T梁预应力张拉控制

T梁预应力张拉控制
T梁预应力张拉控制

T梁预应力张拉控制

摘要:预应力结构广泛应用于铁路、公路、桥梁、房建等领域,根据各个专业的差异性,都有比较完善的技术规范和工艺。但是由于铁路提速梁施工中的预应力施工相关规范不全,现场施工时各个施工单位计算依据也不尽相同,经常有超限情况。本文就现场实际对铁路T梁预应力张拉控制进行专项研究,提出符合实际的计算和复核方法。

关键词:T梁预制张拉应力控制

前言

考虑预应力广泛的应用于桥梁建筑等各种构件中,并且随着市场的拓展将有更为广阔的前景,但因施工技术不到位、控制不严密或检测手段落后等多种因素综合影响,使得预应力的使用反而受到限制。

预应力张拉是T梁预制工序中的特殊工序,又是关键工序,它的施工优劣直接决定T梁的整体施工质量。根据调查研究,国内同类桥梁预应力张拉主要存在三大通病:超张、欠张、同步率不良。因此,针对以上通病,通过洛张电化洛阳枢纽三座特大桥预制T梁预应力结构工程实践,进行了实际的记录和归纳,为能在预应力设计、施工和检测方面取得更好的效果提供实践依据。。

二、工程概况

预制梁,结构类型为:有碴轨道后张法预应力混凝土T型梁,混凝土强度等级为C55,单线由两片梁组成、双线由4片梁组成,施工图号为32米:通桥(2005)2101-Ⅰ;预应力管道采用采用抽拔橡胶管成孔,纵向预应力筋采用公称直径15.2mm的钢绞线,用自锚式拉丝体系锚固,采用夹片式锚具,预施应力按初张拉和终张拉两个阶段进行。横向预应力筋采用钢绞线,单线梁采用低回缩锚具锚固,双线梁采用普通夹片式锚具。预应力管道采用抽拔管成孔。

三、技术的先进性和技术难点

3.1技术的先进性

目前国内的同类施工很多,但由于施工水平、人员素质、机械设备的差异,并没有比较完善和成熟的预应力张拉控制工艺。而相关施工规范对与这道关键工序的说明也不是很详细,只有“超(欠)张不得大于5%”、“理论伸长量与实际伸长量之差不得大于6%”和“同步率不得大于10%”三项,而没有对应的施工规范。

课题目标是总结归纳详细可行的施工工艺。

3.2技术难点

连续梁竖向预应力施工技术交底

编号:LZ04技术交底-连续梁-011 新建连云港至镇江铁路站前工程 LZZQ-4标桥梁工程 竖向预应力施工三级技术交底 单位:中铁十九局集团连镇铁路工程项目经理部3分部编制时间:2016年6月21日交底时间:2016年6月25日

技术交底记录 编号:LZ04技术交底-连续梁-007 工程名称新建连云港至镇江铁路站前 工程LZZQ-4标段 交底班组桥涵27工班 交底项目跨宝应匝道(48+80+80+48) m连续梁 工序名称竖向预应力施工 交底提要: 1、交底范围 2、技术要求 3、材料要求 4、施工流程及施工程序 5、施工内容 6、质量保证措施 7、安全保证措施 交底内容: 1、交底范围 本交底适用于新建连云港至镇江铁路LZZQ-4标宝应特大桥跨宝应匝道1-(48+80+80+48)m连续梁竖向预应力施工。 2、技术要求 1、《高速铁路桥涵工程施工技术规范》 Q∕CR 9603-2015 2、《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 3、《铁路桥涵钢筋混凝土和预应力混凝土结构设计规范》(TB10002.3-2005) 4、有砟轨道预应力混凝土连续梁(双线)通用参考图跨度:(48+80+80+48)m连续梁(连镇施(桥)参I-05) 5、宝应特大桥施工图 6、作业指导书、类似工程施工经验 3、材料要求 竖向预应力筋采用D25精轧螺纹钢,抗拉标准强度为830MPa,锚下张拉控制应力为675MPa。每延米的伸长量约为0.338cm。 管道压浆所用水泥抗压强度大于55MPa、抗折强度大于10MPa;封锚采用强度环氧树脂水泥砂浆; 竖向预应力管道采用Φ内50mm波纹管,锚具采用D L25型轧丝锚(含锚垫板、螺母全套)。 张拉体系采用YC60A型千斤顶,预应力采用二次张拉工艺。锚固时锚具回缩量不得大于 1mm,确保预应力筋的永存应力满足设计要求。

预应力张拉施工质量控制要点

预应力张拉施工质量控制要点 一、主要准备工作 1、专业队及管理人员配备,职责分工,技术方案的编制、报批、交底,张拉计算、复核、报审后交底,记录表选定、复制、交底。 2、材料设备采购计划。 3、进场材料检验试验:钢绞线、锚座、钢板、夹具(片)、工作锚、螺旋钢筋、灌浆料。 4、油压表、千斤顶(含单顶)检验与率定,灌浆用的压力表检验。 5、各种型号的工具锚、松张器、(30cm钢板尺)电源系统准备、灌浆管接头与阀门、灌浆称量器具其他常用工具。设备检修,试运转。 二、施工阶段的相关质量要求 1、清点数量:钢绞线束数、根数、丝数。 2、钢绞线(波纹管)位置:平面位置、长度、弯起(下)及角度。 3、管道破损检查、排气管设置及管口封口(严密)。 4、张拉锚座:型号、位置(含平立面角度)、灌浆口方向(上/下)。锚座紧贴模板且密封 5、固定端:钢板固定、P型锚紧贴。

