数字光纤通信系统简介

数字光纤通信系统简介
数字光纤通信系统简介

浅谈数字光纤通信系统

摘要

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。

本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。

关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码

内容

一.数字光纤通信系统概况

光纤是数字通信的理想的传输信道。与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。大容量长距离的光纤通信系统几乎都是采用数字传输方式。

在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。

二.数字光纤通信系统组成

数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。

1.模数转换设备。它将来自用户的模拟信号转换为对应的数字信号。数字

复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信

号,以便在单根光纤中传输。

2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传

输的形态。

3. 光发送机将数字电信号转换为数字光信号,并将其反馈入光纤传输。发

送端一般采用强度调制方式实现数字电信号到数字光信号的转换,即通过直接调制或者间接调制,使得“1”码出现时发出光脉冲,而“0”码出现时不发光。这种调制方式称为开关键控,即on-off key ,简称OOK 方式。

4. 在接收端,光接收机将数字光信号转换为数字电信号。接收端一般采用

直接检测方式将光脉冲信号转换成电流信号。当光脉冲照射在光电检测器的光敏面时就有一个相应的电流脉冲产生,从而接收到“1”码,无光时接收到“0”码。这种采用直接调制/检测方式工作的光纤通信系统称为IM/DD 系统。同时为了提高系统的灵敏度,并检测微弱光信号,接收端可以采用相干检测工作方式,在接收端加本振光源,使之与接收到的微弱光信号在光电检测器中产生混频效应,并获得相应的电信号。

5. 接收端输出接口的功能与输入接口的功能相反,接收端PCM 端机则完成

数字分接,将高速数字信号解复用,分解成多路低速信号,通过数模转换将数字信号还原为模拟信号并送给用户。如果待传输的信息本身即为数字信号,则无需转换设备。

6. 中继器。对于长途传输系统,每隔一定的距离必须加中继器。光纤通信

系统的中继器可以采用光-电-光方式工作,也可以采用直接光放大方式工作。光-电-光的3R 中继方式优点可以修复传输中的信号失真,但结构复杂,实际应用难以实现。但直接光发大运用EDFA 的方式放大又使得信号失真,噪声增加明显,也存在缺点。当前处于实验室研究阶段的全光3R 中继则可以同时弥补以上两种中继方式的缺点,实现更好的中继效果,但离实际生产应用还存在一定的距离。

输入

电信号 电信号 光信号 光信号 输出

图1

三.数字光纤通信系统的性能指标

数字光纤通信系统的基本指标是误码率(BER),其定义是在一定的观测时段内,错误判决的比特数与传输的总比特数之比,即误码率=某一时段内的错误比特数/同一时段内传输总比特数。光纤通信系统的误码率应在10-12-10-9之间。同时,因为突发事件造成的短时间内大量误码可能造成系统传输达不到规定的误码率指标,所以应用到其他指标作为误码率指标的补充,用来衡量系统的可用性。比如严重误码秒比例,为误码率超过10-3的秒在观测时段内所占的比例,其他的指标均可在ITU-T中找到规定。

四.数字光纤通信的传输体制

采用时分复用(TDM)技术将多路数字基带信号复接成高速的单路串行信号,然后转换成光脉冲送进同一根光纤传输,这是高速光纤数字传输的基本方式,因此如何将多路低速信号复接成高速信号成为了数字光纤通信传输中的重要环节。当前有两种体制传输,即准同步数字系列(PDH)和同步数字系列(SDH)。PDH 早在1976年就实现了标准化,但是随着光纤通信技术和网络的发展,PDH的发展遇到了很多困难。因此美国后来又提出了同步光网络(SONET)标准。1988年,ITU-T参照SONER提出来SDH规范,现在已经成为了主要的数字传输体制,在光纤以及微波和卫星干线的信息传输中都得到了很好的应用。

