数字光纤通信系统及其设计

数字光纤通信系统及其设计
数字光纤通信系统及其设计

数字光纤通信系统及其设计

摘要

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMA V)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。

本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。

关键字;

数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM)

Digital optical communications system and its design Abstrac

In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMA V), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to practical and large, deep research work. At the same time, various special optical system into the field of national economy, contributed to our optical fiber communication technology of vigorous development. Facing the optical fiber communication technology,

understand the general application of optical communication system and the system parameters measurement technology situation of optical fiber communication, whether the owner, dealers, or for optical fiber communication customers are important.

This paper mainly introduces the basic components and fiber optic communications system, expounds the meaning and characteristics of digital communication system design of light letters. In WDM optical fiber links EPFA + digital system design.

Key words,

Digital optical communication system erbium doped fiber amplifier (EDFA) WDM

目录

1数字光纤通信系统 (4)

1.1数字光纤通信系统概论 (4)

1.1.1数字光纤通信系统的组成 (4)

1.1.2数字光纤通信系统的含义 (5)

1.1.3 数字光纤通信系统的特点 (5)

1.2数字光纤通信系统的设计方法 (5)

1.2.1数字光纤通信系统的构成 (5)

1.2.2数字光纤通信系统的设计方案 (6)

2波分复用(WDM) (6)

2.1光波分复用(WDM)技术概述 (7)

2.2WDM系统的基本构成 (7)

2.3WDM技术的主要特点 (7)

3掺铒光纤放大器(EDFA) (8)

3.1掺铒光纤放大器概述 (8)

3.2掺铒光纤放大器原理 (8)

4基于WDM+EPFA数字光纤链路系统的设计 (9)

注释和参考文献 (11)

谢词 (12)

附录 (13)

1数字光纤通信系统

1.1数字光纤通信系统的概论

1.1.1数字光纤通信系统的组成

(1)光发信机

光发信机是实现电/光转换的光端机。它由光源、驱动器和调制器组成。其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。电端机就是常规的电子通信设备。

(2)光收信机

光收信机是实现光/电转换的光端机。它由光检测器和光放大器组成。其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。

(3)光纤或光缆

光纤或光缆构成光的传输通路。其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

(4)中继器

中继器由光检测器、光源和判决再生电路组成。它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。

(5)光纤连接器、耦合器等无源器件

由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。因此一条光纤线路可能存在多根光纤相连接的问题。于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。

1.1.2数字光纤通信系统的含义

光纤光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。

随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。

1.1.3数字光纤通信系统的特点

光纤传输系统是数字通信的理想通道。与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。因此,大容量长距离的光纤通信系统大多采用数字传输方式。

在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。

1.2数字光纤通信系统的设计方法

1.2.1数字光纤通信系统的构成

图1 数字光纤通信系统构成

最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

1.2.2数字光纤通信系统的设计方案

对数字光纤通信系统而言,系统设计的主要任务是,根据用户对传输距离和传输容量(话路数或比特率)及其分布的要求,按照国家相关的技术标准和当前设备的技术水平,经过综合考虑和反复计算,选择最佳路由和局站设置、传输体制和传输速率以及光纤光缆和光端机的基本参数和性能指标,以使系统的实施达到最佳的性能价格比。

在技术上,系统设计的主要问题是确定中继距离,尤其对长途光纤通信系统,中继距离设计是否合理,对系统的性能和经济效益影响很大。

中继距离的设计有三种方法:

(1)最坏情况法(参数完全已知)

(2)统计法(所有参数都是统计定义) (3)半统计法(只有某些参数是统计定义)

2 波分复用(WDM )

图2 波分复用光纤通信系统构成

2.1光波分复用(WDM )技术概述

光波分复用(Wavelength Division Multiplexing ,WDM )技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM 或TDM 方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。

