抵母河特大桥岸坡稳定性研究

抵母河特大桥岸坡稳定性研究
抵母河特大桥岸坡稳定性研究

毕节至都格(黔滇界)高速公路路基、桥隧工程施工招标资格预审文件

一、项目概况 杭瑞高速公路毕节至都格(黔滇界)段是《国家高速公路网规划》(7918网)中第12横杭州至瑞丽高速公路在贵州境的重要组成部分,其中项目起点毕节至龙场段与国家高速公路第16横厦门至成都高速公路共线。 项目区位于贵州省西部毕节地区和六盘水市,地处川、滇、黔三省接合部的中心,是连接我国较发达的东南沿海地区和西南内陆腹地的重要横向干线。同时也是“6横7纵8联”高速公路网规划中第六纵、第三横的重要组成部分。 杭瑞高速公路毕节至都格(黔滇界)段路线起点(K79+000)位于毕节市城东南的龙滩边,北接拟建的厦蓉高速毕节至生机段,东接杭瑞高速遵义至毕节段,西接贵州省规划的毕节至威宁高速公路,路线自北向南,依次经朱昌、东关、化作至龙场,延后继续南行经勺坐大山西北,穿巴雍,在以角进入六盘水境内,由董地跨抵母河,从六盘水市城东侧穿过,经俄脚至本项目终点都格,与云南规划路网相接。路线全长140.25km(含云南境782m),全线采用全封闭、控制出入的四车道高速公路建设标准,设计速度为80km/h,整体式路基宽度24.5m。 路线主要控制点为:起点龙滩边、朱昌、总溪河、化作、龙场、勺坐大山、抵母河、老鹰山、俄脚、终点都格。 主要相交的道路:省道S211、省道S307、省道S102、省道S212、老鹰山煤矿铁路、贵昆铁路、水黄汽车专用公路、水柏铁路、玉马二级公路、以及沿线县、乡道路。 主要跨越的河流:总溪河、抵母河、通仲河、巴郎河、北盘江。 二、设计标准 主线采用技术标准为:双向四车道高速公路,设计时速为80公里/小时,整体式路基宽度24.50m,分离式路基宽度12.25m,停车视距110m,设计荷载等级为公路-Ⅰ级,主线路面采用沥青混凝土。主要技术指标见下表:

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

土坡稳定性计算计算书7.9

土坡稳定性计算书 计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑施工计算手册》江正荣编著 3、《实用土木工程手册》第三版杨文渊编著 4、《施工现场设施安全设计计算手册》谢建民编著 5、《地基与基础》第三版 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 基本参数: 放坡参数: 荷载参数: 土层参数:

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.2的要求。

圆弧滑动法示意图 三、计算公式: K sj=∑{c i l i+[ΔG i b i+qb i]cosθi tanφi}/∑[ΔG i b i+qb i]sinθi 式子中: K sj --第j个圆弧滑动体的抗滑力矩与滑动力矩的比值; c i --土层的粘聚力; l i--第i条土条的圆弧长度; ΔG i-第i土条的自重; θi --第i条土中线处法线与铅直线的夹角; φi --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; q --第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数K sjmin:

中国十大最高桥梁

中国十大最高桥梁 NO.10贵州六广河大桥305米 贵州六广河大桥 是贵阳-毕节汽车专用二级公路上横跨六广河峡谷的一座特大型桥梁。主桥为中跨240m边跨145.1m的预应力混凝土连续刚构,其中2号桥墩高90m。引桥为20m无粘结预应力空心简支板,全长为564.2m。No.9贵州马岭河大桥323米 No.9贵州马岭河大桥323米 贵州马岭河大桥 马岭河大桥,位于板江高速公路,横跨国家4A级风景区——马岭河大峡谷,于2009年8月28日合龙。大桥全长1386米,最高塔高196米,为预应力混凝土双塔双索面斜拉桥。 NO.8六冲河特大桥336米 六冲河特大桥 六冲河特大桥是黔织高速重要的控制性工程。大桥全长一千五百零八米,总投资三点四六亿元,2012完工。六冲河特大桥是一座位于中国贵州省织金县的斜拉桥,跨越六冲河峡谷,于2013年开通时以其336米的高度位列世界最高十座桥梁之一。 N0.7贵州镇胜高速公路北盘江大桥