(一)准同步数字系列—PDH

1.PDH简介。采用准同步数字系列(PDH)的系统,是在数字通信网的每个

节点上都分别设置高精度的时钟,这些时钟的信号都具有统一的标准

速率。尽管每个时钟的精度都很高,但总还是有一些微小的差别。为

了保证通信的质量,要求这些时钟的差别不能超过规定的范围。因此,

这种同步方式严格来说不是真正的同步,所以叫做“准同步”。在北

美PDH通常被称为异步数字体系。初期人们主要致力于复用数字音频

信号,一个带宽为4KHz的模拟音频信号可以每秒采样8000次,每个

采样点用8比特量化编码,这就产生了一个比特率为64kbit/s的数

字音频数据流。高速信息流则被定义为多个这样的64kbit/s基本信

息流的组合。对于这些高速信息流,世界上不同的地方有不同的标准。

在北美,64kbit/s的信号被称为DS0,1.544Mbit/s信号被称为DS3

等,而欧洲则被标记为E0、E2、E2等。各国的PDH 系统只有一次群

和日本标准的二次群信号采用同步复用,其余各高次群均采用准同步

复用方式。

2. PDH 的两种基础速率。以1.544 Mbit/s 为第一级(一次群,或称基群)

基础速率,采用的国家有北美各国和日本;以2.048 Mbit/s 为第一

级(一次群)基础速率, 采用的国家有西欧各国和中国。对于以2.048 Mbit/s 为基础速率的制式,各次群的话路数按4倍递增,速率的关系

略大于4倍;对于以1.544 Mbit/s 为基础速率的制式,在3次群以

上,日本和北美各国又不相同。

3. PDH 的复用技术。PDH 数字复用系统由数字复接器和数字分接器组成,

如图2所示。数字复接器是把两个或两个以上的支路按时分复用方式

合并成一个单一的高次群数字信号的设备。数字分接器的功能是把已

合成的高次数字信号分解成原来的低次数字信号。

图2

4. PDH 的缺点。PDH 可以很好的适应传统的点对点通信,但这种数字系

列主要为传输话音设计,这样的结构已远远不能适应现代通信网络对

信号宽带化,多样化的要求。

(1) PDH 的多种体系之间互不兼容,对国际互通造成困难

(2) PDH 的高次群是异步复接,无法直接从高次群中直接提取支路

信息,缺乏灵活性。

(3) 没有统一的光接口,PDH 仅仅规范了电接口的技术标准,各厂

家开发的光接口互不兼容,限制了联网应用的灵活性,增加了

网络的复杂性。

(4) PDH 预留的插入比特较少,使得网络的运行、管理和维护较为

困难,无法适应新一代网络的要求。

(5) PDH 建立在点对点传输的基础上,网络结构简单,无法提供最低次群

( 1 )

( 2 )

( 3 )

