常微分方程期末复习提要

常微分方程期末复习提要
常微分方程期末复习提要

常微分方程期末复习提要

中央电大 顾静相

常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.

一、复习要求和重点 第一章 初等积分法

1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.

常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。

2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x

y = ;

当0≠g 时,通过积分?

?

+=C x x f y g y d )()

(d 求出通解。

(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ?

?+=

C x x M

x M y y N y N d )

()

(d )

()(2

112求出通解。

3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.

第一类可化为变量可分离方程的一阶齐次微分方程为: )(

d d x

y g x

y = ;

令x

y u =

,代入方程得x

u

u g x

u -=

)(d d ,当0)(≠-u u g 时,分离变量并积分,得

?=-u

u g u

x C )(d 1e

,即)

(e

u C x ?=,用x

y u =

回代,得通解)

(

e x y C x ?=.

4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为:

0)(d d =+y x p x

y

通解为:?=-x

x p C y d )(e 。

(2)一阶线性非齐次微分方程为:

)()(d d x f y x p x

y =+;

用常数变易法可以求出线性非齐次方程的通解:?

?

+

?=-]d e )([e d )(d )(x x f C y x

x p x

x p 。

(3)伯努利方程为:

)1,0()()(d d ≠=+n y

x f y x p x

y n

两端除以n y ,得 )()(d d 1x f y

x p x

y y n

n

=+--;令n

y

z -=1,代入后得到以z 为未知

函数的线性方程

)

()(d d 11

x f z x p x

z

n =+-,在求通解。

5.了解全微分方程的类型及积分因子概念,熟练掌握全微分方程解法及简单积分因子的求法.

(1)全微分方程(或恰当方程)为:0d ),(d ),(=+y y x N x y x M ;

若二元函数),(y x U 满足:y y x N x y x M y x U d ),(d ),(),(d +=,则上式的原函数为:

),(y x U .

(2)如果存在连续可微函数0),(≠y x μ,使方程+x y x M y x d ),(),(μ 0d ),(),(=y y x N y x μ成为全微分方程,则称),(y x μ积分因子.

6.了解一阶隐式微分方程的可积类型,掌握隐式方程类型I 、II 的参数解法. 隐式方程0),,(='y y x F ,若能把y '解出,得一个或几个显式方程 ),,2,1()

,(n i y x f y i =='

如果能用初等积分法求出这些显式方程的解,那么就得到原方程的解。

如果不能解出y '时,则用“参数法”求解:

类型Ⅰ )0),((,

0),(='='y y F y x F

若参数形式???='=)()(t y t x ψ?,则参数形式通解为:?????+==?C t t t y t x d )()()

(?ψ? ;

或参数形式???='=)()(t y t y ψ?,则参数形式通解为:??

???

=+=?)

(d )()(t y C t t t x ?ψ?

类型Ⅱ )),((),,(y y f x y x f y '='=

若参数形式???

??=='=)

,(p x f y p y x

x ,则参数形式解为:???==),(0),,(p x f y C p x G

或参数形式??

?

??=='=),(p y f x p

y y y ,则参数形式解为:??

?==Φ)

,(0),,(p y f x C p y

7.了解可降阶的高阶方程的可积类型,掌握高阶方程的三种降阶法.

第一种可降阶的高阶方程 )1(.0),,,,()

()

1()

(>=+k y

y

y

x F n k k ;

第二种可降阶的高阶方程 0),,,(='n

y y y F ;

假如方程0),,,,()

(='n y y y x F 的左端恰为某一函数),,,,()

1(-'Φn y y y x 对x 的导

数,则称该方程为恰当导数方程.

8.学会对应用问题建立常微分方程的一般步骤.

本章重点:五种基本初等积分法——变量分离方程解法,常数变易法,全微分方程解法,参数法,降阶法。

第二章 基本定理

1.知道线素与线素场的概念,理解解的存在与唯一性定理的条件、结论,理解其证明方法.

解的存在与唯一性定理的条件: 方程

),(d d y x f x

y =的右端函数),(y x f

(1)在闭矩形域b y y b y a x x a x R +≤≤-+≤≤-0000,:上连续;

(2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数N ,使对于R 上任何一对点),(y x 和),(y x 有不等式: y y N y x f y x f -≤-),(),(

结论: 初值问题 ??