贵州镇胜高速公路北盘江大桥 大桥于2005年10月26日开工建设,总投资约4.7亿元,2008年7月完工。北盘江大桥位于贵州省关岭县与晴隆县交界的北盘江大峡谷,主桥为单跨636米的简支钢桁梁悬索桥,全桥长964米,桥面宽28米,桥面至水面的高度为320米,项目总投资为4.3亿元。北盘江大桥是我国目前已建成跨度最大的钢桁梁悬索桥。 NO.6湖南矮寨大桥350米 湖南矮寨大桥 矮寨特大悬索桥,位于湖南湘西矮寨镇境内。矮寨悬索桥,距吉首市区约20公里,跨越矮寨镇附近的山谷,德夯河流经谷底。桥型方案为钢桁加劲梁单跨悬索桥,全长1073.65m,悬索桥的主跨为1176m。该桥跨越矮寨大峡谷,主跨居世界第三、亚洲第一。工程计划投入7.2亿元,占吉茶高速公路计划总投资的15%。2012年3月底,创4项世界第一的湖南矮寨特大悬索桥正式通车。 N0.5贵州坝陵河大桥370米 贵州坝陵河大桥 坝陵河大桥位于贵州省黔西地区高原重丘区,是沪瑞国道主干线上跨越坝陵河大峡谷的第一座特大型桥梁。该桥为主跨1088米的单跨钢桁加劲梁悬索桥,桥梁全长2237米,桥面至坝陵河水面370米。NO.4贵州抵母河大桥380米

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

(完整版)土坡稳定性计算

第九章土坡稳定分析 土坡就是具有倾斜坡面的土体。土坡有天然土坡,也有人工土坡。天然土坡是由于地质作用自然形成的土坡,如山坡、江河的岸坡等;人工土坡是经过人工挖、填的土工建筑物,如基坑、渠道、土坝、路堤等的边坡。本章主要学习目前常用的边坡稳定分析方法,学习要点也是与土的抗剪强度有关的问题。 第一节概述 学习土坡的类型及常见的滑坡现象。 一、无粘性土坡稳定分析 学习两种情况下(全干或全淹没情况、有渗透情况)无粘性土坡稳定分析方法。要求掌握无粘性土坡稳定安全系数的定义及推导过程,坡面有顺坡渗流作用下与全干或全淹没情况相比无粘性土土坡的稳定安全系数有何联系。 二、粘性土坡的稳定分析 学习其整体圆弧法、瑞典条分法、毕肖甫法、普遍条分法、有限元法等方法在粘性土稳定分析中的应用。要求掌握圆弧法进行土坡稳定分析及几种特殊条件下土坡稳定分析计算。 三、边坡稳定分析的总应力法和有效应力法 学习稳定渗流期、施工期、地震期边坡稳定分析方法。 四、土坡稳定分析讨论 学习讨论三个问题:土坡稳定分析中计算方法问题、强度指标的选用问题和容许安全系数问题。 第二节基本概念与基本原理 一、基本概念 1.天然土坡(naturalsoilslope):由长期自然地质营力作用形成的土坡,称为天然土坡。2.人工土坡(artificialsoilslope):人工挖方或填方形成的土坡,称为人工土坡。 3.滑坡(landslide):土坡中一部分土体对另一部分土体产生相对位移,以至丧失原有稳 定性的现象。 4.圆弧滑动法(circleslipmethod):在工程设计中常假定土坡滑动面为圆弧面,建立这一 假定的稳定分析方法,称为圆弧滑动法。它是极限平衡法的一种常用分析方法。 二、基本规律与基本原理 (一)土坡失稳原因分析 土坡的失稳受内部和外部因素制约,当超过土体平衡条件时,土坡便发生失稳现象。1.产生滑动的内部因素主要有: (1)斜坡的土质:各种土质的抗剪强度、抗水能力是不一样的,如钙质或石膏质胶结的土、湿陷性黄土等,遇水后软化,使原来的强度降低很多。 (2)斜坡的土层结构:如在斜坡上堆有较厚的土层,特别是当下伏土层(或岩层)不透水时,容易在交界上发生滑动。 (3)斜坡的外形:突肚形的斜坡由于重力作用,比上陡下缓的凹形坡易于下滑;由于粘性土有粘聚力,当土坡不高时尚可直立,但随时间和气候的变化,也会逐渐塌落。 2.促使滑动的外部因素 (1)降水或地下水的作用:持续的降雨或地下水渗入土层中,使土中含水量增高,土中易溶盐溶解,土质变软,强度降低;还可使土的重度增加,以及孔隙水压力的产生,使土体作用有动、静水压力,促使土体失稳,故设计斜坡应针对这些原因,采用相应的排水措施。(2)振动的作用:如地震的反复作用下,砂土极易发生液化;粘性土,振动时易使土的结