( 4 ) 低次群

复接器 分接器

佳的路由选择,使得设备利用率较低。

(二)同步数字系列—SDH

1.SDH起源与发展。SDH在美国提出的SONET基础上发展起来,初始提

出SONET时是用来解决AT&T解体后各供应商之间的设备互操作问题。

从合到分的变化反映了平等接入的概念,原意是让客户具有从当时的

AT&T、MCT和Sprint中选择长距离载体的权利。许多标准化组织在

MCI发出制定满足跨段互通需求的标准的请求后,纷纷开始与SONET

相关的研究工作。在SONET标准制订期间,北美和欧洲的基本速率方

案经过多次修改定为SONET帧信号速率为51.84Mbit/s,于是促成了

北美和欧洲标准的完全兼容,相关建议集中到一起成了如今的同步数

字系列(SDH)。

2.SDH的复用等级。SONET的最低传输速率称为一级光载波信号

(OC-1),SHI 51.84Mbit/s。一级同步传送信号是形成OC-1的基础,

OC-1又是整个同步光信号复用体系的基础。高级别的信号由低级别的

信号复用而成。高级别信号是指STS-N(电信号)和OC-N(光信号),N

为整数。其中OC传输系统可以复用的N的值为1,3,9,12,18,24,36,48

直到768。

3.SDH的设备。SDH传送单元包括SDH终端设备,分插复用设备(ADM),

数字交叉连接设备等网络单元。SDH终端的主要功能是复接/分复接和

提供业务配合。ADM是一种特殊的复用器,它利用分接功能将输入信

号所承载的信息分成两部分:一部分直接转发,另一部分卸下给本地

用户,然后信息又通过复接功能转发部分和本地上传部分合成输出。

DXC类似交换机,它一般有多个输入和多个输出,通过适当配置提供

不同的端到端连接。

4.SDH技术的优点。

(1)统一的比特率: 在PDH中,世界上存在着欧洲、北美及日本三种

体系的速率等级。而SDH中实现了统一的比特率。此外还规定了

统一的光接口标准,因此为不同厂家设备间互联提供了可能。

(2)极强的网管能力: 在SDH帧结构中规定了丰富的网管字节,可提

供满足各种要求的能力。

(3)自愈保护环:在SDH设备还可组成带有自愈保护能力的环网形式,

这样可有效地防止传输媒介被切断,通信业务全部终止的情况。

(4)采用字节复接技术,使网络中上下支路信号变得十分简单。

由于SDH具有上述显著优点,它将成为实现信息高速公路的基础

技术之一。但是在与信息高速公路相连接的支路和叉路上,PDH

设备仍将有用武之地。信息高速公路近来已成为人们的热门话

题。到21世纪,人们借助与信息高速公路,可以在家中完成各

种日常活动。而构成信息高速公路的最基本单元——公路——就

将由SHD设备构成。

5.SDH技术前景。随着数据业务逐渐成为全网的主要业务,传统的电路

交换网将逐渐向分组网特别是IP网演进。作为支持电路交换方式的

SDH的TDM结构将越来越不适应未来业务的发展,独立的SDH设备的

长远命运正在受到严重挑战。但是SDH作为一项代表性的技术仍在不

断发展,以寻求更大的生存空间。这种挑战在中国这样的环境下,SDH

在中近期仍将继续发展。

(1) SDH本身高低端的发展潜力(高于40Gbit/s,低于155Mbit /s)。

(2)未来的超大容量的核心光传送网需要更多的SDH接入设备。

(3)近期仍然是可靠性和生存性最高的传送网技术。

(4) SDH的级联功能增强了支持ATM/IP的能力。

(5) SDH正在融合路由功能,支持以太网透明/交换传输

6.SDH技术新发展。

(1)向高端产品发展:10G、40G(重点是克服电子瓶颈、提高性价比)。

(2)在城域网支持业务汇聚功能:MSTP(重点是优化对IP技术支持)。

(3)用简化的SDH技术来实现城域网接入功能:AON(开销、单纤)。五.数字光纤通信系统的线路编码

在任何实际的数字光纤链路中,接收机的判决电路都必须精确地从接收到的光信号中提取定时信息。定时信息的主要功能是接收机对接收到的电信号进行正确的判决,以便准确无误地恢复原数字信号。但是,数字信号是由“1”和“0”构成的随机序列,较长的连“1”和连“0”不可避免地会出现。在采用非归零码时,接收到长连“1”和长连“0”都可能导致定时信息丢失;在长连“1”出现时还会导致接收电平基线漂移。这两种情形都可能造成误码。另外。在信号检测过程中,信道噪声和失真也会导致误码,因此光信号应有内在的误码检测能力。为了解决发送数字序列中的长连“1”和长连“0”问题,需要对原始信号进行线路编码,为了解决因传输损失导致的误码,需要进行纠错编码。

1.分组码。这种类型的分组码就是将由m个二进制比特构成的分组转换成更

长的由n(n>m)个二进制比特构成的分组。使用这种编码格式时将付出带宽增加的代价,即附加冗余比特将以n/m的比例增加码速率或带宽。mBnB 分组码可以提供足够的定时和检错信息,又因为它们没有长连“1”和长连“0”码,所以也没有基线漂移问题。

2.扰码。扰码是最为简单的线路编码方式。它将输入二进制序列简单地打乱,

并重新排列,在接收端通过解扰将其还原为原来的二进制序列。扰码可以使原来序列中的“0”和“1”符号统计均匀,同时又不提高码速率,因而适合高速数据流的传输。

3.前向纠错编码。对于超高速数字光纤通信系统,如10Gbit/s或更高,比

特周期极短,系统受色散等因素的影响极为严重,除了采用色散补偿措施,采用前向纠错编码(FEC)技术也可以明显提高系统性能。在FEC技术应用中,辅助信息和主信息同时传输,若主信息丢失或接收到误码,辅助信息就可以重构主信息。同时FEC模式的冗余信息量比较小,不会占用大量的额外带宽,所以可以保存高效率。

总结

随着光纤在当前的信息通道中所占的比例越来越重,普及率越来越高,光纤通信已经成为了主要的通信方式。全光网络的搭建与拓展,更多规范的统一,使光纤将全世界范围内的信息快速的交汇传播,这不仅大大的增加了用户获取信息的容量,更加快了信息传输的速率。而数字信号恰恰就在高信息容量,高速传输

等方面有着极大的优势,因而将数字信号与光纤有机结合构成的数字光纤通信系统集两者优势于一体。同时,数字光纤通信系统也在不断的发展中前进,改善优化传输体制、数字编码等重要组成技术。因此,数字光纤通信系统必将在这个信息时代中崭露头角,在未来的信息技术发展中扮演着举足轻重的角色,为信息时代的进一步发展发挥重大的作用!

参考文献

[1]朱勇王江平卢麟光通信原理与技术.科学出版社,2011.7 140~160

[2]陈根祥光纤通信技术基础高等教育出版社,2010.11 371~388

外调制光纤通信系统设计

课程设计题目:外调制光纤通信系统设计 学院:信息科学与工程学院 年级专业:09级光电子1班 学号:xxxxxxxx 学生姓名:xxxxx 指导教师:xxx

一、设计要求 设计10Gpb速率的外调制光纤链路,保证链路能正常通信,误码率BER小于10-12,对应的品质因数Q大于7 二、设计技术参数 1)DFB-LD(SLM),光源中心波长λ0=1552.5nm(193.1Thz),谱线宽度Δλ=0.1 nm(12.5GHz) 2)光纤传输距离120km 3)光发射机发射光功率范围:10dBm~13dBm,可取10dBm 4)APD光接收机灵敏度范围:-25dBm~-9dBm ,可取-18dBm 5) G.652标准单模光纤,光纤的衰减系数α=0.2dB/km,色散系数D=17ps/nm/km 6) 色散补偿光纤衰减系数α=0.5dB/km, 色散系数D=-100ps/(nm.km) 7) 线路编码为NRZ 8) 连接器损耗α=1dB/个 二、设计要点 链路采用外调制的模式,系统通过电信号(NRZ码)控制光调制器产生光信号。产生的光信号通过光纤传输至信号接收端,经光电探测器转换为电信号,完成链路的传输。 衰减:在实际工作中,光纤有一个衰减系数,光信号会随着传输而衰减。为了使光信号传输到探测器时,信号的功率在光电探测器的灵敏度范围之内,链路设计放大模块将信号放大。 色散:不同频率的光波在光纤中传播的速度不同,频率较小的光传播速度快,频率较大的光传播速度慢。由于链路采用的光源激光器存在一定的带宽,因而光信号在传输过程中会产生色散,传输距离越长,色散现象越严重。针对色散问题,链路设计了色散补偿光纤来消除色散。 因此,设计链路所需要解决的主要问题是色散和衰减。通过改变色散光纤的长度和放大器的放大方法来消除传输中带来的色散问题和衰减问题。另外,在设计时,系统的噪声因素也应考虑在内。 三、链路设计 1.根据要求设计链路 通信链路由信号源、线路编码器、光源、连接器、光纤、必要补偿单元、连接器、光接收机组成。设计时,使用伪随机码发生器充当信号源,用连续波激光器和M-Z调制器组成外调制型光源,用1dB衰减器充当连接器,使用不同参数的光纤分别充当传输光纤和色散补偿光纤,使用7dB衰减器充当系统衰减富余量,使用眼图分析仪来观察链路传输的眼图、分析链路的误码率和品质因数。设计链路,初始时不添加色散光纤(色散光纤长度为0)和增益,检测系统的眼图和品质因数。如下图所示:

数字光纤通信系统及其设计教学文案

数字光纤通信系统及 其设计

数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM)Digital optical communications system and its design Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to practical and large,

光纤数字传输系统

第1题 SDH的净负荷矩阵开始的第一行第一列起始位置为() A.1,9×N B.1,10×N C.1,9×(N+1) D.1,270×N 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第2题 SDH的段开销的列数为() A.(1~9)×N B.(1~10)×N C.(1~12)×N D.(1~15)×N 答案:A 您的答案:A 题目分数:3 此题得分:3.0 批注: 第3题 SDH的再生段开销的起止行、列序号为() A.1~3,(1~9)×N B.1~5,(1~10)×N C.7~3,(1~12)×N D.5~9,(1~9)×N 答案:D 您的答案:A 题目分数:3 此题得分:0.0 批注: 第4题 SDH同步数字传输系统中STM-1等级代表的传输速率为() A.155.080Mbps B.155.520Mbps C.622.080Mbps

D.622.520Mbps 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 在我国采用的SDH复用结构中,如果按2.048Mb/s信号直接映射入VC-12的方式,一个VC-4中最多可以传输2.048Mb/s信号的路数为() A.30 B.32 C.63 D.64 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 将模拟信号变成离散信号的环节是() A.采集 B.变换 C.抽样 D.量化 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第7题 对信号进行解码的是() A.发信机 B.收信机 C.信源 D.信元 答案:B 您的答案:

题目分数:3 此题得分:0.0 批注: 第8题 对信号进行编码的是() A.发信机 B.收信机 C.信源 D.信元 答案:A 您的答案:A 题目分数:4 此题得分:4.0 批注: 第9题 SDH光纤传送网是一个灵活的、兼容的、可靠的、可以实行集中智能化管理的网络。SDH的本质是() A.采用标准的光接口 B.一种新设备同步复用设备 C.一种新的大容量高速光纤传输系统 D.一种新的网络技术同步传输体系 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第10题 SDH的矩形块状帧结构的规模为() A.9,261×N B.9,270×N C.9,300×N D.9,600×N 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注:

光纤通信系统设计实例

光纤通信系统设计 1 概述 图 1.1 标准光纤通信系统架构 2 模拟系统设计 光纤系统中,各组件的累加损耗应足够低以符合探测器的阈值要求。模拟系统中,充足的功率意味着高SNR,另外,组件的组合应该提供足够的带宽以通过较高的调制频率,因此,应对单个器件的损耗和带宽进行分析,并计算整个系统的功率分配和带宽预算。 2.1 系统规格 2.1.1 初始方案 以设计简单的点对点视频系统为例,电视广播信号的带宽为6MHz,要求SNR为50dB。 表2.1 系统方案一:窄带宽和低功率 Carrier Source LED0.8-0.9um Information Channel MMF (SI or GRIN) Detector PIN-PD 表2.2 系统方案二:高带宽和高功率 Carrier Source LD 1.3um Information Channel SMF Detector APD 2.1.2 负载电阻计算 已知PIN-PD的电容和传输带宽,根据方程 求得负载电阻

取近似值,计算得为6.24MHz。 2.2 功率预算 2.2.1 平均光功率计算 标准的SNR方程是 由于使用PIN-PD作为光电探测器,假设系统是热噪声限系统,调制系数m为100%,SNR方程简化为 由于放大器噪声的存在,将实际温度T替换为等效噪声温度,假设环境温度T为300K,放大器噪声系数F为2,则,又已知PD响应率为,计算平均光功率P为 取P近似值为。 2.2.2 平均光电流计算 根据平均光功率P为,计算得PIN-PD的平均光电流,远大于暗电流(几个纳安),因此系统中暗电流的影响可以忽略,计算热噪声电流均方值 散粒噪声电流均方值 可以得到,热噪声功率是散粒噪声功率的近7倍,符合最开始采用热噪声限模型的假设。 预测平均光电流为时,并没有驱动探测器进入非线性区,最大饱和电流等于偏置电压与负载电阻的比值,使用5V偏压时,最大允许电流为(或),远远大于,系统不存在饱和问题。 2.2.3 详细方案 光源SE LED SI MMF