6、螺旋筋:张拉端紧贴模板;固定端跨管道锁口布置。(相对管道轴线)居中设置并固定。 7、张拉槽口钢筋、普通钢筋处理,防止任意切割,张拉后尽量恢复原样。 8、钢绞线下料时检查外观,切割使用砂轮,严禁电焊、过流,以及防止焊渣飞溅。 9、超长(一般>35m)采用单根预紧张拉10%后改为钢束群张,保持钢束内每根钢绞线受力基本均匀。单根预张记录表单独使用,只是过程记录。 10、推荐使用智能张拉与自动灌浆,提高工艺控制水平和作业工效。 11、普通张拉:分级张拉并观察、记录、计算伸长量,与标准(应力、伸长值)比较确认。 张拉加压和回油过程,要均匀加(减)速,在高压前后更应平稳操作。对张拉后的钢绞线、工作锚端要加强保护,防止踩踏、撞击,严禁被加热。 12、检查锚固情况(有无断丝、滑丝现象),确认后用砂轮切割钢绞线。 13、灌浆:使用双槽搅拌设备,先水后风清洗管道,再灌浆。达到浓浆稳压20分钟卸阀。 控制灌浆压力和估算进浆数量,确保灌浆质量。 三、张拉记录中注意事项

预应力张拉计算书(范本)

专新建南宁至广州铁路站前工程 NGZQ-7标段 *****桥梁预应力 钢绞线张拉控制计算书 编制: 复核: 审核: 中铁二十三局集团有限公司 南广铁路NGZQ-7项目部 二零一零年五月

预应力钢绞线张拉控制计算书 第一章 工程概述 本合同段预应力钢绞线采用国标φs 15.24(GB/T5224-2003),标准强度a 1860MP R b y , 低松驰。跨径30mT 梁和25m 箱梁均采用Φ s 15.24mm 钢绞线。 设计文件说明预应力筋张拉采用千斤顶油压标示张拉力和伸长 值双控施工。预应力钢绞线的张拉在预梁 预应力损失参数: 纵向预应力钢绞线波纹管摩阻系数u=0.26,孔道偏差系数K=0.003,钢束松弛预应力损失根据张拉预应力为1302MPa 取为△=0.025,锚具变形与钢束回缩值(一端)为6mm ;横向预应力钢绞线波纹管摩阻系数u=0.26,孔道偏差系数K=0.003,钢束松弛预应力损失为△=0.025,锚具变形与钢束回缩值(一端)为6mm ;竖向预应力钢绞线波纹管摩阻系数u=0.35,孔道偏差系数K=0.003,钢束松弛预应力损失为△=0.05,锚具变形与钢束回缩值(一端)为1mm 。 梁体预应力材料: 纵横向预应力束:公称直径为Φ=15.24(7Φ5),抗拉标准强度f=1860MPa 的高强度低松弛钢绞线。 柔性吊杆:27根Φ15.2环氧喷涂钢绞线组成,fpk=1860MPa 。 竖向预应力采用Φ25高强精扎螺纹粗钢筋。 锚具:纵向预应力采用OVM15-9型锚具锚固,横向预应力束采用OVMBM15-3(BM15-3P )、OVMBM15-4(BM15-4P )型锚具,竖向预应力采用JLM-25型锚具锚固;吊杆采用GJ15-27型锚具。 第二章 设计伸长量复核

预应力锚索张拉伸长量的控制方法

25m预应力锚索张拉伸长量的控制 (中铁十一局集团第四工程有限公司刘继伟) 关键词:预应力伸长量 摘要:预应力锚索框架支护,是一种新型的抗滑结构。它将高边坡病害防治与坡面柔性防护有机地结合在一起,既达到防治高边坡病害的目的,又可美化环境,实现了工程和自然的和谐统一。预应力锚索框架梁支护的核心环节就是预应力张拉,高边坡锚索张拉施工时,采用张拉应力和伸长量值双控,他是决定锚索是否能起到巩固边坡稳定的核心任务,因此,探讨预应力锚索张拉伸长量与实际伸长量偏差的施工控制,对于高边坡锚索框架梁的施工有着积极的现实意义。本文结合实际施工过程,通过对浦南高速公路A7标段YK80+038.6-YK80+142.1段右侧高边坡锚索框架防护25m锚索试验孔张拉伸长量计算为例,总结出用于现场锚索张拉施工控制方法,以便同行互励共勉。 1、工程简介 浦南高速公路A7标段YK80+038.6-YK80+142.1段右侧高边坡最大开挖高度48米,每级高度为8米。第一级边坡坡率为1:0.5,第二至第六级边坡坡率为1:0.75。第一、第二级设预应力锚杆加固,第三至第五级设预应力锚索加固,锚索每孔张拉力为520KN,每孔分三个单元,每单元两根锚索,一单元锚固长度4米,自由段21米,二单元锚固长度8米,自由段17米,三单元锚固长度12米,自由段13米。锚索锚头结构见下图。 2 2.1进场的无黏结预应力钢绞线已经检验,并且符合设计要求,其弹性模量为