2.2 WDM 系统的基本构成

WDM 系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单

向WDM 是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM 是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单

n 光中继放大

光接收机

光发射机

向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。

2.3WDM技术的主要特点

1.充分利用光纤的巨大带宽资源,使一根光纤的传输容量比单波长传输增加几倍到几十倍,从而增加光纤的传输容量,降低成本,具有很大的应用价值和经济价值。

2.由于WDM技术中使用的各波长相互独立,因而可以传输特性完全不同的信号,完成各种信号的综合和分离,实现多媒体信号混合传输。

3.由于许多通信都采用全双式方式,因此采用WDM技术可节省大量线路投资。

4.根据需要,WDM技术可以有很多应用形式,如长途干线网、广播式分配网络,多路多地局域网等,因此对网络应用十分重要。

5.随着传输速率不断提高,许多光电器件的响应速度明显不足,使用WDM 技术可以降低对一些器件在性能上的极高要求,同时又可实现大容量传输。

6.利用WDM技术选路,实现网络交换和恢复。

3掺铒光纤放大器(EDFA)

图3掺铒光纤放大器构成

3.1掺铒光纤放大器概述

掺铒光纤放大器(EDFA即在信号通过的纤芯中掺入了铒离子Er3 +的光信号放大器。)是1985年英国南安普顿大学首先研制成功的光放大器,它是光纤通信中最伟大的发明之一。

掺铒光纤是在石英光纤中掺入了少量的稀土元素铒(Er)离子的光纤,它是掺铒光纤放大器的核心。从20世纪80年代后期开始,掺铒光纤放大器的研究工作不断取得重大的突破。WDM技术、极大地增加了光纤通信的容量。成为当前光纤通信中应用最广的光放大器件。

3.2掺铒光纤放大器原理

EDFA的基本结构如图1(a)所示,它主要由有源媒质(几十米左右长的掺饵石英光纤,芯径3-5微米,掺杂浓度(25-1000)x10-6)、泵浦光源(990或1480nm LD)、光耦合器及光隔离器等组成。信号光与泵浦光在铒光纤内可以在同一方向(同向泵浦)、相反方向(反向泵浦)或两个方向(双向泵浦)传播。当信号光与泵光同时注入到铒光纤中时,铒离子在泵光作用下激发到高能级上(图1 (b),三能级系统),并很快衰变到亚稳态能级上,在入射信号光作用下回到基态时发射对应于信号光的光子,使信号得到放大。图1 (c)为其放大的自发发射(ASE)谱,带宽很大(达20-40nm),且有两个峰值,分别对应于1530nm和1550nm。

EDFA的主要优点是增益高、带宽大、输出功率高、泵浦效率高、插入损耗低、对偏振态不敏感等。

4基于WDM+EPFA数字光纤链路系统的设计

掺铒光纤放大器在密集波分复用系统中的应用主要是补偿传输中的光纤损耗,根据放大器在系统中的位置及作用,可以分成以下三种类型:

1.功率放大器(booster-Amplifier),处于合波器之后,用于对合波以后的多个波长信号进行功率提升,然后再进行传输,由于合波后的信号功率一般都比较大,所以,对一功率放大器的噪声指数、增益要求并不是很高,但要求放大后,有比较大的输出功率。

2.线路放大器(Line-Amplifier),处于功率放大器之后,用于周期性地补偿线路传输损耗,一般要求比较小的噪声指数,较大的输出光功率。

3.前置放大器(Pre-Amplifier),处于分波器之前,线路放大器之后,用于信号放大,提高接收机的灵敏度(在光信噪比(OSNR)满足要求情况下,较大的输入功率可以压制接收机本身的噪声,提高接收灵敏度),要求噪声指数很小,对输出功率没有太大的要求。

图4 WDM数字光纤链路系统

图六濮阳有线广播电视台在市区CATV网中应用EDFA的计划

参考文献

[1]李乐民.种预约式波分复用网信道分配方法. 电子科技大学学报, 1998, 27(3): 256~260

[2]邱昆, 邱琪. 一种基于波分复用的ATM光交换结构. 电子科技大学学报, 1998, 27(4): 371~374

[3]明光. 从ECOC’94看光通信的发展. 电子科技大学学报, 1994, 23(增刊): 35~40

[4]贺铨. 中国光纤传送网的发展.电信科学, 1999, (10): 1~4

[5]通用论文比特同步复接系统的设计第九届全国数据通信学术会议1998

谢辞

论文前期的准备及其书写对我有很多感触,虽然这是一次学年论文,但是老师的这种开放的教学风格给我们以后的发展给了一定的帮助,在此真心的感谢老师!!