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

危岩体稳定性分析

附件2 危岩体稳定性分析 1、WY-01危岩体稳定性定量评价 1 计算模型 从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。 图3-1 滑移式危岩示意图 危岩体 危岩前缘 扬压力U 静水压力V 地下水位 后缘裂隙 危岩后缘 软弱结 构面 W c o s θ W W s i n θh w θ 图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) 2 计算公式 ①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:

(cos sin sin )sin cos cos W Q V V tg c l K W Q V θθθφθθθ---+?= ++ 2 21w w h V γ= 式中:V ——裂隙水压力(kN/m),; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数七 级烈度地区 e ξ取0.075; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通 段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m3)。 3 危岩稳定性计算结果 根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。 (1)计算参数: 崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表: 表3-2 岩体物理力学参数表 岩石 名称 密度 g/cm3 抗压强度σ MPa 抗剪强度 抗拉强度 (KPa) 软化 系数 C(MPa) ф(°) 灰岩 2. 70 32 0.110~0.271 30.3~40.2 698.5 0.53 结构面 灰岩结构面 0.03-0.10 23-29

恒智天成安全计算软件土坡稳定性计算

土坡稳定性计算计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:50; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000 基坑内侧水位到坑顶的距离(m):6.000

二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式: 式子中: F s --土坡稳定安全系数; c --土层的粘聚力; l i--第i条土条的圆弧长度; γ --土层的计算重度; θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角; b i --第i条土的宽度; h i --第i条土的平均高度; h1i――第i条土水位以上的高度; h2i――第i条土水位以下的高度; γ' ――第i条土的平均重度的浮重度; q――第i条土条土上的均布荷载; 四、计算安全系数: 将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs: 第1步:安全系数=1.417,标高=-2.000,圆心X=0.962米,圆心Y=1.344米,半径R=3.344米示意图如下:

抵母河特大桥溶蚀_卸荷裂隙岸坡稳定性分析

抵母河特大桥溶蚀_卸荷裂隙岸坡稳定性分析 摘要:裂隙岩体是岩体工程最普遍的施工对象之一。由于工程施工的扰动,岩体原有的平衡状态被打破,由此引起岩体内的应力重分布,促使岩体中内在裂纹(裂隙)不断累积和发展,进而产生宏观的时效断裂,导致岩体发生破坏失稳。以毕都高速抵母河特大桥都格岸错落体为研究对象,研究错落体稳定性和合理的溶蚀却荷裂隙结构面参数问题,反分析获取溶蚀却荷裂隙的结构面参数进一步分析桥区工程岸坡稳定性提供重要依据,具有可靠性和参考指导价值。 关键词:抵母河;特大桥;溶蚀却荷裂隙

UDEC是目前较为成熟的离散程序,它具有灵活性、多变性,使得真正掌握变得很有难度,实际上是UDEC内部的函数和数据结构,真正有意义的是这些函数包含的参数的确定,比如等效弹模、等效剪切模量、节理刚度等。 岩土土程的数值分析是将复杂的地质土程体用某种理论理想化的,均匀化后,采用复杂的本构模型分析在给定边界条件下的力学响应的分析方法。它是将岩土土程的地质背景地质历史当作黑匣子,通过大量的训一算与现场试验相结合,最终将黑匣子变为透明。当岩土土程的透明度高起来的时一候,问题的解决和现象的解释将不再困难,用什么数值分析软件不再是决定性因素。因此,数值模拟仅仅是说明问题、解释现象的一个辅助方法和间接手段,决定说明和解释的合理性的还是基础理论以及对土程特征的正确把握、认识和现场经验,也就是说获取符合土程实际的岩土参数是最核心和最关键的环节。 2研究工程介绍 2. 1实例土程背景 如图1所示,抵母河特大桥岸坡位置位十深切峡谷山区,无活动性断层、崩塌、滑坡、采空区等不良地质体,仅局部有一些大型溶蚀卸荷节理、危岩及堆积体等,自然土况下稳定,当两岸岸坡在桥梁荷载土作条件下,岸坡平衡状态将重新调整,出现附加荷载引起的变形,节理错动乃至破坏。为了判明岸坡在桥梁荷载(轴力、弯矩和剪力)的长期土作条件下(桥梁设计100年)是否稳定,须对错落体的演变过程进行分析,对溶蚀卸荷裂隙结构面的参数研究有利十进一步研究整体岸坡稳定性有重要意义。 图1 抵母河峡谷538m跨径悬索桥工程地质纵断面图