202GPa,直径为15.24mm。 2.2试验前已经将两套千斤顶和油压表进行配套标定。 3、理论计算 3.1受力计算 单根钢绞线受力为520÷6=86.667KN,为了使每一根钢绞线受力均衡,考虑到每个单元的自由段长度不同,为了消除其影响,每个单元必须单独张拉,其张拉力由自由段差值与其总长度决定, 公式为: F1(1)=(L1÷L)×F=4÷21×173.333=33.016KN 其中: F1(1)为第一单元第一次张拉力; F为每单元总张拉力;F=86.667KN×2=173.333KN 当第二次张拉时,第一、第二单元同时张拉,其张拉力的分布情况如下: F2=F1(1)+F1(2)+F2(1)=33.016+33.016+40.784=106.816KN 其中:(F1(2)+F2(1))的分布系数为: (F1(2)+F2(1))=(4÷21+4÷17)×F=33.016+40.784=73.8KN 可知,第二次张拉结束时一单元受力为33.016+33.016=66.032KN,二单元受力为40.784KN。 在第一、第二次张拉调整好自由段引起的不同伸长量后,还没有达到设计张拉力的25%时,则应按设计的25%、50%、75%、100%、110%、150%分级张拉,其张拉力为别为130KN, 260KN, 390KN, 520KN , 572KN, 780KN。 当第三次张拉时,第一、第二、第三单元同时张拉,其张拉力的分布情况如下:F3=F1(3)+F2(2)+F3(1)+F2 设(F1(3)+F2(2)+F3(1))的总分布系数为1,则(1/21+1/17+1/13)X=1 F1(3)的系数为(1/21)X=0.259694476,F2(2)的系数为(1/17)X=0.320799058 F3(1)的系数为(1/13)X=0.419506461 当F3=130KN时; F1(3)= 0.259694476×(130-106.816)=6.021KN F2(2) =0.320799058×(130-106.816)=7.437KN F3(1) =0.419506461×(130-106.816)=9.726KN 此时,一单元受力为72.053KN, 二单元受力为48.221KN三单元受力为9.726KN。同理:

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

简述预应力张拉(监理控制要点)

预应力张拉监理控制要点 一.工程概况 二.预应力张拉(后张法)质量控制标准 2.1 预应力筋张拉后实际建立的预应力与设计规定值偏差的的百分率应符合下列规定: 1. 机械张拉:不超过-5%~+10%。 2. 预应力张拉实际伸长值与计算值偏差应在-5%~+10% 2.2 锚固时张拉端锚具变形和预应力筋的内缩量的允许偏差: 1. 钢丝束镦头锚具: 1mm。 2. JM锚具:夹钢筋: 3mm; 夹钢绞线: 5mm。 3. QM、OVM锚: 5mm。 2.3 预应力混凝土结构的允许偏差: 1. 截面尺寸: 宽、高: 5mm。 2. 侧向弯曲: 构件长度的1/1000,且不大于20mm。 3. 预应力筋预留孔道偏移: 5mm。 4. 锚固端铁板应与预应力筋垂直。 三. 预应力混凝土构件(后张法)质量控制程序(见图-3.3) 四. 预应力张拉质量控制方法(见表-3.4) 五. 预应力张拉质量控制要点 5.1 施工准备阶段的质量控制 1. 审查分包队伍资质。 2. 审查承包单位填报的预应力砼构件施工方案;重点应审查以下内容: (1) 张拉方案有二种,即:"逐层浇筑,逐层张拉"和"数层浇筑,顺序张拉",并根据张拉方案确定支撑设置层数。

图-3.3 预应力混凝土构件(后张法)质量控制程序

(2) 砼浇筑顺序。 (3) 理论伸长值的计算。 (4) 确保质量的措施,例如:防止管道偏位、锚板与预应力孔道不垂直、管道堵塞、砼裂缝、灌浆不密实的措施等。 (5) 预应筋张拉顺序。 3. 核验进场材料 (1) 预应力筋、锚具、波纹管出厂合格证及质量证明资料,新型锚具应有产品鉴定证书。

30米箱梁张拉计算

天大二标25米预制箱梁预应力计算书 一、工程概况 我单位承建天大高速公路第二合同段,起点里程K8+660,终点里程K13+000,线路全长4.340km。我标段主要工程为大桥3座,中桥1座,天桥2座,拱型小桥4座,拱涵2个,盖板涵2个,圆管涵1个,箱型通道2个。共有桩基132根,墩台柱88个,系梁54个,盖梁36个,预制箱梁175片,路基挖方216.014万方,路基填方89.651万方,小型构造物779.043m。 我标段共有25m预制箱梁148片,其中边跨边梁28片,边跨中梁28片,中跨边梁46片,中跨中梁46片。 二、编制依据 1、《公路桥涵施工技术规范》JTJ 041-2000 2、《两阶段施工图设计》山西省交通规划勘察设计院 2009年10月 3、委托试验检测报告 三、预应力张拉 依据图纸要求:混凝土达到设计强度的85%后张拉正弯矩区钢束,压注水泥浆并及时清理箱梁底板通气孔,在主梁正弯矩索张拉完毕,孔道压浆强度达40MPa以上才允许移梁或吊装,吊装过程中要保持主梁轴线垂直,防止倾斜,注意横向稳定。 张拉正弯矩钢束时,若主梁连接端的预留钢筋影响张拉操作,可先将其折弯,待张拉完毕后再将其恢复,张拉时采用两端张拉,且应在横桥向对称均匀张拉,顶板负弯矩钢束也可采用两端张拉,并采用逐根对称张拉。 箱梁腹板张拉时钢束均采用两端对称均匀张拉,在张拉过程中应保证两端同步张拉,左右腹板钢束对称均匀张拉,张拉顺序为: N1→N3→N2→N4。 四、实际伸长量的量取 最终伸长量的计算:由15%至30%的伸长量(L2-L1)加上由30%至100%的伸长量(L3-L1),即:△L=(L2-L1)+(L3-L1)。 注意:在量取伸长值的过程中,前后应以同一个位置为基点进行量取,并且使用钢板尺进行量测。