还有同学在期间的一些帮助也对我很重要。他们帮着我找参考文献,帮我“出谋划策”,在论文格式上的指导等等都很感激。在我他们的帮助下我完成了我的论文,虽然论文还有一些不足,但我想在我的努力和老师不辞劳苦的知道下我相信,我能写好这次论文。

我知道我这次的论文还有很多的错误和不足,希望老师能够给予指导和帮助。

成绩评定表

外调制光纤通信系统设计

课程设计题目:外调制光纤通信系统设计 学院:信息科学与工程学院 年级专业:09级光电子1班 学号:xxxxxxxx 学生姓名:xxxxx 指导教师:xxx

一、设计要求 设计10Gpb速率的外调制光纤链路,保证链路能正常通信,误码率BER小于10-12,对应的品质因数Q大于7 二、设计技术参数 1)DFB-LD(SLM),光源中心波长λ0=1552.5nm(193.1Thz),谱线宽度Δλ=0.1 nm(12.5GHz) 2)光纤传输距离120km 3)光发射机发射光功率范围:10dBm~13dBm,可取10dBm 4)APD光接收机灵敏度范围:-25dBm~-9dBm ,可取-18dBm 5) G.652标准单模光纤,光纤的衰减系数α=0.2dB/km,色散系数D=17ps/nm/km 6) 色散补偿光纤衰减系数α=0.5dB/km, 色散系数D=-100ps/(nm.km) 7) 线路编码为NRZ 8) 连接器损耗α=1dB/个 二、设计要点 链路采用外调制的模式,系统通过电信号(NRZ码)控制光调制器产生光信号。产生的光信号通过光纤传输至信号接收端,经光电探测器转换为电信号,完成链路的传输。 衰减:在实际工作中,光纤有一个衰减系数,光信号会随着传输而衰减。为了使光信号传输到探测器时,信号的功率在光电探测器的灵敏度范围之内,链路设计放大模块将信号放大。 色散:不同频率的光波在光纤中传播的速度不同,频率较小的光传播速度快,频率较大的光传播速度慢。由于链路采用的光源激光器存在一定的带宽,因而光信号在传输过程中会产生色散,传输距离越长,色散现象越严重。针对色散问题,链路设计了色散补偿光纤来消除色散。 因此,设计链路所需要解决的主要问题是色散和衰减。通过改变色散光纤的长度和放大器的放大方法来消除传输中带来的色散问题和衰减问题。另外,在设计时,系统的噪声因素也应考虑在内。 三、链路设计 1.根据要求设计链路 通信链路由信号源、线路编码器、光源、连接器、光纤、必要补偿单元、连接器、光接收机组成。设计时,使用伪随机码发生器充当信号源,用连续波激光器和M-Z调制器组成外调制型光源,用1dB衰减器充当连接器,使用不同参数的光纤分别充当传输光纤和色散补偿光纤,使用7dB衰减器充当系统衰减富余量,使用眼图分析仪来观察链路传输的眼图、分析链路的误码率和品质因数。设计链路,初始时不添加色散光纤(色散光纤长度为0)和增益,检测系统的眼图和品质因数。如下图所示:

数字光纤通信系统及其设计教学文案

数字光纤通信系统及 其设计

数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM)Digital optical communications system and its design Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to practical and large,