?

??==00)(),(d d y

x y y x f x y

在区间0000h x x h x +≤≤-上存在唯一解

00)(),

(y x x y ==??。其中),(max

),,

min(),(0y x f M M

b a h R

y x ∈==。

2.了解解的延展、延展解、不可延展解的概念,了解局部李普希兹条件,理解解的延展定理,了解其证明方法.

3.了解奇解定义、包络线概念,掌握不存在奇解的判别法、包络线的C -判别式,掌握奇解的包络线求法.

(1)不存在奇解的判别方法:

若方程在全平面上解唯一,则方程不存在奇解;

若不满足解唯一的区域上没有方程的解,则方程无奇解.

(2)求奇解的包络线求法. 若L 是曲线族0),,(:)(=ΦC y x C 的包络线,则其满足C —判别式??

?=Φ'

=Φ0),,(0),,(C y x C y x C .

在非蜕化条件下,从C —判别式解出的曲线)(),(:C y C x ψ?==Γ是曲线族的包络线.

4.掌握利用解的存在与唯一性定理、解的延展定理证明有关方程解的某些性质的基本方法.

本章重点:解的存在与唯一性定理,解的延展定理。

第三章 线性微分方程组

1. 了解一阶微分方程组的通解、通积分的概念,了解微分方程组的解的存在唯一性定理.

微分方程组的解的存在与唯一性定理的条件: 方程组),(d d Y F Y x x

=右边的函数

F (x ,Y )

(1)在n +1维空间的区域 b x x R ≤-≤-00,|:|Y Y α 上连续;

(2)在R 关于Y 满足李普希兹条件,即存在N >0,使对于R 上任意两点),(1Y x ,),(2Y x ,

2121),(),(Y Y Y Y Y Y -≤-N x x

结论:存在00>h ,使初值问题??

?

??==00)(),(d d Y

Y Y F Y

x x x 的解在00||h x x ≤-上存在且唯一,

其中),(max

),,

min(),(0Y F x M M

b a h R

Y x ∈==.

2.了解一阶线性微分方程组的有关概念,了解一阶线性微分方程组的解的存在唯一性

定理.

3. 了解一阶线性齐次方程组的解的性质,了解基本解组、标准基本解组的概念,理解一阶线性齐次微分方程组的解的结构、通解基本定理,掌握刘维尔公式.

(1)齐次方程组的解的性质: 线性齐次方程组的任何有限个解的线性组合仍为其解. (2)n 个n 维向量函数组)(,),(),(21x x x n Y Y Y 相关性的判别方法: 如果向量组在区间I 上线性相关,则它们的朗斯基行列式W (x )在I 上恒等于零.

如果向量组的朗斯基行列式W (x )在区间I 上的某一点x 0处不等于零,即0)(0≠x W , 则向量组在I 上线性无关.

齐次方程组的n 个解在其定义区间I 上线性无关的充要条件是它们的朗斯基行列式W (x )在I 上任一点不为零.

(3)如果)(,),(),(21x x x n Y Y Y 是齐次方程组的基本解组,则其线性组合

)()()()(2211x C x C x C x n n Y Y Y Y +++=

是齐次方程组的通解,其中n C C C ,,,21 为n 个任意常数. 线性齐次方程组的线性无关解的个数不能多于n 个.

(4)如果)(,),(),(21x x x n Y Y Y 是齐次方程组的n 个解,则这n 个解的朗斯基行列式与方程组的系数有如下关系式

?=+++x

x nn t

t a t a t a x W x W 02211d )]()()([0e

)()(

这个关系式称为刘维尔(Liouville )公式.

4.理解一阶线性非齐次微分方程组通解结构,掌握拉格朗日常数变易法. (1)如果)(~

x Y 是线性非齐次方程组

)()(d d x x x

F Y A Y

+=的解,而)(0x Y 是其对应齐

次方程组Y A Y )(d d x x

=的解,则)(~

)(0x x Y Y +是非齐次方程组的解. (2)线性非齐次方程组的任意两个解之差是其对应齐次方程组的解.