预制箱梁预应力计算书

宜河高速公路第四合同段预应力张拉计算书 计算: 监理: 日期: 中铁二十五局集团柳州铁路工程有限公司 宜河四标项目经理部 二O一二年二月

一.工程概况 K37+655天桥桥长为85米,分为5跨16米预应力箱梁,共计15片预应力混凝土预制箱梁。其中边跨边梁为4片,边跨中梁为2片,中跨边梁为6片,中跨中梁为3片。 二.预应力张拉 箱梁预应力钢绞线采用符合GB/T5224-2003标准的高强度低松弛钢绞线,公称直径Φs=15.24mm,公称截面面积Ap=140mm2,其标准抗拉强度为f pk=1860Mpa。 本设计参考OVM锚固体系设计,预应力张拉采用张拉力与引伸量双控,张拉控制应力δcon=0.75×f pk=0.75×1860=1395Mpa,预应力弹性模量(N/mm2)Ep=1.95×105Mpa。 三.箱梁张拉计算 计算依据:根据《公路桥涵通用图》及《公路桥涵施工技术规范》(JTJ041-2000)进行验算。 1.钢绞线理论伸长值计算 N1、N2钢束的计算: 根据《公路桥涵施工技术规范》P129页伸长值计算公式为: △L=P p×L/(A P×E p) 式中:P p为预应力的平均张拉力(N);L为预应力筋的实际长度(mm); A P为预应力筋的截面积(mm2);取140 .00mm2;E p为预应力筋的弹性模量(N/ mm2)取1.95×105N/ mm2。

其中P p=P(1-e-(kx+μθ))/ kx+μθ 式中:P为预应力筋张拉端的张拉力(N);x从张拉段至计算截面的孔道长度(m);θ从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad);k孔道每米局部偏差对摩擦的影响系数;根据《公路桥涵施工技术规范》P339页k取0.0015;μ预应力筋与孔道壁的摩擦系数,取0.25。 2.伸长量计算(详见下表) 张拉方式为两端对称张拉。按照《公路桥涵施工技术规范》P134后张法张拉程序如下:0→10%初应力→20%初应力→100%δcon(锚固)。

预应力箱梁张拉质量控制措施标准范本

解决方案编号:LX-FS-A60064 预应力箱梁张拉质量控制措施标准 范本 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

预应力箱梁张拉质量控制措施标准 范本 使用说明:本解决方案资料适用于日常工作环境中对未来要做的重要工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、材料及成品质量控制: 1、预应力钢绞线采用符合GB/T5223-95标准,公称直径为15.2mm,强度为1860Mp的二级低松弛钢绞线。 2、预应力锚具应符合'预应力锚具、夹片、和连接器'(GB/T14370-2000)的要求。 二、张拉质量控制: 1、我施工单位拟用4台120t千斤顶及相关配套的油压泵,并经标定后投入使用,在张拉作业中千斤顶与油泵、油压表一一对应使用。

箱梁预应力张拉计算书25、30米(读书油表)

箱梁预应力拉计算书 武(陟)西(峡)高速公路桃花峪黄河大桥工程,是市西南绕城高速公路向北延伸与(州)焦(作)晋(城)高速公路相接的南北大通道。第3标段长度:1250.43m(K28+917.57~K30+168)。桥梁长度:7联35孔1244.7m(跨堤桥1联3孔,引桥6联32孔)。 引桥全长955.43m,6联32孔预制安装(先简支后连续)的预应力连续小箱梁结构。第1联6孔,左幅(25+30+35+35+25+25)m、右幅(25+25+25+35+35+30)m;第2联6孔均为30m;第3、4、5、6联,均为5孔30m。每孔左右幅共12榀小箱梁。 一、拉计算所用常量: 预应力钢材弹性模量Eg=1.95×105Mpa=1.95×105N/mm2 预应力单数钢材截面面积Ag=139mm2 预应力钢材标准强度f pk=1860Mpa 孔道每米局部偏差对摩擦的影响系数k=0.0015 预应力钢材与孔道壁的摩擦系数μ=0.17 设计图纸要求:锚下拉控制应力σ 1 =0.75 f pk =1395MPa 二、计算所用公式: 1、P的计算: P=σ k ×Ag×n× 1000 1 ×b (KN) (1) 式中:σ k ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ 预应力钢材的拉控制应力(Mpa); Ag ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力单束钢筋截面面积(mm2); n  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄同时拉预应力筋的根数(mm2);

b  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄超拉系数,不超拉取1.0。 2、p 的计算: p = μθ μθ+-+-kl e p kl (1( (KN ) (2) 其中:P  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢筋拉端的拉力(N ); l  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄从拉端至计算截面的孔道长(m ); θ  ̄ ̄ ̄ ̄ ̄ ̄ 从拉端至计算截面曲线孔道部分切线的夹角之和(Rad ); k  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄孔道每米局部偏差对摩擦的影响系数; μ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材与孔道壁的摩擦系数。 3、预应力钢材拉时理论伸长值的计算: ΔL= Eg Ay L p ?? (3) 其中:p  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材的平均拉力(N ); L  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材长度(cm ); Ay  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材截面面积(mm 2); Eg  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄预应力钢材弹性模量(N/mm 2)。 三、计算过程 1、P 的计算: 本标段采用φj 15.2钢绞线作为预应力钢材,依据通用图及施工图纸,刚束的组成形式一共有三种:φj 15.2-5、φj 15.2-4、φj 15.2-3。 实际拉力控制 控制拉力为在锚固点下的力,在确定千斤顶的拉力时,应考虑锚固口摩阻损失,此摩阻损失以1%计算,故拉时千斤顶实际拉力为:

连续梁张拉

连续梁张拉

技 术 交 底 记 录 2013年7 月18日 工程名称 双鸭山市卧虹桥改造 工程 部位(分部)工程名称 连续梁

工序(分项)工程名称钢绞线张拉 交底内容: 一、施工前准备 (1)、张拉设备:横梁、腹板预应力张拉采用YDC3000型液压千斤顶(2台)两端对称张拉,顶板预应力采用穿心式千斤顶单根张拉。张拉机具等准备:千斤顶、油表、油泵送到当地有相应资质的计量部门进行配套标定,在使用过程中配套使用,不得临时调换。并在使用过程中按规定的时间及次数进行复检标定。当出现故障时,立即检修并重新标定。 (2)、预应力材料的保护与安装:施工过程中应防止锈蚀和被油污染,出现污染必须采用洗衣粉等碱性水擦洗干净。 锚具安装前,进行外观检查,不得有裂纹、伤痕、锈蚀。锚板和夹片安装前必须清理锚垫板上杂物,保证锚垫板与锚板密贴结合。 (3)、人员准备:具有熟练操作技能的张拉工4名,熟练计算的记录员2名,2名普工量测伸长值。 交底单位工程部 接收 单位 交底人接收人