光纤通信-重要知识点总结

光纤通信重要知识点总结 第一章 1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。 2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。 3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。光纤通信系统既可传输数字信号也可传输模拟信号。输入到光发射机的带有信息的电信号,通过调制转换为光信号。光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。 光接收机的作用是将光纤送来的光信号还原成原始的电信号。它一般由光电检测器和解调器组成。光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。在这个过程中,受调制的RF 电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。这样就完成了一次通信的全过程。 4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的 5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成。光源是光发射机的核心。光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。 6.实现光源调制的方法:直接调制和外调制。直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。 6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接器组成。光纤是光纤线路的主体,接头和连接器是不可缺少

光纤数字传输系统性能测试

1前言 本实验指导书为 《数字传输技术 (A)《光纤通信系统》 》 《光纤通信测量技术》 《光同步传输技术》课程的实验用书,其有关内容也可以配合《数字传输技术(A)《光纤通信系统》 》 《光纤通信测量技术》 《光同步传输技术》等课程教材使 用。 本实验指导书用于光纤数字传输系统性能测试和光纤传输网络的设备与网 络管理操作几方面的必做实验,主要是光纤数字线路系统传输性能测试、SDH 设备认识和 SDH 网络管理系统及操作。其中光纤数字线路系统传输性能测试是最基本的实验项目。 光纤数字线路系统包括光端机、光中继机和光纤线路等,其性能参数包括设 备和系统光接口参数和电接口传输性能,光接口参数主要是光设备光接口参数、光通道(光纤线路)传输特性,电接口传输性能主要包括误码性能、定时性能和可用性等,需要测试的项目较多,涉及多种测试仪表和测试方法。本指导书重点介绍光纤线路接续和接续损耗的监测、光纤衰减测试实验、光接口参数测试和光纤数字传输系统的传输性能测试实验。 选做实验的指导书另行编写。 目录 1实验一光纤接续和监测 2实验二光纤衰减测试 3实验三光接口参数测试 5实验四电接口传输性能测试 10实验五 SDH 设备认识 17实验六 SDH 网络管理系统及操作 19 3 实验一

光纤的接续和监测 一.试验目的 掌握光纤接续原理 掌握光纤接续损耗的测试原理 学习使用熔接机和了解光纤接续过程 二.试验原理 光纤接续的常用方法有热熔法和冷接法等,热熔法的主要步骤如下:连接光 纤端面的制备,端面的定位和对准,熔接。 光纤接续损耗 As 的定义为 As = ?10 lg 式中 pr pt (dB) pt 为发射光纤发出的光功率,W pr 为接收光纤接收的光功率,W 监测光纤接续损耗的方法有多种,如:光时域反射计(OTDR)监测和四功率法测 试等,目前都采用光时域反射计监测法,其测试系统原理土如图 1.1 所示。 OTDR 发射光纤 接收光纤 图 1.1 光纤接续损耗的监测 测试时 OTDR 发出测试光脉冲,并测得连接光纤的背向色散曲线如图 1.2 所示,根据所得曲线设置五个测试点(即采用五点法)即得到接续损耗值。 三.试验仪器和设备 A 1.TYPE35SE 光纤熔接机, 1 台 2.光时域反射计, 3.光纤, 四.测试步骤