(3)线性非齐次方程组的通解等于其对应的齐次方程组的通解与它的一个特解之和.即若)(~

x Y 是非齐次方程组的一个特解,),(,),(),(21x x x n Y Y Y 是对应齐次方程组的一个基本解组,则通解为

)(~

)()()()(2211x x C x C x C x n n Y Y Y Y Y ++++=

这里n C C C ,,,21 是任意常数.

5.了解常系数线性微分方程组的特征方程式、特征根、特征向量的概念,了解常系数线性微分方程组基本解组的概念,掌握求基本解组的方法,熟练掌握常系数线性微分方程组的待定指数函数解法(单特征根情形).

如果常系数线性微分方程组

AY Y =x

d d 的系数阵A 的n 个特征根n λλλ,,,21 彼此互

异,且),(,),(,21x x n T T T 分别是它们所对应的特征向量,则

n x

n x

x

n x x x T T T λλλe

)(,,e

)(,e

)(221121===Y Y Y

是方程组的一个基本解组.

本章重点:线性微分方程组解的结构,常系数线性微分方程组的解法。

第四章 线性微分方程

1.了解n 阶线性微分方程的概念,知道n 阶线性微分方程与一阶线性微分方程组的关

系,了解n 阶线性微分方程解的存在唯一性定理.

n 阶线性微分方程解的存在唯一性定理:如果方程y x p y

x p y

n n n '+++--)()(1)

1(1)

(

)()(x f y x p n =+的系数)(x p k (k=1,2,…,n )及其右端函数f(x)在区间I 上有定义且连续,则对于I 上的任一0x 及任意给定的)

1(00

0,,,-'n y y y ,方程的满足初始条件,)(00y x y =的

解在I 上存在且唯一.

2.理解n 阶线性齐次微分方程解的结构和通解基本定理,了解n 阶线性齐次微分方程的基本解组,掌握刘维尔公式.

(1)齐次方程0)()()(1)

1(1)

(=+'+++--y x p y x p y

x p y

n n n n 的n 个解

)(1x ?,)(2x ?,…,)(x n ?

在其定义区间I 上线性无关(相关)的充要条件是在I 上存在点x 0,使得它们的朗斯基行列式W(x 0)≠0 (W (x 0)=0).

(2)如果)(1x ?,)(2x ?,…,)(x n ?是齐次方程的n 个线性无关解,则

y = )(11x C ?+)(22x C ?+…+)(x C n n ?

是方程(4.11)的通解,其中n C C C ,,,21 为n 个任意常数.

(3)n 阶齐次方程的线性无关解的个数不超过n 个. (4)n 阶齐次方程总存在定义在区间I 上的基本解组.

(5)设)(1x ?,)(2x ?,…,)(x n ?是方程的任意n 个解,W (x )是它们朗斯基行列式,则对区间I 上的任一x 0有

W(x)=W(x 0)?x

x t

t p 01d )(e

上述关系式称为刘维尔(Liouvill e )公式. 3.理解n 阶线性非齐次微分方程的通解定理,掌握n 阶线性非齐次微分方程用常数变

易法法求通解的方法.

4.了解n 阶常系数线性齐次方程的概念,熟练掌握n 阶常系数线性齐次方程的单特征根的待定指数函数解法及重特征根的待定指数函数解法.

5.了解n 阶常系数线性非齐次方程的概念,熟练掌握第一类、第二类非齐次项n 阶常系数线性非齐次方程的特解的待定系数法.

本章重点:n 阶线性微分方程解的存在唯一性定理,通解基本定理,n 阶常系数线性方程的解法。

第五章 定性理论简介

1. 了解稳定性概念.了解零解稳定和零解渐近稳定定理.

2.知道相平面、相轨线、相图、常点、奇点与闭轨的概念,知道平面自治系统的三个性质,掌握平面初等奇点的分类方法. 本章重点:平面自治系统的奇点分析。

二、考试说明

常微分方程课程的期末考试的对象是中央广播电视大学数学与应用数学专业的学生. 本课程期末考试是全国统一的结业考试,主要考察初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等章节的基本概念、基本方法和基本计算能力。 考核要求分为三个不同层次:有关定义、定理、性质和结论等概念的内容由低到高分为“知道、了解、理解”三个层次;有关计算方法、公式和法则等内容由低到高分为“会、掌握、熟练掌握”三个层次.三个不同层次由低到高在期末试卷中的比例为:2:3:5.

