个质数,再向屏幕输出两个质数即可。 编程:function [z1,z2]=gede(n); n=input('please input n')

if n<6 disp('data error'); return end if mod(n,2)==0 for i=2:n/2 k=0; for j=2:sqrt(i) if mod(i,j)==0 k=k+1; end end for j=2:sqrt(n-i) if mod(n-i,j)==0 k=k+1; end end if k==0 fprintf('two numbers are') fprintf('%.0f,%.0f',i,n- i) break end

end end 结果分析 如上图,用户输入了大于6的偶数返回两个质数5和31,通过 不断试验,即可验证哥德巴赫猜想。 纪录:if判断语句与for循环语句联合嵌套使用可使程序结构更加明晰,更快的解决问题。 2题目:实验四,MATLAB选择结构与应用实验 目的:用matlab联系生活实际,解决一些生活中常见的实际问 题。

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03J W024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b =9mm ;梁高h=30mm ;跨度l =600mm;AC 、BD:弯矩a=200m m。测点距轴z 距离: 21h y ==15mm;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm;-=-=2 5h y 15mm;E=210Gpa 。 抗弯曲截面模量W Z =b h2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录:

(3) 取各测点ε?值并计算各点应力: 1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10 - 6 ; 1σ?=E 1ε?=3.36MPa;2σ?=E 2ε?=1.47MP a;3σ?=0 ; 4σ?=E 4ε?=1.68MPa;5σ?=E 5ε?=3.15MPa ; 根据ΔM W=ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W/W Z =3.70MPa;2σ?=ΔMWh/4(J Z)=1.85M Pa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa;5σ?=ΔMW /W Z=3.70MPa; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。

数电实验报告一

姓名:谭国榕班级:12电子卓越学号:201241301132 实验一逻辑门电路的研究 一、任务 1.熟悉实验室环境及实验仪器、设备的使用方法。 2.掌握识别常用数字集成电路的型号、管脚排列等能力。 3.熟悉74 LS系列、CMOS 4000B系列芯片的典型参数、输入输出特性。 4.掌握常规数字集成电路的测试方法。 二、实验设备及芯片 双踪示波器(DF4321C)1台 信号发生器(DF1641B1)1台 数字万用表(UT58B)一台 数电实验箱1个(自制) 芯片2个:74LS04 CD4069 。 三、实验内容 1.查阅芯片的PDF文件资料,分清管脚名与逻辑功能的对应关系及对应的真值表。74LS04:

CD4069: 2.静态测试 验证6非门74LS04、4069逻辑功能是否正常,并用数字万用表测量空载输出的逻辑电平值(含高、低电平)。 结论:由表格可以看出,CD4069输出的高电平比74LS04高,输出的低电平比74LS04低,所以CD4069的噪声容限相对于74LS04来说较大,故其抗干扰能力强。 3.动态测试 测逻辑门的传输延迟时间:将74LS04、4069中的6个非门分别串接起来,将函数发生器的输出调为方波,对称,幅度:0-5V,单极性,加至第一个门的输入端,并用示波器的通道1观察;用示波器的通道2观察最后一个非门的输出信号,对比输入输出波形以及信号延迟时间。

调节方波信号:

74LS04输出延迟特性: CD4069输出延迟特性:

输出延迟时间的实验数据表: 结论:74LS04的输出延迟比CD4069的输出延迟要短,说明前者的工作速度比后者快。 4.观察电压传输特性 用函数发生器的输出单极性的三角波,幅度控制在5伏,用示波器的X-Y 方式测量TTL 、 CMOS 逻辑门的传输特性,记录波形并对TTL 、CMOS 两种类型电路的高电平输出电压、低电平输出电压以及噪声容限等作相应比较。 (1) 调节函数发生器的输出:单极性三角波,对称,幅度:5V ,频率:500Hz ,从函数发生 器的下部50Ω输出端输出信号; 如图: (2) 扫描方式改为X-Y ,CH1、CH2 接地,调光标使其处于左下角附近; (3) CH1 用 2.0V/DIV (DC ),接函数发生器输出(即非门的输入);CH2 用 0.2V/DIV (DC ),接非门输出。 (4) 记录示波器波形(如图)。