数字光纤通信系统课程设计

~~~~~~学院课程设计报告 课程名称:通信系统课程设计 院部:电气与信息工程学院 专业班级: 学生姓名: 指导教师: 完成时间:2010 年12 月31日 报告成绩:

高速数字光纤通信系统的设计

目录 (3) 摘要 (4) 关键词 (4) Abstract (5) 第一章数字光纤通信系统的整体设计 (6) 1.1数字光纤通信系统的简介 (6) 1.2 数字光纤通信系统的基本设计思想 (7) 1.3 数字光纤通信系统设计的方案分析 (7) 第二章数字光纤通信系统的具体设计 (8) 2.1 A—E的工程分站设计 (8) 2.2 系统部件的选择 (8) 2.2.1光源的选择 (8) 2.2.2光纤的选择 (8) 2.2.3光电检测器的选择 (9) 2.2.4光接口规范的选择 (9) 2.3 应用代码的选择 (9) 2.4 衰耗预算 (10) 2.4.1无光放大器系统的衰耗预算 (10) 2.4.2带光放大器系统的衰耗预算 (10) 2.5色散预算 (11) 2.5.1码间干扰与频率啁啾的功率代价 (11) 2.5.2色散相关参数的确定 (12) 2.5.3色散的具体计算 (12) 第三章数字光纤通信系统设计结果 (14) 总结 (16) 参考文献 (17)

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和广波的变革极大的提高着信息的传输。进入1993年以后,我国光纤通信已处于持续大反战时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(solition)、掺铒光纤放大器(EDFA)、SDH产品等开发实用实用化开展大量、深入研究工作。同时,各种专用光纤系统组成及其系统参数测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 20世纪70年代末,光纤通信开始进入实用化阶段,各种各样的光纤通信系统如雨后春笋在世界各地建立起来,逐渐成为电信传送网的主要传送手段。近几年来,光纤通信中的各种新技术,新系统也日新月异地发展着,在全球信息高速公路建设中扮演重要角色。 光纤通信是以光波为载波,光纤为传输媒介的通信方式。本次课程设计论文主要介绍光纤系统的基本组成,性能指标,还要对损耗和色散进行预算,用最坏值设计方法来设计高速数字光纤系统。 关键词:光纤通信系统、光纤、损耗、色散、光缆

数字光纤通信系统及其设计

` 数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、 SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。 关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM) Digital optical communications system and its design ] Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to

第五章数字光纤通信系统的设计

第五章数字光纤通信系统的设计 (2学时) 一、教学目的及要求: 使学生了解整个数字光纤通信系统在整体进行设计时应考虑的因素和设计时使用的主要方法。 二、教学重点及难点: 本章重点:掌握损耗限制系统和色散限制系统中再生中继距离的设计方法。 本章难点:中继距离与系统传输速率的关系。 三、教学手段: 板书与多媒体课件演示相结合 四、教学方法: 课堂讲解、提问 五、作业: 课外作业: 5-1 5-2 5-5 六、参考资料: 《光纤通信》刘增基第五章。 《光纤通信》杨祥林第八章 七、教学内容与教学设计:

第五章数字光纤通信系统的设计 对数字光纤通信系统而言,系统设计的主要任 务是,根据用户对传输距离和传输容量(话路数或 比特率)及其分布的要求,按照国家相关的技术标准 和当前设备的技术水平,经过综合考虑和反复计算, 选择最佳路由和局站设置、传输体制和传输速率以 及光纤光缆和光端机的基本参数和性能指标,以使 系统的实施达到最佳的性能价格比。 在技术上,系统设计的主要问题是确定中继距 离,尤其对长途光纤通信系统,中继距离设计是否 合理,对系统的性能和经济效益影响很大。 中继距离的设计有三种方法:最坏情况法(参数 完全已知)、统计法(所有参数都是统计定义)和半 统计法(只有某些参数是统计定义)。 5.1 中继距离受损耗的限制 下图示出了无中继器和中间有一个中继器的数 字光纤线路系统的示意图。 数字光纤线路系统 (a)无中继器; (b) 一个中继器 如果系统传输速率较低,光纤损耗系数较大, 中继距离主要受光纤线路损耗的限制。在这种情况 下,要求S和R两点之间光纤线路总损耗必须不超 过系统的总功率衰减,即 [板书] [板书] [板书] [多媒体课件] 96分钟

高速公路光纤数字传输系统的检测

高速公路光纤数字传输系统的检测 高速公路通信系统是高速公路现代化管理的支撑系统,其主要由以下几部分构成:光纤数字传输系统、程控数字交换系统、紧急电话系统、移动通信系统以及通信电源系统。对其定期检测确保系统的正常运行很有必要,本文主要针对高速公路光纤数字传输系统各参数的检测做一下介绍。 标签:高速公路光纤数字传输检测 0 引言 光纤数字传输系统是为高速公路提供话务通信(业务电话、数字用户电话、收费热线电话),它还为监控,收费系统的数据、传真、图像等非话业务提供传输通道。一旦传输系统出现问题,后果不堪设想,将严重影响高速公路的正常运营管理,因此有必要对光纤数字传输系统进行定期的测试,及时发现系统存在的问题,确保系统的正常运行和消除潜在的风险。根据高速公路业务接入特点,目前单条高速公路内部一般采用SDH与综合业务接入网相结合的光纤数字传输系统。基于高速公路传输的业务量和设备成本两点考虑,多数选用STM-16及STM-16以下的传输速率等级。系统一般在通信分中心设置一套光纤线路终端(OLT),其余通信站各设置一套光网络单元(ONU),通过接入网系统为全线提供大容量数字通路、2M数字通路、音频/数据通路等多种数字信道和接口,实现数据的上传及管理数据的下达;通信中心还设一套光传输本地网管终端,实现对SDH设备的维护管理。根据省交通集团制定的企业标准《高速公路机电工程养护质量检验评定标准》,光纤数字传输系统定期检测项目包括:系统接收光功率、平均发送光功率、2M传输通道误码指标、自动保护倒换功能、安全管理功能、公务电话功能等。下面就对这几个项目的检测进行一一介绍。 1 系统实际接收光功率和平均发送光功率的测试 对于任何光纤传输系统的安装、运行和维护,光功率测量必不可少。光功率的测量所采用的仪器是光功率计。测量光口的收发光功率时,应注意选择对应测试波长,光纤数字传输系统光纤的工作波长一般为:1310nm和1550nm,测量光功率时需按照实际测量对象即光发射机光信号的工作波长选择光功率波长。根据光口的接头类型选择相应的尾纤接头,然后用尾纤把光口和光功率计如图1、图2那样连接起来,等光功率计上的数值稳定后读出该值即为光口的接收光功率值或平均发送光功率值。光功率的严格测试应该是用图案发生器发送规定的伪随机序列码至被测设备,然后用光功率计测试接收光功率,我们的日常维护检测是近似测试,接收光功率一般在接收灵敏度和接收过载点之间。 光功率测量中的注意点:①测试前应该仔细地用酒精棉球或者镜头纸充分清洗光连接器(如尾纤头、法兰盘)的表面。②如果尾纤已经上ODF架,测试应该在ODF架一侧进行,以免由于多次插拔设备的光口,造成光连接头损坏和被污染。③固定光纤的放置状态,避免震动,减少光功率检测的不确定值。