试题按其难度分为容易题、中等题和较难题,其分值在期末试卷中的比例为:4:4:2.试题类型分为单项选择题、填空题、计算题和证明题.单项选择题的形式为四选一,即在每题的四个备选答案中选出一个正确答案;填空题只要求直接填写结果,不必写出计算过程和推理过程;计算题要求写出演算步骤;证明题要求写出推证过程.四种题型分数的百分比为:单项选择题15 %,填空题15 %,计算题50 %,证明题20%.期末考试采用闭卷笔试形式,卷面满分为100分,考试时间为120分钟.

考试时不得携带除书写用具以外的任何工具.

常微分方程试题库

常微分方程试题库 二、计算题(每题6分) 1. 解方程:0cot tan =-xdy ydx ; 2. 解方程:x y x y e 2d d =+; 3. 解方程:; 4. 解方程: t e x dt dx 23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ; 6. 解方程:0)ln (3=++dy x y dx x y ; 7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ; 8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ; 12. 解方程: y y dx dy ln =; 13. 解方程:y x e dx dy -=; 14. 解方程:02)1(22=+'-xy y x ; 15. 解方程:x y dx dy cos 2=; 16. 解方程:dy yx x dx xy y )()(2222+=+; 17. 解方程:x xy dx dy 42=+; 18. 解方程:23=+ρθ ρ d d ; 19. 解方程:22x y xe dx dy +=; 20. 解方程:422x y y x =-'; 选题说明:每份试卷选2道题为宜。

二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx 解: ,2,1,0,2 ,±±=+==k k x k y π ππ是原方程的常数解, (2分) 当2 ,π ππ+ ≠≠k x k y 时,原方程可化为: 0cos sin sin cos =-dx x x dy y y , (2分) 积分得原方程的通解为: C x y =cos sin . (2分) 2. 解方程: x y x y e 2d d =+ 解:由一阶线性方程的通解公式 ? ? +? =-),)(()()(dx e x f C e y dx x p dx x p (2分) x x x x dx x dx e Ce dx e C e dx e e C e 3 1 )() (23222+=+=?+?=---?? 分) (分) (22 3. 解方程: 解:由一阶线性方程的通解公式 ??+?=-))(()()(dx e x f C e y dx x p dx x p (2分) =??+?-)sec (tan tan dx xe C e xdx xdx (2分) ?+=)sec (cos 2xdx C x x x C sin cos +=. (2分) 4. 解方程: t e x dt dx 23=+ 解:由一阶线性方程的通解公式 ??+? =-))(()()(dt e t f C e x dt t p dt t p (2分) =??+?-)(323dt e e C e dt t dt (2分) ?+=-)(53dt e C e t t

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程试题(卷)

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程期末试题B答案

2005——2006学年第二学期 常微分方程课程试卷(B) 一、填空题(每空2 分,共16分)。 1.李普希滋条件是初值问题存在唯一解的充分条件. 2. 一阶微分方程的一个特解的图像是二 维空间上的一条曲线. 3.线性齐次微分方程组Y A Y ) ( d d x x =的一个基本解组的个数不能多于n个,其中R ∈ x,n R Y∈. 4.二阶线性齐次微分方程的两个解) ( 1 x y? =,) ( 2 x y? =成为其基本解组的充要条件是线性无关. 5.方程2 sin() y xy y '' =+的通解是 6.变量可分离方程()()()()0= +dy y q x p dx y N x M的积分因子是()() x P y N 1 7.性齐次微分方程组的解组) ( , ), ( ), ( 2 1 x x x n Y Y Y 为基本解组的充分必要条件是它们的朗斯基行列式0 ) (≠ x W. 8.方程540 y y y ''' ++=的基本解组是x x e e4 ,- - 二、选择题(每小题3 分,共15分)。 9.两个不同的线性齐次微分方程组( D )的基本解组. (A) 一定有相同(B) 可能有相同 (C) 一定有相似(D) 没有相同 10.方程组 ? ? ? ?? ? ? + = + = y x t y y x t x 4 3 d d 2 d d 的奇点)0,0(的类型是(D ). (A)稳定焦点(B)不稳定焦点(C)鞍点(D)不稳定结点11.方程x(y2-1)d x+y(x2-1)d y=0的所有常数解是( C ). (A) 1± = x(B)1± = y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( D ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程4d d +-=x y x y ( A )奇解. (A) 无 (B) 有一个 (C) 有两个 (D) 可能有 三、计算题(每小题8分,共48分) 。 14.求方程 x y x y x y tan d d +=的通解 解:令x y u =,则u x u y '+=', u x u x tan d d = 当0tan ≠u 时,等号两边积分 1d tan d C x x u u +=?? C x u ln ln sin ln += 0≠C Cx x y =sin 15.求方程0d d )1(2=+--y x x y x 的通解 解:积分因子21)(x x =μ, 则 0d 1d 122=+--y x x x y x 为全微分方程.取10=x ,00=y ,于是通积分为 1012 2d d 1C y x x y x y x =+--?? 即 C x x x y =++1 16.求方程2221)(x y x y y + '-'=的通解 解:令 p y =',得到2 2 2x xp p y +-= (*) ,两端同时关于求导,