实验二 MATLAB程序设计 含实验报告

实验二 MATLAB 程序设计 一、 实验目的 1.掌握利用if 语句实现选择结构的方法。 2.掌握利用switch 语句实现多分支选择结构的方法。 3.掌握利用for 语句实现循环结构的方法。 4.掌握利用while 语句实现循环结构的方法。 5.掌握MATLAB 函数的编写及调试方法。 二、 实验的设备及条件 计算机一台(带有MATLAB7.0以上的软件环境)。 M 文件的编写: 启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正 三、 实验内容 1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因 c b a 、、的不同取值而定) ,这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。并输入几组典型值加以检验。 (提示:提示输入使用input 函数) 2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。 要求:(1)用switch 语句实现。 (2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 (提示:注意单元矩阵的用法) 3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 2?1 3?10?5?16?8?4?2?1 6?3?10?5?16?8?4?2?1 运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。 请为关键的Matlab 语句填写上相关注释,说明其含义或功能。 4. 的值,调用该函数后,

实验方法:应力与应变曲线的测定

真实应力-真实应变曲线的测定 一、实验目的 1、学会真实应力-真实应变曲线的实验测定和绘制 2、加深对真实应力-真实应变曲线的物理意义的认识 二、实验内容 真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。实测瞬间时载荷下试验的瞬间直径。特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。 σ真=f(ε)=B·εn 三、试样器材及设备 1、60吨万能材料试验机 2、拉力传感器 3、位移传感器 4、Y6D-2动态应变仪 5、X-Y函数记录仪 6、游标卡尺、千分卡尺 7、中碳钢试样 四、推荐的原始数据记录表格 五、实验报告内容 除了通常的要求(目的,过程……)外,还要求以下内容: 1、硬化曲线的绘制 (1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε) (2)由工程应力应变曲线换算出真实应力-真实应变曲线

(3) 求出材料常数B 值和n 值,根据B 值作出真实应力-真实应变近似理论硬化 曲线。 2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。 3、实验体会 六、实验预习思考题 1、 什么是硬化曲线?硬化曲线有何用途? 2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。 3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差? 附:真实应力-真实应变曲线的计算机数据处理 一、 目的 初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。 二、 内容 一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。如把方程的二边取对数: ln σ=lnB+nln ε, 令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx 成为一线性方程。在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。 已知有测量点σ1,σ2……σk ,ε1,ε2……εk ,既有y 1y 2y 3……y k ,x 1x 2x 3……x k ,把这些数据代入回归后的线性方程y =a+bx 中去,必将产生误差△v 。 △v 1=a+bx 1-y 1 △v 2=a+bx 2-y 2 · · · △v k =a+bx k -y k 即 △V i =a+bx i -y i 我们回归得直线应满足 ∑△V ︱i 2 ,最小 △ V ︱i 2 =a 2+b 2 x ︱i 2+y ︱i 2 +2abx i -2ay i -2bx i y i

合肥工业大学信息隐藏实验报告 完整代码版.

计算机与信息学院 信息隐藏实验报告 专业班级 信息安全13-1班 学生姓名及学号 马骏 2013211869 课程教学班号 任课教师 郑淑丽 实验指导教师 郑淑丽 实验地点 20 ~20 学年第学期