第一性原理计算判断材料稳定性的几种方法

第一性原理计算判断材料稳定性的几种方法 当我们通过一些方法,如:人工设计、机器学习和结构搜索等,设计出一种新材料的时候,首先需要做的一件事情就是去判断这个材料是否稳定。如果这个材料不稳定,那么后续的性能分析就犹如空中楼阁。因此,判断材料是否稳定是材料设计领域中非常关键的一个环节。接下来,我们介绍几种通过第一性原理计算判断材料是否稳定的方法。 1.结合能 结合能是指原子由自由状态形成化合物所释放的能量,一般默认算出来能量越低越稳定。对于简单的二元化合物A m B n(A,B为该化合物中包含的两种元素,m,n为相应原子在化学式中的数目),其结合能可表示为: 其中E(A m B n)为化学式A m B n的能量,E(A)和E(B)分别为自由原子A和B的能量,E b越低,越稳定。 2.形成能 形成能是指由相应单质合成化合物所释放的能量。同样,对于二元化合物A m B n,其形成能可表示为: 其中E(A)和E(B)分别为对应单质A和B归一化后的能量。 用能量判断某一材料稳定性的时候,选择形成能可能更符合实际。因为实验合成某一材料的时候,我们一般使用其组成单质进行合成。如果想进一步判断该材料是处于稳态还是亚稳态,那

么需要用凸包图(convex hull)进行。如图1所示,计算已知稳态A x B y的形成能,构成凸包图(红色虚线),其横轴为B在化学式中所占比例,纵轴为形成能。通过比较考察化合物与红色虚线的相对位置,如果在红色虚线上方则其可能分解(如:图1 插图中的D,将分解为A和B)或处于亚稳态(D的声子谱没有虚频);如果在红色虚线下方(如:图1 插图中的C),则该化合物稳定。 图 1:凸包图用于判断亚稳态和稳态[[1]] 3.声子谱 声子谱是表示组成材料原子的集体振动模式。如果材料的原胞包含n个原子,那么声子谱总共有3n支,其中有3条声学支,3n-3条光学支。声学支表示原胞的整体振动,光学支表示原胞内原子间的相对振动。 计算出的声子谱有虚频,往往表示该材料不稳定。因为

岸坡稳定性观测方案

镇江龙门港区船港物流码头工程 岸坡稳定性测量法案 一、工程概论: 镇江龙门港区船港物流码头工程工程位于镇江龙门港区高度坐落在长江南岸岸边长江流向由西向东,近岸边坡角较陡,边坡由防护桩保护,后方有较高土堆及防洪提。 新建码头结构采用高桩梁板式结构,设计采用桩基础。引桥采用?1000mm钻孔灌注桩,共计( )根,灌注桩外设钢护筒,码头采用?1000mm钢管桩嵌岩,共计()根,墩台直径?1200mm,设计钢管桩长度26m~39m不等。 二、观测的目的及观测点的布置原则: 根据设计桩基施工前应进行削坡坡度为1:4,现场已进行了削坡处理在沉桩过程中视岸坡的具体稳定性状况采取必要的岸坡处理方案,因而钢管桩沉桩过程中,岸坡的稳定性观测是事关码头整体和工程施工安全的重要保证。对岸坡进行安全监测,可以及时掌握场地变形情况,发现问题采取措施,保证沉桩从施工开始到结束期间均安全有效。 观测依据以下原则布设: (1):参照设计图纸 (2):岸坡地形、地势突变区域 (3):已有开裂滑移现象的区域 (4):岸坡土质条件较差的区域