常微分方程期末考试题大全东北师大

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

(整理)常微分方程试题及参考答案

常微分方程试题 一、填空题(每小题3分,共39分) 1.常微分方程中的自变量个数是________. 2.路程函数S(t)的加速度是常数a,则此路程函数S(t)的一般形式是________. 3.微分方程=g( )中g(u)为u的连续函数,作变量变换________,方程可化为变 量分离方程. 4.微分方程F(x,y′)=0中令P=y′,若x、P平面上的曲线F(x,P)=0的参数形式 为x= (t),P=ψ(t),t为参数,则方程参数形式的通解为________. 5.方程=(x+1)3的通解为________. 6.如果函数f(x,y)连续,y= (x)是方程=f(x,y)的定义于区间x0≤x≤x0+h上,满 足初始条件 (x0)=y0的解.则y= (x)是积分方程________定义于x0≤x≤x0+h 上的连续解. 7.方程=x2+xy,满足初始条件y(0)=0的第二次近似解是________. 8.方程+a1(t) +…+a n-1(t) +a n(t)x=0 中a i(t) i=1,2,…,n是〔a,b〕上的连续函数,又x1(t),x2(t),…,x n(t)为方程n 个线性无关的解,则其伏朗斯基行列式W(t) 应具有的性质是:________. 9.常系数线性方程x(4)(t)-2x″(t)+x(t)=0的通解为________. 10.设A(t)是区间a≤t≤b上的连续n×n矩阵,x1(t),x2(t),…,x n(t)是方程组 x′=A(t)x的n个线性无关的解向量.则方程组的任一解向量x(t)均可表示为:x(t)=________的形式. 11.初值问题(t)+2x″(t)-tx′(t)+3x(t)=e-t,x(1)=1,x′(1)=2,x″(1)=3 可化为与之 等价的一阶方程组________. 12.如果A是3×3的常数矩阵,-2为A的三重特征值,则方程组x′=Ax的基 解矩阵exp A t=________. 13.方程组 的奇点类型是________. 二、计算题(共45分) 1.(6分)解方程 = . 2.(6分)解方程 x″(t)+ =0. 3.(6分)解方程 (y-1-xy)dx+xdy=0. 4.(6分)解方程

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

常微分方程试题

常微分方程试题

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程习题及答案.[1]

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2 ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 2 2 1xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。

7.x y 1 =所满足的微分方程是 。 8.x y y 2='的通解为 。 9. 0=+ x dy y dx 的通解为 。 10. ()25 11 2+=+- x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程32 3y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .22x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?=

常微分方程期末历年考试(B)