实验1 BMP位图信息隐藏 一、实验目的 学习BMP格式文件,并编程实现对位图文件信息隐藏 二、实验要求 将TXT文件嵌入BMP 文件中 三、问题描述 1、BMP位图文件的格式? 2、有哪几种方法隐藏信息,分别采用什么样的数据结构 3、随机选取如何避免“碰撞”的出现 四、算法思想 1、BMP位图文件格式 0000h~0001h 2字节-------------------------bm的ASC码 0002h~0005h 4字节-------------------------文件大小102718字节 0006h~0009h 4字节-------------------------全为0 000Ah~000Dh 4字节-------------------------偏移量118字节 000Eh~0011h 4字节-------------------------位图信息块大小40字节 0012h~0015h 4字节-------------------------宽450 0016h~0019h 4字节-------------------------高450 001Ah~001Bh 2字节-------------------------恒为01h 00h 001Ch~001Dh 2字节-------------------------颜色所占二进制位数值04h 00h=4 16色位图 001Eh~0021h 4字节-------------------------压缩方式=0无压缩 0022h~0025h 4字节-------------------------图像数据区大小102600字节 0026h~0029h 4字节-------------------------水平每米多少像素39个 002Ah~002Dh 4字节-------------------------垂直每米多少像素39个 002Eh~0031h 4字节-------------------------图像所用颜色数=0 0032h~0035h 4字节-------------------------重要颜色数=0 0036h~0076h 64字节-------------------------颜色表

撞击动力学实验报告

1.SHPB实验装置、基本原理及用途 1.1实验装置及用途 如图1所示为SHPB的实验装置及数据采集处理系统: 图1 SHPB实验装置 SHPB装置主要由三部分组成:压杆系统、测量系统以及数据采集与处理系统。其中压杆系统是由撞击杆、入射杆、透射杆和吸收杆四部分组成。撞击杆也称之为子弹,一般来说压杆所采用的截面尺寸及材料均相同,因此子弹的长度就决定了入射应力脉冲的宽度λ,一般取λ=2L(L为子弹的长度),吸收杆主要是用来吸收来自透射杆的动能,以削弱二次波加载效应,为保证获得完整的入射及反射波形,入射杆的长度一般要大于子弹长度的两倍,所有压杆的直径应远小于入射应力脉冲的波长,以忽略杆中的惯性效应影响。 测量系统可以分为两个部分,一个是撞击杆速度的测量系统,另一个是压杆上传感器测量系统。对撞击杆速度的测量常采用激光测速法,如图1所示,在发射管与入射杆之间装有一个平行光源,用来发射与接收激光信号,两个光源之间的间距是可测的,当子弹经过平行光源时,会遮挡住光信号而产生一定宽度的脉冲信号,据此可测出子弹通过平行光源的时间即可求出子弹的撞击速度。压杆传感器测量系统则是在压杆相应位置处粘贴电阻应变片,并将应变片经电桥连接至超动态应变测试仪上,据此即可测出压杆中的应变。 数据采集和处理系统主要由TDS5054B数字示波器,CS—1D超动态电阻应变仪,TDS2000B波形存储器,以及微机等组成。其作用是完成对信号的采集、处理和显示。

1.2基本原理 利用应变片技术测量波速的工作原理如图2所示。子弹撞击压杆所产生的应力波(弹性波)先后为应变片1和应变片2所记录。鉴于弹性波在线弹性细长杆中的传播很少有衰减,也不弥散,基本上不失真,因此可根据两个应变片之间的距离及所记录信号的时间差确定波在细长杆中的传播速度。 应变片1应变片2 图 2 应力波波速测量原理图 鉴于弹性波在自由端反射的异号波形具有相同的传播速度,还可以采用如图3所示的更为简单的测试方法。这时,应变片所记录的是拉压相间的应力波,同一相位间隔距离代表应力波行走了一个来回,即杆长的二倍距离,据此也可以确定应力波在细长杆中的传播速度。 图3 应力波波速测量原理图 常规的拉伸(或压缩)实验测得的是材料在低应变率(341010/s -- )下的应力应变曲线。本实验测得的是材料在高应变率(241010/s )下的应力-应变曲线,其原理如图4所示。当枪膛内的子弹以某速度撞击输入杆时,在杆内产生一个入射脉冲i ε,试件在该应力作用下产生高速变形,与此同时,在压杆中分别产生往回的反射脉冲r ε和向前的透射脉冲t ε。

数字电路实验报告

数字电路实验报告 姓名:张珂 班级:10级8班 学号:2010302540224

实验一:组合逻辑电路分析一.实验用集成电路引脚图 1.74LS00集成电路 2.74LS20集成电路 二、实验内容 1、组合逻辑电路分析 逻辑原理图如下:

U1A 74LS00N U2B 74LS00N U3C 74LS00N X1 2.5 V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V GND 图1.1组合逻辑电路分析 电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。 真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 表1.1 组合逻辑电路分析真值表 实验分析: 由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。 2、密码锁问题: 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。

试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下: U1A 74LS00N U2B 74LS00N U3C 74LS00N U4D 74LS00N U5D 74LS00N U6A 74LS00N U7A 74LS00N U8A 74LS20D GND VCC 5V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V X1 2.5 V X2 2.5 V 图 2 密码锁电路分析 实验真值表记录如下: 实验真值表 A B C D X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 表1.2 密码锁电路分析真值表 实验分析: 由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。由此可见,该密码锁的密码ABCD 为1001.因而,可以得到:X1=ABCD ,X2=1X 。

合肥工业大学土木学院研究生公共实验

研究生创新综合实验建设项目申报书 建设单位:土木与水利工程学院 实验名称:土木与水利综合实验 适用学院:土木与水利工程学院、资源与环境工程学院等适用专业: 电测综合实验:结构工程、固体力学、工程力学、岩土工程、 水工结构、桥梁与隧道、防灾 水力学实验:市政工程、水文学、水力学、水利水电工程 测量实验:大地测量、地理信息系统、地质工程 选课人数: 212人/2009级 项目负责人:巫绪涛 二○○九年十月

项目摘要 (简要说明项目建设的必要性、可行性及预期成效) 根据土木与水利工程学院所有研究生主要研究方向结合考虑学校其它专业的需要,本项目包括三项独立的实验项目:工程电测综合实验、水工模型测量综合实验及GPS原理与数据处理综合实验,下面分别简要介绍各项目建设的必要性、可行性及预期成果。 一、工程电测综合实验 电阻应变测量方法(电测法)是目前应用最广泛的实验应力分析方法,其适用范围非常广泛,包括静态、准动态、高速变形相关力学量测量都可以采用,且测量原理和操作过程基本相同,仅在数据采集和处理方面有区别。电测法可以较方便准确获得结构在复杂载荷作用下的实际响应,对于监测结构安全性、判定设计参数与实际情况的符合程度、验证数值模拟结果判定其准确性具有重要的作用。 对于工科学生,电测法的基本原理本科二年级就已初步掌握,涉及到后续课程内容较少,具有适用专业宽的优点。但由于一般本科学生进行电测实验主要关注的是应变测量结果与理论值的符合程度,而对于电测的实际操作过程,诸如各种应变计结构性能特点、应变计的粘贴位置选择、应变计粘贴及焊接技术、复杂测试条件的布片与接桥方案等不完全了解。因此势必影响其在工程或课题研究中正确有效地使用该技术。 土木与水利工程学院力学实验室拥有电测实验的所有设备,拥有丰富工程电测经验的师资力量,完全满足开设该实验的必要条件。工科相关专业研究生经过该实验的学习,基本能独立运用该技术进行工程结构受力分析及论文研究课题的相关工作。 初步计划实验学生数:180人/年。 二、水工模型测量综合实验 水流运动是一种非常复杂的自然现象,设计水利工程时,常常有很多问题是不能用数学分析的方法来解决的,对许多水力学现象同样不能依靠数学分析的方法来解释。通常需要通过水工模型试验进行研究。特别是在近50年来,我国先后对长江、黄河等七大水系和洞庭湖、巢湖、太湖、洪泽湖等天然水域进行了大规模的河道整治和建设工程,这些工程的规划、设计和实施均离不开水工模型试验。通过水工模型实验,不但可以解决水利工程建设中的重大工程技术难题,可

数电实验报告

选课时间段: 序号(座位号): 杭州电子科技大学 实验报告 课程名称: 数字原理与系统设计实验 实验名称: 组合电路时序分析与自动化设计 指导教师: 学生姓名 学生学号 学生班级 所学专业 实验日期

实验一、设计8位串行进位加法器电路设计: 一位全加器: 八位串行进位加法器:

仿真波形:

实验二、设计5人表决电路 代码: module BJDL45(A,B,C,D,E,YES,NO); input A,B,C,D,E; output YES,NO; reg YES,NO; always@ (A,B,C,D,E,YES,NO) case ({A,B,C,D,E}) 5'B00000:{YES,NO}<=2'B01; 5'B00001:{YES,NO}<=2'B01; 5'B00010:{YES,NO}<=2'B01; 5'B00011:{YES,NO}<=2'B01; 5'B00100:{YES,NO}<=2'B01; 5'B00101:{YES,NO}<=2'B01; 5'B00110:{YES,NO}<=2'B01; 5'B00111:{YES,NO}<=2'B10; 5'B01000:{YES,NO}<=2'B01; 5'B01001:{YES,NO}<=2'B01; 5'B01010:{YES,NO}<=2'B01; 5'B01011:{YES,NO}<=2'B10; 5'B01100:{YES,NO}<=2'B01; 5'B01101:{YES,NO}<=2'B10; 5'B01110:{YES,NO}<=2'B10; 5'B01111:{YES,NO}<=2'B10; 5'B10000:{YES,NO}<=2'B01; 5'B10001:{YES,NO}<=2'B01; 5'B10010:{YES,NO}<=2'B01; 5'B10011:{YES,NO}<=2'B10; 5'B10100:{YES,NO}<=2'B01; 5'B10101:{YES,NO}<=2'B10; 5'B10110:{YES,NO}<=2'B10; 5'B10111:{YES,NO}<=2'B10; 5'B11000:{YES,NO}<=2'B01; 5'B11001:{YES,NO}<=2'B10; 5'B11010:{YES,NO}<=2'B10; 5'B11011:{YES,NO}<=2'B10; 5'B11100:{YES,NO}<=2'B10; 5'B11101:{YES,NO}<=2'B10; 5'B11110:{YES,NO}<=2'B10; 5'B11111:{YES,NO}<=2'B10; default: {YES,NO}<=2'B10; endcase

MATLAB全实验报告

《数学实验》报告 实验名称 Matlab 基础知识 学院 专业班级 姓名 学号 2014年 6月

一、【实验目的】 1.认识熟悉Matlab这一软件,并在此基础上学会基本操作。 2.掌握Matlab基本操作和常用命令。 3.了解Matlab常用函数,运算符和表达式。 4.掌握Matlab工作方式和M文件的相关知识。 5.学会Matlab中矩阵和数组的运算。 二、【实验任务】 P16 第4题 编写函数文件,计算 1! n k k = ∑,并求出当k=20时表达式的值。P27第2题 矩阵A= 123 456 789 ?? ?? ?? ?? ?? ,B= 468 556 322 ?? ?? ?? ?? ?? ,计算A*B,A.*B,并比较两者的区别。 P27第3题 已知矩阵A= 52 91 ?? ?? ?? ,B= 12 92 ?? ?? ?? ,做简单的关系运算A>B,A==B,AB)。 P34 第1题 用 111 1 4357 π =-+-+……公式求π的近似值,直到某一项的绝对值小于-6 10为止。 三、【实验程序】 P16 第4题 function sum=jiecheng(n) sum=0; y=1; for k=1:n for i=1:k y=y*i; end sum=sum+y; end sum P27第2题 >>A=[1 2 3;4 5 6;7 8 9] >>B=[4 6 8;5 5 6;3 2 2] >>A*B

P27第3题 >> A=[5 2;9 1];B=[1 2;9 2]; >>A>B >>A==B >>A> (A==B)&(A> (A==B)&(A>B) P34 第1题 t=1; pi=0; n=1; s=1; while abs(t)>=1e-6 pi=pi+t; n=n+2; s=-s; t=s/n; end pi=4*pi; 四、【实验结果】 P16 第4题 P27第2题

数电仿真实验报告

数字电子技术仿真 实验报告 班级: 姓名: 学号:

实验一组合逻辑电路设计与分析 一、实验目的 1.掌握组合逻辑电路的特点; 2.利用逻辑转换仪对组合逻辑电路进行分析与设计。 二、实验原理 组合逻辑电路是一种重要的、也是基本的数字逻辑电路,其特点是:任意时刻电路的输出仅取决于同一时刻输入信号的取值组合。 对于给定的逻辑电路图,我们可以先由此推导出逻辑表达式,化简后,由所得最简表达式列出真值表,在此基础上分析确定电路的功能,这也即是逻辑电路的分析过程。 对于组合逻辑电路的设计,一般遵循下面原则,由所给题目抽象出便于分析设计的问题,通过这些问题,分析推导出真值表,由此归纳出其逻辑表达式,再对其化简变换,最终得到所需逻辑图,完成了组合逻辑电路的设计过程。 逻辑转换仪是在Multisim软件中常用的数字逻辑电路设计和分析的仪器,使用方便、简洁。 三、实验电路及步骤 1.利用逻辑转换仪对已知逻辑电路进行分析。 (1)按图1-1连接电路。 图1-1 待分析的逻辑电路 (2)通过逻辑转换仪,得到下图1-2所示结果。 由图可看到,所得表达式为:输出为Y, D'+ABCD CD'+ABC' AB' + D C' BCD'+AB' A' + D BC' A'+ CD B' D'+A' C' B' A' Y

图1-5 经分析得到的真值表和表达式 (3)分析电路。观察真值表,我们发现:当输入变量A、B、C、D中1的个数为奇数时,输出为0;当其为偶数时,输出为1。因此,我们说,这是一个四输入的奇偶校验电路。 2.根据要求,利用逻辑转换仪进行逻辑电路的设计。 问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾推测器。为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才会产生报警控制信号,试设计报警控制信号的电路。 具体步骤如下: (1)分析问题:探测器发出的火灾探测信号有两种情况,一是有火灾报警(可用“1”表示),一是没有火灾报警(可用“0”来表示),当有两种或两种以上报警器发出报警时,我们定义此时确有警报情况(用“1”表示),其余以“0”表示。由此,借助于逻辑转换仪面板,我们绘出如图1-3所示真值表。 图1-3 经分析得到的真值表

MATLAB程序设计实验报告

MATLAB实验报告 一、实验名称 实验4图形绘制(1) 二、实验目的: 熟悉和掌握MA TLAB基本的二维图形绘制函数。 三、实验内容: 1.绘制简单的二维图形 2.一个坐标系绘制多幅图形 3.图形标识和坐标控制 4.交互式图形指令 四、回答问题: (本次实验未预留问题) 五、遇到的问题及解决: 遇到了求y=lnx时,输入“y=ln(x)”不被软件识别的问题,查看常用数学函数表后改为y=log(x)成功解决。 在求10x时不知道用什么函数,函数表里也查不到,在老师的点拨下用“y=10.^x”解决。 在绘图时发现默认线型不够明显,查表后使用尖三角、叉号代替默认线型。 六、体会: 本次实验我学会了利用MATLAB绘制图形的基本方法,以及相应的备注方法。 难点是了解各种函数的具体作用并熟练掌握。 体会是:多学多练,孰能生巧,日积月累,必有提高。

思考题: 1.在同一坐标系绘制t3,-t2,t2sint在[0,2π]内的曲线图。 x=0:pi/50:2*pi; y1=t.*t.*t; y2=-t.*t; y3=t.*t.*sin(t); plot(t,y1,'^k',t,y2,'.k',t,y3,'xk'); legend('\ity=t^3','\ity=-t^2','\itt^2*sint'); 2.在一幅图中画出4幅子图,分别绘制sin2x,tanx,lnx,10x的图形,并加上适当的图形注释。注意:把函数变成MATLAB对应的形式。 x=0:pi/50:2*pi; y1=sin(2*t); y2=tan(x); y3=log(x); y4=10.^x; subplot(2,2,1) plot(x,y1); legend('y=sin2x'); subplot(2,2,2) plot(x,y2) legend('y=tanx'); subplot(2,2,3) plot(x,y3)

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理