根据以上原则并结合本工程的特点,共在临水面岸坡布置5个稳定性观测点,具体点位详见稳定性观测点平面布置图。 三、观测执行规范: 1:《水运测量规范》(TJ301-2012) 四、基准点的布设及观测方法: 四-1:陆上施工范围的岸坡上基准点布设过程为: 选点→安设?10或?20钢筋头砼柱(钢筋头上深刻十字线)→基准点培护密实 基准点设置如下图所示: 基准点布设要求: 1:岸坡沉降位移观测点设置尊照稳定性观测原则。 2:沉降位移观测点应分布设置不要集中 3:钢筋棍外露长度应高于地面,且在周围设立标牌保护严禁扰动 4:砼柱尺寸为10c m×10cm×100cm,30cm×30cm×100cm先将砼柱埋入钢筋,埋入长度为20cm,并用粘结材料填充 四-2 沉降位移观测的方法: 1.位移观测是:将棱镜对准在外露钢筋头的十字中心处,全站仪架设在码头测量点上,后视另一控制点,通过每次测出的基准点坐标进行比较是否变化。 2、采用相同的观测路线和方法(观测)

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0)(n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 11n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1(0a a In I += 3. 方案二 用递推公式 )1(11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()() 11111+<<++n a I n a n 当1n a +≥n 或 ()()n 1111≤<++n I n a 当1 n n a 0+<≤ 取递推初值为 ()()()()11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥N N 或 ()()]1111[21N N a I N +++= 当1a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %--------------------------------------------

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑内侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度(m) 坑壁土的重 度γ(kN/m3) 坑壁土的内 摩擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。 三、计算公式:

什川黄河大桥岸坡稳定性评价

什川黄河大桥岸坡稳定性评价 发表时间:2019-12-30T14:44:38.063Z 来源:《城镇建设》2019年第23期作者:邓万龙尚国强[导读] 什川黄河大桥是G30连霍高速公路清水驿至忠和段扩容改造工程的控制性工程摘要:什川黄河大桥是G30连霍高速公路清水驿至忠和段扩容改造工程的控制性工程。选择合适的桥梁墩台位置,评价岸坡稳定性,是评价桥梁建设场地适宜性和稳定性的重要工作。根据工程地质勘察成果,采用赤平极射投影法和岩体质量法对桥梁岸坡进行了稳定性评价,为工程设计提出了工程地质建议,取得了较好的应用效果。 关键词:桥梁岸坡;稳定性评价;赤平极射投影;岩体质量法 中图分类号:U 442.2 文献标识码:A 1前言 拟建G30连霍高速公路清水驿至忠和段扩容改造工程什川黄河大桥自西向东跨越黄河,为本项目控制性工程。评价岸坡稳定性,选择合适的桥梁墩台位置,直接关系到桥梁工程安全。桥梁岸坡稳定性评价首先应进行详细的工程地质调绘、勘察,查明工程地质条件和水文地质条件,在此基础上采用“定性为基础,定量为手段”的原则进行岸坡稳定性分析评价,并提出工程建设意见和建议。2桥址区地质概况 桥址区未见区域性断裂。桥址区属构造剥蚀中山-黄河河谷区。桥梁跨越处地面标高1500~1560m,黄河水面标高1498.87m(2019年4月)。河床两侧为岩质岸坡,高约35m,坡度40~45°。清水驿侧岸坡顶部平台宽约30m,向上过渡为黄土斜坡,坡度约20°。忠和侧岸坡顶部平台宽约60m,坡度15°,向上过渡为岩质斜坡,坡度47°左右。 根据工程地质调绘及钻探揭露,桥址区地层主要为第四系全新统崩坡积角砾,上更新统风积黄土,下伏基岩为加里东期花岗岩,花岗岩呈暗红色,显晶质粒状结构,块状构造,主要矿物成分为石英,长石,含少量角闪石,辉石,白云母,节理裂隙发育,局部裂隙被石英充填。桥址区地下水不发育。 3桥梁岸坡稳定性评价 3.1定性评价 0#台岸坡自然坡度24°,表部覆盖薄层崩坡积堆积体,基岩出露,岩体较完整,岸坡稳定性好。 1#墩位于黄河东岸河谷岸坡顶部,自然坡度40~46°,高40m,基岩出露,未发现崩塌、滑坡。钻探揭露花岗岩强风化层厚20m左右,节理裂隙发育,较破碎,但临水侧岸坡露头显示,花岗岩中基本无贯通性构造节理裂隙发育,推测钻探揭露的节理裂隙主要为风化裂隙。花岗岩中风化层岩体较完整。岸坡稳定性较好。 2#墩位于黄河西岸河谷岸坡顶部,自然坡度40~50°,高34m,基岩裸露。岩体节理裂隙较发育,节理裂隙发育情况详见表1。如图1、图2所示区域,岸坡坡口至K33+350段为节理裂隙较发育区域。岸坡稳定性较差。 3#台位于黄河西岸基岩山坡坡麓地带,自然坡度46°,花岗岩岩体完整,岸坡稳定。