广西师范大学漓江学院试卷 课程名称:常微分方程课程序号:开课院系:理学系 任课教师: 年级、专业:07数学考试时间:120分钟 考核方式:闭卷 ■ 开卷 □试卷类型:A 卷□B 卷■ 一、填空题(本大题共10小题,每小题3分,共30分) (请在每小题地空格中填上正确答案,错填、不填均无分). 1、当_______________时,方程(,)(,)0M x y dx N x y dy +=称为恰当方程. 2、求(,)dy f x y dx =满足00()y x y =地解等价于求积分方程地连续解. 3、函数组t t t e e e 2,,-地朗斯基行列式值为. 4、二阶齐次线性微分方程地两个解)(),(21x y x y 为方程地基本解组充分必要条件是. 5、若矩阵A 具有n 个线性无关地特征向量n v v v ,,,21Λ,它们对应地特征值分别为n λλλΛ,,21,那么常系数线性方程组Ax x ='地一个基解矩阵)(t Φ=. 6、方程tan dy x y dx =地所有常数解是. 7、如果存在常数0L >,使得不等式对于所有12,),(,)x y x y R ∈(都成立,称函数),(y x f 在R 上关于y 满足利普希茨条件,其中L 为利普希茨常数. 8、)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ?-dx x P e )( ,其通解为 _________ . 9、方程22y x dx dy +=定义在矩形域R:-222,2≤≤-≤≤y x 上,则经过点(0,0)地解地存在区间是. 10、若(),()t t Φψ是齐次线性方程组()X A t X '=地基解矩阵,则()t Φ与()t ψ具有关系. 年 级 : 专 业: 装订密封线 考 生 答 题 不 得 出 现 红 色字 迹 , 除 画 图 外 , 不 能 使用 铅笔答 题;答题 留 空 不 足 时 , 可 写到 试卷 背面 ;请 注意 保 持试 卷完 整.

2012常微分方程试题B及答案

南京农业大学试题纸 2011-2012学年第2 学期课程类型:必修试卷类型:B Array 装 订 线 装 订 线

常微分方程模拟试题(B)参考答案 2012.7 一、填空题(每小题3分,本题共30分) 1.二 2. )()]()([1211x y x y x y C +- 3. ()0W t ≡或00()=0,W t t I ∈ 4. )(x N x N y M ?=??-?? 5.1y =± 6. n 7. 充分 8. 0 0(,)x x y y f x y dx =+ ? 9. 1 ,Re s a s a >- 10. ()+∞∞-, 二、计算题(每小题5分,本题共20分) 11. 解: 齐次方程的通解为 x C y 3e -= (3分) 令非齐次方程的特解为 x x C y 3e )(-= 代入原方程,确定出 C x C x +=5e 5 1)( 原方程的通解为 x C y 3e -=+ x 2e 5 1 (5分) 12. 解: 对应的特征方程为:012 =++λλ, 解得i i 2 3,2321221 1--=+ -=λλ (3分) 所以方程的通解为:)2 3sin 23cos (212 1 t c t c e x t +=- (5分) 13. 1=??y M ,x N ??=1 , x N y M ??=?? 所以此方程是恰当方程. (3分) 凑微分,0)(22 =++-xdy ydx ydy dx x 得 C y xy x =-+23 3 1 (5分) 14. 5,1,dy dt x y t dx dx -===-令则 1,(7)77dt t t dt dx dx t -=---原方程化为:变量分离 (3分) 2 1772 t x c t -=-+两边积分 21 7(5)7.(5)x y x c x y --+=-+-+代回变量 (5分)

2018常微分方程考研复试真题及答案

常微分方程计算题 2.指出下列方程中的阶数,是线性方程还是非线性方程,并说明理由; (1) t 2 2 2dt u d +t dt du +( t 2 -1)u=0 (2) dx dy =x 2+y 2 ; (3)dx dy + 2 x y =0 3.求曲线族y=C 1e x +C 2x e x 所满足的微分方程 4.验证函数y= C 1e x 2+ C 2e x 2-是微分方程y `` -4y=0的解,进一步验证它是通解。 5.试用一阶微分方程形式不变性求解方程dx dy =2x 6.什么叫积分一个微分方程 7.什么是求解常微分方程的初等积分法 8.分离变量一阶方程的特征是什么 9.求下列方程的通解 (1) y ` =sinx (2) x 2 y 2 y ` +1=y (3) tgx dx dy =1+y (4) dx dy =exp(2x-y) (5) dx dy =21y 2- (6) x 2 ydx=(1- y 2 +x-2 x 2 y 2 )dx (7)( x 2 +1)( y 2 -1)dx+xydy=0 10.叙述齐次函数的定义 11.试给出一阶方程y ` =f(x,y)或p(x,y)dx+ q(x,y)dy=0为齐次方程的特征。说明二

个方程的关系。 12.求解齐次方程通常用什么初等变换,新旧函数导数关系如何 13.求解下列方程 dx dy =2 22y x xy - 14.求解下列方程 (1)(x+2y )dx —xdy=0 (2) dx dy =x y +y x 2 15. dx dy =22y x xy + 16(x 2 +y 2 )dx —2xydy=0 17. dx dy =5 242+---y x x y 18―――――19 20―――――――27

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

常微分方程试题库.