哈尔滨铁路 工程建设有限公司佳木斯分公司 技 术 交 底 记 录 2013年7 月18日 工程名称 双鸭山市卧虹桥改造 工程 部位(分部)工程名称 连续梁 工序(分项)工程名称 钢绞线张拉

哈尔滨铁路 工程建设有限公司佳木斯分公司 交底内容: (4)、其他机具配备:压浆机1台、搅拌机1台、对讲机2台、手动切割机2台、防护用品。 (5)、其他工作:检查压浆孔、排气孔是否通畅;再次活动预应力束,确保无堵塞。出现堵塞现象必须先处理。 二、张拉施工 砼强度达到设计要求后,由试验室出具书面的张拉强度通知单后,预应力达到设计强度85%后经主管工程师检查各项准备工作满足施工要求后方可进行。 (1)张拉顺序:根据设计文件, 先张拉横梁预应力钢束N2(上排),再张拉纵向腹板预应力钢束,再张拉横梁预应力钢束N1(下排),最后张拉纵向顶板预应力钢束。预应力钢束张拉宜以均匀原则进行。 (2) 预应力束张拉程序如下: ① 0→初应力(10%σcon )→控制应力σcon (0.75f pk )→持荷2分钟→锚固;控制张拉应力σcon=1395MPa,预应力束张拉 交底单位 工 程 部 接收单位 交底人 接收人

25m箱梁预应力张拉计算书

25m箱梁预应力张拉计算书 1、工程概况 杏树凹大桥左线桥中心桩号为ZK9+875,上部构造采用16×25m预制预应力混凝土小箱梁,先简支后连续。全桥分4联,桥长406m,,右线中心桩号为YK9+782.5,上部构造采用15×25m预制预应力混凝土小箱梁,先简支后连续。全桥分4联,桥长381m。本桥左线位于R-3600左偏圆曲线上,右线位于R-3400左偏圆曲线上。每跨横桥面由4片预制安装小箱梁构成。25m预制箱梁为单箱单室构造,箱梁高度为140厘米, 跨中断面腹板、底板厚度为18厘米,支点断面腹板、底板厚度为25厘米,顶板一般厚度为18厘米,箱梁底宽为100厘米,中梁翼缘顶宽为240厘米,边梁翼缘顶宽为284.5厘米。 本桥共有C50预应力混凝土箱梁124片。 各梁的预应力筋分布情况如下表所示: 预应力筋均为纵向,分布在底板、腹板及顶板,其中底板4束,腹板4束,顶板5束,对称于梁横断方向中线布置。预应力钢绞线采用抗拉强度标准值f pk=1860 MP、公称直径d=15.2mm的低松驰高强度,其力学性能符合《预应力混凝土用钢绞线》(GB/T5224-2003)的规定,公称截面积Ap=139mm2,

弹性模量Ep=1.95*105MPa,松驰系数:0.3。试验检测的钢绞线弹性模量Ep=1.95*105 MPa。 预应力管道采用金属波纹管,腹板及底板为圆孔,所配锚具为M15-3及M15-4,顶板为长圆孔,所配锚具为BM15-4及BM15-5。 2、后张法钢绞线理论伸长值计算公式及参数 后张法预应力钢绞线在张拉过程中,主要受到两方面的因素影响:一是管道弯曲影响引起的摩擦力,二是管道偏差影响引起的摩擦力。导致钢绞线张拉时,锚下控制应力沿着管壁向梁跨中逐渐减小,因而每一段的钢绞线的伸长值也是不相同的。 2.1、力学指标及计算参数 预应力筋力学性能指标及相关计算参数如下: ※弹性模量:Ep=1.91*105 MPa ※标准强度:f pk =1860MPa ※张拉控制应力:σcon=0.75f pk =1395MPa ※钢绞线松驰系数:0.3 ※孔道偏差系数:κ=0.0015 ※孔道摩阻系数:μ=0.15 ※锚具变形及钢束回缩每端按6mm计 2.2、理论伸长值的计算 根据《公路桥梁施工技术规范》(JTJ 041-2000),关于预应筋伸长值的计算按如下公式进行:

25m小箱梁后张法预应力张拉计算与应力控制

专项施工方案审批表承包单位:合同号:

工程 箱 梁 张 拉 伸 长 量 计 算 书 工程项目部 二0一五年十二月七日 工程25m箱梁

预应力张拉伸长量计算 1 工程概况 (1)跨径25m的预应力混凝土简支连续箱梁,梁体高度1.4m,宽度2.4m,采用C50混凝土, (2)钢绞线规格:采用高强低松驰钢绞线Φs15.2规格,标准抗拉强度fbk=1860Mpa,公称截面面积140mm2,弹性模量根据试验检测报告要求取Ep=1.93×105Mpa。钢束编号从上到下依次为N1、N2、N3、N4,其中: 中跨梁:N1为4Φs15.2,N2、N3、N4为3Φs15.2; 边跨梁:N1、N2、 N3为4Φs15.2, N4为3Φs15.2; (3) 根据施工设计图钢绞线张拉控制应力按75%控制,即σcon=1860×75%=1395Mpa,单股钢绞线张拉吨 位为:P=1395×140=195.3KN,3股钢绞线张拉吨位为:F=195.3×3=585.9KN,4股钢绞线张拉吨位为:F=195.3×4=781.2KN,采用两端张拉,夹片锚固。 (4) 箱梁砼强度达到90%以上且养护时间不少于7d时方可张拉,张拉顺序N1、N3、N2、N4钢束。 (5) 根据规范要求结合现场施工经验,为了有效控制张拉过程中出现异常情况,分级进行张拉:0~15% (测延伸量)~30%(测延伸量)~100%(测延伸量并核对)~(持荷2分钟,以消除夹片锚固回缩的预应力损失)~锚固(观测回缩)。 2 油压表读数计算 (1)根据千斤顶的技术性能参数,结合合肥工大共达工程检测试验有限公司检定证书检定结果所提供的线性方程,计算实际张拉时的压力表示值Pu: 千斤顶型号:YC150型编号:1 油压表编号:yw08007229 回归方程:Y=0.03377X+1.18 千斤顶型号:YC150型编号:2 油压表编号:yw05049806 回归方程:Y=0.03335X+0.51 千斤顶型号:YC150型编号:3 油压表编号:yw07023650 回归方程:Y=0.03358X+0.84 千斤顶型号:YC150型编号:4 油压表编号:yw05049788 回归方程:Y=0.03367X+0.01 (2) 钢束为3股钢绞线 张拉至10%控制应力时油压表读数计算: 1千斤顶,yw08007229油压表读数: Pu=0.03377X+1.18=0.03377×585.9*10%+1.18=3.2Mpa 2千斤顶,yw05049806油压表读数: Pu=0.03335X+0.51=0.03335×585.9*10%+0.51=2.5Mpa 3千斤顶,yw07023650油压表读数: Pu=0.03358X+0.84=0.03358×585.9*10%+0.84=2.8Mpa

张拉注意事项

黑魔鲤 级别: 副总版主 发帖

置不准确或不按照规范和设计规定的间距布设,必然造成钢束位置与设计不符、有的还会在曲线变化段产生急弯(半径太小)或孔道局部偏差过大。目前仍有小部分队伍使用人工进行穿束,尤其对多根钢绞线的长束重量很大,人工穿束费时费力,容易造成工人转动钢束穿进,使钢绞线互相缠绞在一起。沈阳市某快速干道(高架桥)工程四标段共有九联连续梁,施工时固定钢束用的井字架间距为1米,梁高1.6米,因此竖弯变化量不大,间距满足要求,但是施工时由于工人工作不认真使井子架坐标不准确,并且采用人工穿束,束长在100米到120米不等。张拉时发现大部分钢束的伸长值与理论伸长值不符(有的比理论值少11%),张拉过程中经常听到内部钢束缠绞在一起后被拉开的声音,当时立即对设备进行检定,在设备没有问题的情况下设计单位、监理单位和施工单位开始对问题进行分析,其中钢绞线计算伸长值时采用实测弹性模量,μ、κ取值按规范推荐值。设计单位对结构进行重新验算,最后确定在保证张拉力的情况下,伸长值误差保证在12%以内,无疑降低了结构安全系数。 沈大高速公路苏家屯互通立交D匝道为4孔一联的曲线连续梁,梁长2 20米,曲线半径55米,因此钢束既有平弯又有竖弯,井字架按照50c m间距布设而且坐标准确,采用人工配合机械穿束(将钢绞线束固定在一个锥形的牵引装置上,用卷扬机牵引锥形牵引装置),在广州南部快速路工程14标马克特大桥2联100米连续梁施工中,同样使用以上方法,由于特别注意控制孔道坐标和孔道线形圆顺,并且很好的避免了钢绞线间的互相缠绞,张拉过程中以上两项工程钢束伸长值均满足要求。 二、预应力钢绞线张拉 1、张拉控制应力与伸长值 张拉控制应力能否达到设计规定值直接影响预应力效果,因此张拉控制应力是张拉中质量控制的重点,张拉控制应力必须达到设计规定值,但是不能超过设计规定的最大张拉控制应力。预应力值过大,超过设计值过多,虽然结构抗裂性较好,但因抗裂度过高,预应力筋在承受使用荷载时经常处于过高的应力状态,与结构出现裂缝时的荷载接近,往往在破坏前没有明显的预兆,将严重危害结构的使用安全。因此为了准确把握预应力的施加情况,以应力控制方法张拉时必须以伸长值进行校核。因此能够提供准确的理论伸长值显得尤为重要,必须对《公路桥涵施工

现浇箱梁张拉计算书

***************高速公路 二合同 K224+774.554分离式立交桥现浇箱梁 张拉计算书 *****有限公司 二零二零年六月

本张拉适用K224+774.554分离式立交桥现浇箱梁钢束,预应力钢绞线采用高强 度低松弛钢绞线,f =1860Mpa,公称直径d=15.20mm,公称面积Ay=140.3mm2(外委pk 报告),弹性模量Ey=2.02×105Mpa(外委报告)。锚具采用整套锚具,管道成孔采 用塑料波纹管。所有锚具及钢绞线按材料检验批量抽检,严禁使用无部级以上级别 技术鉴定和产品鉴定的材料。材料要有厂方提供的质量说明书和出厂时间。钢绞线 要防止生锈和影响水泥粘结的油污。 钢绞线下料采用砂轮切割机按加工长度下料。钢筋绑扎结束,装模前由专人对 波纹管进行检查,若有孔眼须用胶布缠好,严禁进浆。 预应力张拉前先试压同条件养护砼试件,待箱梁达到设计强度100%且养护龄期 不小于7天方可张拉,钢束张拉时采用单端张拉。张拉前先对张拉千斤顶进行校核。 张拉程序:0→0.15σcon(持荷10秒)→0.3σcon→0.5σcon(倒顶)→1.0σcon (持荷2min)→锚固。 张拉时实行双控,理论伸长量与实际伸长量相差应控制在-6%~+6%之间,否 则应分析原因或重新张拉。张拉严格控制滑丝和断丝,张拉完及时压浆割除钢绞 线头。张拉时做好施工记录。 二、理论伸长值计算 1、理论伸长量计算 钢绞线公称直径15.20mm 单根截面面积140.3mm2 标准强度fpk=1860MPa 弹性模量Ep=2.02×105MPa 管道摩擦系数μ=0.17 管道偏差系数K=0.0015 锚下控制力σcon=0.73 锚下控制应力δ=0.73×fpk=1860×0.73=1357.8(MPa) 每股控制张拉力(1357.8×140.3)/1000=194.499(KN) OBM15-5锚具摩阻力损失平均值u=0.025(摩阻损失系数测定表) OBM15-12锚具摩阻力损失平均值u=0.025(摩阻损失系数测定表) OBM15-9锚具摩阻力损失平均值u=0.024(摩阻损失系数测定表) 伸长率计算公式:△L=PpL/ApEp 平均张拉力:Pp=P(1-e-(kx+μ))/ (kx+μθ)