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

危岩稳定性计算(2020年整理).pdf

4.2危岩体稳定性计算及评价 4.2.1计算模型 目前,按照不同的标准,危岩分类系统多样,但是,从工程防治的角度按照危岩失稳类型进行分类更有价值,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。计算公式参考重庆市地方标准《地质灾害防治工程勘察规范》(DB50/143-XXXX)中(30)~(50)计算公式。 勘查区内主要为滑移式危岩、倾倒式危岩;当软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图4.2-1);当软弱夹层形成岩腔后,上覆盖体重心发生外移,在动水压力和自重作用下,上覆盖体失去支撑,拉裂破坏向下倾倒,形成倾倒式危岩(图4.2-2)。 图4.2-1 滑移式危岩示意图图4.2-2 倾倒式危岩示意图 1、滑移式危岩体计算 (1)计算模型 图4.2-3 滑移式危岩稳定性计算示意图(后缘无陡倾裂隙)

图4.2-4 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) (2) 计算公式 ① 后缘无陡倾裂隙(滑面较缓)时按下式计算 (cos sin )sin cos W Q U tg cl K W Q θθ?θθ ??+= + (4.2.1) 式中:V ——裂隙水压力(kN/m),2 2 1w w h V γ=; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数e ξ取 0.05; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未 贯通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m 3)。 ② 后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算: (cos sin sin )sin cos cos W Q V U tg c l K W Q V θθθφθθθ ???+?= ++ (4.2.2)

土坡稳定性计算计算书

土坡稳定性计算计算书 品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。 本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 条分块数:14; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):2.000; 基坑内侧水位到坑顶的距离(m):6.000; 放坡参数:

序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 1 2.00 3.00 1.00 0.00 2 3.00 4.00 1.00 0.00 荷载参数: 序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m) 1 满布 10.00 0.00 0.00 土层参数: 序号土名称土厚度(m) 坑壁土的重度γ(kN/m3) 坑壁土的内摩擦角φ(°) 内聚力C(kPa) 饱容重(kN/m3) 1 填土 7.00 18.00 20.00 10.00 22.00 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

【精编范文】中国斜拉桥的最长排名-word范文 (4页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 中国斜拉桥的最长排名 中国拥有斜拉桥65座,那么大家知道中国中国斜拉桥最长排名吗?下面让 小编给大家揭晓中国斜拉桥的最长排名吧。 中国斜拉桥最长排名:湖北四渡河特大桥 560米 中国斜拉桥前十最长排名 10.贵州六广河大桥 305米 是贵阳-毕节汽车专用二级公路上横跨六广河峡谷的一座特大型桥梁。主桥为中跨240m边跨145.1m的预应力混凝土连续刚构,其中2号桥墩高90m。引 桥为20m无粘结预应力空心简支板,全长为564.2m。No.9贵州马岭河大桥323 米 9.贵州马岭河大桥 323米 马岭河大桥,位于板江高速公路,横跨国家4A级风景区——马岭河大峡谷,于201X年8月28日合龙。大桥全长1386米,最高塔高196米,为预应力混凝土双塔双索面斜拉桥。 8.六冲河特大桥 336米 六冲河特大桥是黔织高速重要的控制性工程。大桥全长一千五百零八米,总投资三点四六亿元,201X完工。六冲河特大桥是一座位于中国贵州省织金县 的斜拉桥,跨越六冲河峡谷,于201X年开通时以其336米的高度位列世界最高十座桥梁之一。 7.贵州镇胜高速公路北盘江大桥 大桥于201X年10月26日开工建设,总投资约4.7亿元,201X年7月完工。北盘江大桥位于贵州省关岭县与晴隆县交界的北盘江大峡谷,主桥为单跨636米的简支钢桁梁悬索桥,全桥长964米,桥面宽28米,桥面至水面的高度 为320米,项目总投资为4.3亿元。北盘江大桥是我国目前已建成跨度最大的钢桁梁悬索桥。 6.湖南矮寨大桥 350米

相关文档
最新文档