常微分方程 一、填空题 1 .微分方程(立)n +业—VEX? = 0的阶数是 dx dx 答:1 2 .若M (x, V)和N (x, V)在矩形区域R内是(x, V)的连续函数,且有连续的一阶偏导数,则 方程M (x,y)dx + N(x, y)dy =0有只与V有关的积分因子的充要条件是 血 f N -1 答:(亏一寸M)= (V) 3. ^为齐次方程. 答:形如dV =g(V)的方程 dx x 4 .如果f (x, V) ___________________________________________ M ,业=f (x, V)存在 dx 唯一的解y = %x),定义丁区问x-x o

8. 若X i (t)(i =1,2,.....n)为齐次线性方程的一个基本解组,x(t)为非齐次线性方程的一个 特解,则非齐次线性方程的所有解可表为 答:X =' c i x i - X i 4 9. 若中(X)为毕卡逼近序列虬(X)}的极限,则有|%x)M n(x)W 答:MLh n1 (n 1)! 10. 为黎卡提方程,若它有一个特解y(x),则经过变换 ____________________ ,可化为伯努利方程. 答:形如—=p(x)y2+q(x)y + r (x)的方程y = z + y dx 11. 一个不可延展解的存在区间一定是区间. 答:开 12. ______________________________________________________________ 方程业=后〔满足解的存在唯一性定理条件的区域是_______________________________ . dx ' 答:D ={(x,y)在R2y >0},(或不含x轴的上半平■面) 13 .方程华=x2sin y的所有常数解是. dx 答:y =k二,k =0, —1, —2, 14. 函数组明(x)*2(x),…,气(x)在区间I上线性无关的条件是它们的朗 斯基行列式在区间I上不包等丁零. 答:充分 15. 二阶线性齐次微分方程的两个解y〔(x), y2(x)为方程的基本解组充分必要条件 是. 答:线性无关(或:它们的朗斯基行列式不等丁零) 16. 方程广-2y'+y=0的基本解组是 答:e x, xe X 17. 若y =%x)在(s,十8)上连续,则方程d^=

常微分方程应用题和答案

应 用 题(每题10分) 1、设()f x 在(,)-∞∞上有定义且不恒为零,又()f x '存在并对任意,x y 恒有 ()()()f x y f x f y +=,求()f x 。 2、设()()()F x f x g x =,其中函数(),()f x g x 在(,)-∞∞内满足以下条件 ()(),()(),(0)0,()()2x f x g x g x f x f f x g x e ''===+= (1)求()F x 所满足的一阶微分方程; (2)求出()F x 的表达式。 3、已知连续函数()f x 满足条件320 ()3x x t f x f dt e ??=+ ??? ?,求()f x 。 4、已知函数()f x 在(0,)+∞内可导,()0,lim ()1x f x f x →+∞ >=,且满足 1 1 0()lim ()h x h f x hx e f x →? ?+ ?= ? ?? ? ,求()f x 。 5、设函数()f x 在(0,)+∞内连续,5 (1)2 f =,且对所有,(0,)x t ∈+∞,满足条件 1 1 1 ()()()xt x t f u du t f u du x f u du =+? ??,求()f x 。 6、求连续函数()f x ,使它满足10 ()()sin f tx dt f x x x =+?? 。 7、已知可微函数()f t 满足 31() ()1()x f t dt f x t f t t =-+?,试求()f x 。 8、设有微分方程 '2()y y x ?-=, 其中21 ()01x x x ?? 。试求在(,)-∞∞内的连续函 数()y y x =使之在(,1)-∞和()1,+∞内部满足所给方程,且满足条件(0)0y =。 9、设位于第一象限的曲线()y f x = 过点122?? ? ? ?? ,其上任一点(,)P x y 处的法线与y 轴的交点为Q ,且线段PQ 被x 轴平分。 (1)求曲线()y f x =的方程; (2)已知曲线sin y x =在[0,]π上的弧长为l ,试用l 表示曲线()y f x =的弧长s 。 10、求微分方程(2)0xdy x y dx +-=的一个解()y y x =,使得由曲线()y y x =与直线 1,2x x ==以及x 轴所围成的平面图形绕x 轴旋转一周的旋转体体积最小。 11、设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为