连续梁预应力张拉施工方案

京包线集宁至包头段增建第二双线 JBZH-6标 包东专用线特大桥 连续梁预应力张拉施工方案 编制: 复核: 审批: 中铁四局集团集包增建第二双线 工程指挥部 2010年9月

1、编制依据 1.1、中铁第一勘察设计院集团有限公司设计的京包线集宁至包头段增建第二双线初步设计文件、施工图。 1.2、《施工招标书》中技术标准所明确的本工程设计、施工、验收采用的规范规程、技术质量标准,蒙冀铁路有限责任公司的有关规定及其他上级有关文件资料。 1.3、现场实际和施工调查情况。 1.4、我部现有的技术综合实力、管理水平、技术装备情况。 1.5、铁路桥涵施工手册。 2、工程概况 该连续梁位于直线及缓和曲线上,梁体为单箱单室等高度直腹板箱形截面,两高3.3m。梁顶宽11.6m,单侧悬臂长2.8m,箱底宽6.0m。为满足连续梁支座安装的需要,各支点箱梁底加宽至7.2m。截面腹板厚度为50cm~70cm,底板厚50cm~80cm,顶板厚35cm~60cm。箱梁在支点处设有横隔墙,中支点横隔墙厚140cm,边支点横隔墙厚120cm,横隔墙设过人洞。连续梁梁体纵向预应力钢束采用Φs15.2mm 钢绞线,标准抗拉强度f pk=1860MPa。锚固体系采用与之对应规格的群锚装置,采用金属波纹管成孔。竖向预应力筋采用JL25mmPSB螺纹钢筋,抗拉强度标准值f pk=830MPa,弹性模量为2.0*105MPa。锚具采用JLM锚具锚固,采用φ40mm铁皮管成孔。横向钢束采用与纵向钢束一致的钢绞线,采用扁波纹管成孔,一端采用P型锚具埋入梁体混凝土中,另一端采用扁锚锚固。桥面设防水层、保护层。防水层设置在道砟槽内,保护层采用C40纤维混凝土。人行道采用双侧角钢栏杆。接触网支架设置在桥的左侧,接触网支架牛腿置于桥墩上。通信、信号电缆槽设置于右侧人行道栏杆外侧。在37#、38#墩处设避车台,

预应力张拉力计算

预应力张拉力计算 箱梁,设计采用标准强度fpk=1860MPa的高强低松弛钢绞线,公称直径15.2mm,公称面积Ag=139mm2,弹性模量Eg=1.95*105MPa,为保证施工符合设计要求,施工中采用油压表读数和钢绞线拉伸量测定值双控。理论伸长量计算采用《公路桥梁施工技术规范》JTJ041-2002附表G-8预应力钢绞线理论伸长量及平均张拉应力计算公式。 一、计算公式及参数 1、预应力平均张拉力计算公式及参数: 式中:Pp—预应力筋平均张拉力(N) P—预应力筋张拉端的张拉力(N) X—从张拉端至计算截面的孔道长度(m) θ—从张拉端至计算截面的曲线孔道部分切线的夹角之和(rad) k—孔道每米局部偏差对摩擦的影响系数:取0.0015 u—预应力筋与孔道壁的磨擦系数,取0.25 2、预应力筋的理论伸长值计算公式及参数: △L=PpL/(ApEp) 式中:Pp—预应力筋平均张拉力(N) L—预应力筋的长度(mm) Ap—预应力筋的截面面积(mm2),取139mm2 Ep—预应力筋的弹性模量(N/mm2),取1.95×105N/mm2 二、伸长量计算: 1N1束一端的伸长量: 单根钢绞线张拉的张拉力P=0.75×1860×139=193905N X直=3.5m;X曲=2.35m; θ=4.323×π/180=0.25rad KX曲+uθ=0.0015×2.35+0.25×0.25=0.066 Pp=193905×(1-e-0.066)/0.066=187644N △L曲=PpL/(ApEp)=187644×2.35/(139×1.95×105)=16.3mm △L直=PpL/(ApEp)=187644×3.5/(139×1.95×105)=24.2mm △L曲+△L直=16.3+24.2=40.52 N2束一端的伸长量: 单根钢绞线张拉的张拉力:P=0.75×1860×139=193905N X直=0.75;X曲=2.25m; θ=14.335×π/180=0.2502 KX曲+uθ=0.0015×2.25+0.25×0.2502=0.0659 Pp=193905×(1-e-0.0659)/0.0659=187653N △L曲=PpL/(ApEp)=187653×2.25/(139×1.95×105)=15.6mm △L直=PpL/(ApEp)=187653×0.75/(139×1.95×105)=5.2mm (△L曲+△L直)*2=(15.6+5.2)*2=41.6mm 一、计算参数: 1、K—孔道每米局部偏差对摩擦的影响系数:取0.0015 2、u—预应力筋与孔道壁的摩擦系数:取0.25 3、Ap—预应力筋的实测截面面积:139mm2 4、Ep—预应力筋实测弹性模量:1.95×105N/mm2 5、锚下控制应力:σk=0.75Ryb=0.75×1860=1395N/mm2 6、单根钢绞线张拉端的张拉控制力:P=σkAp=193905N 7、千斤顶计算长度:60cm