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

第6章 光纤通信系统的设计

第6章光纤通信系统的设计 在前面几章中,我们已经学习了光纤通信系统中基本元器件的功能,从光源、光检测器、光放大器等有源器件到连接器、隔离器等无源器件。在这章里我们将讨论如何将这些器件通过光纤组合形成具有完整通信功能的系统。光纤通信系统就其拓扑而言是多种多样的,有星形结构、环形结构、总线结构和树形结构等,其中最简单是点到点传输结构。从应用的技术来看,分光同步传输网、光纤用户网、复用技术、高速光纤通信系统、光孤子通信和光纤通信在计算机网络中的应用等等。从其地位来分,又有骨干网、城域网、局域网等。不同的应用环境和传输体系,对光纤通信系统设计的要求是不一样的,这里我们只研究简单系统的设计,即点到点传输的光纤通信系统。内容包括设计原则、数字和模拟通信系统的设计,最后给出了设计实例,以期读者对光纤通信方面的知识有一全面了解。 6.1 设计原则 6.1.1 工程设计与系统设计 光纤通信系统的设计包括两方面的内容:工程设计和系统设计。 工程设计的主要任务是工程建设中的详细经费概预算,设备、线路的具体工程安装细节。主要内容包括对近期及远期通信业务量的预测;光缆线路路由的选择及确定;光缆线路敷设方式的选择;光缆接续及接头保护措施;光缆线路的防护要求;中继站站址的选择以及建筑方式;光缆线路施工中的注意事项。设计过程大致可分为:项目的提出和可行性研究;设计任务书的下达;工程技术人员的现场勘察;初步设计;施工图设计;设计文件的会审;对施工现场的技术指导及对客户的回访等。 系统设计的任务遵循建议规范,采用较为先进成熟的技术,综合考虑系统经济成本,合理选用器件和设备,明确系统的全部技术参数,完成实用系统的合成。 6.1.2系统设计的内容 光纤通信系统的设计涉及到许多相互关联的变量,如光纤、光源和光检测器的工作特性、系统结构和传输体制等。 例如,目前在骨干网和城域网中普遍选择同步数字序列SDH(Synchronous Digital Hierarchy)作为系统制式,在设计SDH体制的光纤通信系统时,首先要掌握其标准和规范,SDH的传输速率分为STM-1(155.52Mb/s)、STM-4(622.08Mb/s)、STM-16(2.5Gb/s)和STM-64(10Gb/s)等四个级别。ITU-T对每个级别(STM-64正在研究中)所使用的工作波长范围、光纤通道特性、光发射机和接收机的特性都作了规定,并对其应用给出了分类代码,表6.1给出了STM-1标准光接口的主要指标,其中应用分类代码中的符号I表示距离不超过2km的局内应用,S表示距离在15km的局间短距离应用,L表示距离在40~80km的局间长距离应用,符号后的数字表示STM的速率等级和工作波长(1310nm)。 又例,对于局域网(LAN)的设计,IEEE、TIA/EIA等组织也有相关的标准,见表6.2,对数据速率、波长作了规定。表6.3表示了波长范围以及相应技术的要求。对于数据速率为10Mbit/s或100Mbit/s的LAN系统,其光缆的长度可以查阅IEEE802.3u和TIA/EIA568A标准。表6.4为其建议的最大光缆长度。 虽然光纤通信系统的形式多样,但在设计时,不管是否有有成熟的标准可循,以下几点是必须考虑的:①传输距离。②数据速率或信道带宽。③误码率(数字系统)或载噪比和非线性失真(模拟系统)。在作过相关的分析后,我们要决定:是采用多模光纤还是单模光纤,并涉及到纤芯尺寸、折射率剖面、带宽或色散、损耗、数值孔径或模场直径等参数的选取;是采用LED还是LD光源,涉及到波长、谱线宽度、输出功率、有效辐射区、发射方向图、发射模式数量等指标的确定;是采用PIN还是APD接收器,它涉及到响应度、工作波长、

数字光纤传输系统课程设计

课程设计 班级: 姓名: 学号: 指导教师: 成绩: 电子与信息工程学院 通信工程系

THE DIGITAL OPTICAL FIBER TRANSMISSION SYSTEM3 1. 引言4 1.1 设计背景4 1.2 光纤通信技术4 1.2.1 光纤通信概念4 1.2.2 光纤通信发展4 1.3 数字光纤传输的优点5 1.4 光纤通信技术的发展前景6 2.数字光纤传输系统设计7 2.1数字光纤传输的两种体制7 2.1.1准同步数字系列PDH8 2.1.2准同步数字系列SDH8 2.2 整体设计10 2.3 光发射机11 2.3.1 光源11 2.3.2 调制电路和控制电路11 2.3.3 线路编码电路12 2.4 光接收机13 2.4.1 光检测器13 2.4.2 放大器14 2.4.3 均衡和再生14 3.数字光纤传输系统分析14 3.1性能指标14 3.2系统设计分析15 3.2.1中继距离受损耗的限制15 3.2.2中继距离受色散(带宽)的限制16 4.总结16

随着数字技术和光纤通信技术各自的进步,以及社会对于光纤集成网络以实现资源共享的要求日益增长,数据与光纤通信技术也已紧密地结合起来,成为了社会的强大物质技术基础。现代社会,数字光纤通信已经越来越多地应用到了社会各个领域中。 光纤通信系统最重要的部分是光发射机、信道和光接受机三个模块。通过各种光电设备连接成SDH 同步数字序列的数字光纤传输系统,最后在分析指标与设计性能方面验证了系统的合理性。 关键词:光纤通信技术、数字光纤传输系统、SDH同步数字序列、性能指标 The digital optical fiber transmission system Abstract: With the development of digital technology and optical fiber munication technology and their progress, and the society for optical integrated network to realize resource sharing requirements increasing, data and optical fiber munication technology has been closely bined, bee society's powerful corporeal technology base. In modern society, digital optical fiber munication has been increasingly applied to all areas of society. Optical fiber munication system is the most important part of the optical transmitter, channel and optical receiver module three. Through a variety of optoelectronic devices connected to SDH synchronous digital series digital optical fiber transmission system, in the final analysis indexes and design performance with respect to verify the rationality of the system. Key words: optical fiber munication technology, digital optical fiber transmission system, SDH synchronous digital sequence, performance index