(完整版)常微分方程期末考试试卷(6)

常微分方程期末考试试卷(6) 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (共30分,9小题,10个空格,每格3分)。 1.当_______________时,方程M(x,y)dx+N(x,y)dy=0称为恰当方程,或称全 微分方程。 2、________________称为齐次方程。 3、求dx dy =f(x,y)满足00)(y x =?的解等价于求积分方程____________________的连续解。 4、若函数f(x,y)在区域G 内连续,且关于y 满足利普希兹条件,则方程),(y x f dx dy = 的解 y=),,(00y x x ?作为00,,y x x 的函数在它的存在范围内是__________。 5、若)(),...(),(321t x t x t x 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是__________________________________________。 6、方程组x t A x )(/=的_________________称之为x t A x )(/=的一个基本解组。 7、若)(t φ是常系数线性方程组Ax x =/的基解矩阵,则expAt =____________。 8、满足___________________的点(**,y x ),称为方程组的奇点。 9、当方程组的特征根为两个共轭虚根时,则当其实部________时,零解是稳定 的,对应的奇点称为___________。 二、计算题(共6小题,每题10分)。 1、求解方程:dx dy =3 12+++-y x y x 2.解方程: (2x+2y-1)dx+(x+y-2)dy=0

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

高等数学 期末复习之常微分方程部分

第11章 常微分方程习题课 一. 内容提要 1.基本概念 含有一元未知函数)(x y (即待求函数)的导数或微分的方程,称 为常微分方程;其中出现的)(x y 的最高阶导数的阶数称为此微分方程的阶;使微分方程在区间I 上成为恒等式的函数=y )(x ?称为此微分方程在I 上的解;显然一个微分方程若有解,则必有无穷多解;若n 阶微分方程的解中含有n 个不可合并的任意常数,则称其为此微分方程的通解;利用n 个独立的附加条件(称为定解条件)定出了所有任意常数的解称为特解;微分方程连同定解条件一起,合称为一个定解问题;当定解条件是初始条件(给出)1(,,,-'n y y y 在同一点 0x 处的值)时,称为初值问题. 2.一阶微分方程),(y x f y ='的解法 (1)对于可分离变量方程 )()(d d y x x y ψ?=, 先分离变量(当0)(≠y ψ时)得 x x y ψy d )() (d ?=, 再两边积分即得通解 C x x y y +=??d )()(d ?ψ. (2)对于齐次方程d d y y f x x ??= ??? , 作变量代换x y u =,即xu y =,可将其化为可分离变量的方程,分离变量后,积分得C x x u u f u +=-?? d )(d ,再以x y 代替u 便得到齐次方

程的通解. (3)形如 )(1 11d d c y b x a c by ax f x y ++++=的方程, ①若1,c c 均为零,则是齐次方程; ②若1,c c 不全为零,则不是齐次方程,但 当k b b a a ==1 1时,只要作变换y b x a v 11+=,即可化为可分离变量的方程11 1)(d d a c v c kv f b x v +++=; 当11b b a a ≠时,只要作平移变换???-=-=00y y Y x x X ,即???+=+=0 0y Y y x X x (其中),(0 0y x 是线性方程组???=++=++0 0111c y b x a c by ax 的惟一解),便可化为齐次方程 )(d d 11Y b X a bY aX f X Y ++=. (4)全微分方程 若方程0d ),(d ),(=+y y x Q x y x P 之左端是某个二元函数 ),(y x u u =的全微分,则称其为全微分方程,显然C y x u =),(即为通 解,而原函数),(y x u 可用曲线积分法、不定积分法或观察法求得. 通常用充要条件x Q y P ??=??来判定0d ),(d ),(=+y y x Q x y x P 是否 为全微分方程.对于某些不是全微分方程的 0d ),(d ),(=+y y x Q x y x P ,可乘上一个函数),(,y x μ使之成为全微分 方程 0d ),(d ),(=+y y x Q x y x P μμ

相关文档
最新文档