预应力张拉应力计算

一、控制张拉力 预应力钢绞线张拉控制力表 说明: 1.例如5φj15.24指该钢绞线束由5根公称直径为15.24mm的单根钢绞线组成;若使用OVM型锚具则通常表示为OVM15-5; 2.单根钢绞线的公称截面积一般为140mm2; 3.1t相当于10KN,张拉千斤顶的吨位可由控制张拉力换算出; 4.千斤顶驱动油泵的油表读数换算:钢绞线束的控制张拉力(N)/千斤顶油缸活塞面积(mm2); 二、张拉伸长值计算

1.预应力筋采用应力控制方法张拉时,应以伸长值进行校核,实际伸长值与理论 伸长值的差值应控制在6%以内,即︱(△L实-△L理)/△L理︱<6% 2.理论伸长值的计算公式: 单端理论伸长值△L=(Pp×L)/(Ap×Ep) ①Pp——预应力筋的平均张拉力(N),直线筋取张拉端的拉力,两端张拉的曲线 筋的平均张拉力计算如下: Pp= P(1-e-(κχ+μθ))/(κχ+μθ)式中:Pp ——预应力筋的平均张拉力(N); P——预应力筋张拉端的张拉力(N),在没有超张 拉的情况下一般计算为:钢绞线--1395MPa×140mm2=195300N;若有超张拉则乘以其 系数; x——从张拉端至计算截面的孔道长度(m),一般为单端长度;θ——从张拉 端至计算截面曲线孔道部分切线的夹角之和(rad); k——孔道每米局部偏差对摩擦的 影响系数,见下表;μ——预应力筋与孔道壁的摩擦系数,见下表;系数k及μ值 表孔道成型方式 k μ钢丝束、钢绞线、光面钢筋带肋钢筋精轧螺纹钢筋预埋 铁皮管道 0.0030 0.35 0.40 --- 抽芯成型孔道 0.0015 0.55 0.60 --- 预埋金属螺旋 管道 0.0015 0.20~0.25 --- 0.50 ②L——预应力筋的单端长度(mm),即总长的一半; ③Ap——预应力筋的截面面积(mm2),钢绞线为140 mm2; ④Ep——预应力筋的弹性模量(N/mm2),钢绞线为195×103N/mm2; 以上计算所得△L为单端理论伸长值,整束钢绞线的理论伸长值为:△L理=2△L 3.实测伸长值的计算: △L实=△L总-(△L初实-△L初理)-△L锚塞回缩 式中:△L总——张拉达到控制应力时测得的总伸长量; △L初实——张拉达到初应力(控制应力的10%~15%)时测得的实际伸长量;

预应力张拉标准施工方法图文教学

预应力张拉标准施工方法图文教学 a)张拉钢筋;b)浇筑混凝土;c)放松或切断预应力筋 1-锚具;2-台座;3-预应力筋;4-台面;5-张拉千斤顶; 6-模板;7-预应力混凝土构件

(先张法)

(后张法示意) (后张法示意)

(后张法示意) 一、预应力筋及管道 (一)预应力筋 (1)每批钢丝、钢绞线、钢筋应由同一牌号、同一规格、同一生产工艺的产品组成。 (2)预应力筋进场时,应对其质量证明文件、包装、标志和规格进行检验,并应符合下列规定:

1)钢丝检验每批重量不得大于60t;从每批钢丝中先抽查5%,且不少于5盘,进行形状、尺寸和表面质量检查,检查不合格,则将该批钢丝全数检查。从检查合格的钢丝中抽查5%,且不少于3盘,在每盘钢丝的两端取样进行抗拉强度、弯曲和伸长率试验。试验结果有一项不合格则该盘钢丝报废,并从同批次未试验过的钢丝盘中取双倍数量的试样进行该不合格项的复验。如仍有一项不合格,则该批钢丝为不合格。 2)钢绞线检验每批重量不得大于60t;从每批钢绞线中任取3盘,并从每盘所选的钢绞线端部正常部位截取一根试样,进行表面质量、直径偏差和力学性能试验。如每批少于3盘,应全数检验。检验结果如有一项不合格时,则不合格盘报废,并再从该批未试验过的钢绞线中取双倍数量的试样进行该不合格项的复验。如仍有一项不合格,则该批钢绞线为不合格。

3)精轧螺纹钢筋检验每批重量不得大于60t;对其表面质量应逐根进行外观检查,外观检查合格后每批中任选2根钢筋截取试件进行拉伸试验。试验结果有一项不合格,则取双倍数量的试样重做试验。如仍有一项不合格,则该批钢筋为不合格。 (4)存放的仓库应干燥、防潮、通风良好、无腐蚀气体和介质。存放在室外时不得直接堆放在地面上,必须垫高、覆盖、防腐蚀、防雨露,时间不宜超过6个月。 (5)预应力筋安装时应注意: 预应力筋宜使用砂轮锯或切断机切断,不得采用电弧切割。 (二)管道与孔道 1.后张有粘结预应力混凝土结构中,预应力筋的孔道一般由浇筑在混凝土中的刚性或半刚性管道构成。一般工程可由钢管抽芯、胶管抽芯或金属伸缩套管抽芯预留孔道。浇筑在混凝土中的管道应具有足够强度和刚度,不允许有漏浆现象,且能按要求传递粘结力。 4.管道的其他要求

相关文档
最新文档