数字光纤通信系统简介

浅谈数字光纤通信系统 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。 本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。 关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码 内容 一.数字光纤通信系统概况 光纤是数字通信的理想的传输信道。与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。大容量长距离的光纤通信系统几乎都是采用数字传输方式。 在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。 二.数字光纤通信系统组成 数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。 1.模数转换设备。它将来自用户的模拟信号转换为对应的数字信号。数字 复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信 号,以便在单根光纤中传输。 2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传 输的形态。

毕业设计单片机光通信系统设计

摘要 LED作为冷光源和节能光源,正在不断发展和普及。所以利用这个新的光源来通信,也变成了目前研究的热门课题之一。LED光传输技术就是利用常见的LED等室内照明设备,发出肉眼感觉不到的高速明暗闪烁的通信信号,以无线通信的方式来传输数据。采用无线光通信最大的特点就是它的波长范围大,可以将可见光讯号用不同的波长来进行信号的传输。可见光还有无电磁辐射、易保密等特点,尤其搭借了照明平台,所以不需要采用另外的传输介质,采用广播方式,受体的数量即容量受到的制约小,但是其缺点是不易实现双向的通信。 这次毕业设计的主要内容是尝试设计并制作一个LED通信试验系统,通过对频率的调制,发出特定的编码信号,接收方利用光电敏感器件接收调制光,解调后还原成数据信号。最后,本次毕业设计完成了基本功能的LED发射管、接收管的发射和接收工作,并且尝试将其时分复用和频分复用。在发送端添加了温度传感器和超声波测距传感器,数码管显示,在接收端用1602液晶屏幕显示出来。两者的对比,反应出通信的正确性。 本设计是基于两个89C51单片机,利用红外led发射装置和HS0038接收装置设计的简单慢速通信。目标是熟悉单片机的编程思路和学习通信的基本原理。基本的慢速光通信在传感器与单片机之间的通信上有着广泛的应用。 关键词:LED;调解;解调;频分复用;时分复用 I

Abstract As a cold light and energy-saving light source, LED is rapidly developing and being popularization. So using this new light source to communicate has become a hot research topic nowadays. The technology of LED light transmission is to using common LED indoor lamps. Communication signal of high speed light by the naked eye can not feel the flashing, in a way of wireless communication to transmit data. The most special characteristic of light communication is that the light wavelength range is very long, and visible light can be signal transmission in different wavelength. Visible light and no electromagnetic radiation, such as confidentiality, especially a borrowed lighting platform, so do not need to use the transmission medium, the broadcast, the number that is restricted by receptor capacity is small, it is not easy to achieve two-way communication. The main purpose of this paper is to try to design a LED communication system, through the modulation of the frequency coding signal, the photoelectric sensitive device receives the light modulation, demodulation back into the data signal. Finally, the graduation design, completed the basic function of the LED launch tube, receiving tube emission and reception work, and try to time division multiplexing and frequency division multiplexing. The temperature sensor and the ultrasonic ranging sensor is added in the transmitter, the digital tube display, the receiver with 1602 LCD screen display. The contrast of the two, reflect the correctness of communication. The design is based on two MCUs, simple slow communication using infrared LED emission device and HS0038 receiver design. The target is the basic principle of the programming ideas and learning communication with single-chip microcomputer. Slow light communication basic is widely used in communication between sensor and MCU. Keywords: LED; mediation; demodulation; frequency; division; II

相关文档
最新文档