光纤通信系统设计实例

光纤通信系统设计 1 概述 图 1.1 标准光纤通信系统架构 2 模拟系统设计 光纤系统中,各组件的累加损耗应足够低以符合探测器的阈值要求。模拟系统中,充足的功率意味着高SNR,另外,组件的组合应该提供足够的带宽以通过较高的调制频率,因此,应对单个器件的损耗和带宽进行分析,并计算整个系统的功率分配和带宽预算。 2.1 系统规格 2.1.1 初始方案 以设计简单的点对点视频系统为例,电视广播信号的带宽为6MHz,要求SNR为50dB。 表2.1 系统方案一:窄带宽和低功率 Carrier Source LED0.8-0.9um Information Channel MMF (SI or GRIN) Detector PIN-PD 表2.2 系统方案二:高带宽和高功率 Carrier Source LD 1.3um Information Channel SMF Detector APD 2.1.2 负载电阻计算 已知PIN-PD的电容和传输带宽,根据方程 求得负载电阻

取近似值,计算得为6.24MHz。 2.2 功率预算 2.2.1 平均光功率计算 标准的SNR方程是 由于使用PIN-PD作为光电探测器,假设系统是热噪声限系统,调制系数m为100%,SNR方程简化为 由于放大器噪声的存在,将实际温度T替换为等效噪声温度,假设环境温度T为300K,放大器噪声系数F为2,则,又已知PD响应率为,计算平均光功率P为 取P近似值为。 2.2.2 平均光电流计算 根据平均光功率P为,计算得PIN-PD的平均光电流,远大于暗电流(几个纳安),因此系统中暗电流的影响可以忽略,计算热噪声电流均方值 散粒噪声电流均方值 可以得到,热噪声功率是散粒噪声功率的近7倍,符合最开始采用热噪声限模型的假设。 预测平均光电流为时,并没有驱动探测器进入非线性区,最大饱和电流等于偏置电压与负载电阻的比值,使用5V偏压时,最大允许电流为(或),远远大于,系统不存在饱和问题。 2.2.3 详细方案 光源SE LED SI MMF

光纤通信-重要知识点总结

光纤通信重要知识点总结 第一章 1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。 2.光纤:由绝缘的石英(SiO2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。 3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。光纤通信系统既可传输数字信号也可传输模拟信号。输入到光发射机的带有信息的电信号,通过调制转换为光信号。光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。 光接收机的作用是将光纤送来的光信号还原成原始的电信号。它一般由光电检测器和解调器组成。光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的RF信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。在这个过程中,受调制的RF 电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。目前大都采用强度调制与直接检波方式。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数模转换,恢复成原来的信息。这样就完成了一次通信的全过程。 4.光纤通信的优点:1通信容量大,一根仅头发丝粗细的光纤可同时传输1000亿个话路2中继距离长,光纤具有极低的衰耗系数,配以适当的光发送与光接收设备,可使其中继距离达数百千米以上,因此光纤通信特别适用于长途一、二级干线通信。3.保密性能好4.适应能力强5.体积小、重量轻、便于施工维护6.原材料资源丰富,节约有色金属和能源,潜在价格低廉,制造石英光纤的原材料是二氧化硅(砂子),而砂子在自然界中几乎是取之不尽、用之不竭的 5.光发射机:功能是把输入的电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。光发射机由光源、驱动器和调制器组成。光源是光发射机的核心。光发射机的性能基本上取决于光源的特性,对光源的要求是输出光功率足够大,调制频率足够高,谱线宽度和光束发散角尽可能小,输出功率和波长稳定,器件寿命长。 6.实现光源调制的方法:直接调制和外调制。直接调制是用电信号直接调制半导体激光器或发光二极管的驱动电流,使输出光随电信号变化而实现的。这种方案技术简单,成本较低,容易实现,但调制速率受激光器的频率特性所限制。外调制是把激光的产生和调制分开,用独立的调制器调制激光器的输出光而实现的。外调制的优点是调制速率高,缺点是技术复杂,成本较高,因此只有在大容量的波分复用和相干光通信系统中使用。 6.光纤线路:光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接器组成。光纤是光纤线路的主体,接头和连接器是不可缺少

光纤通信系统总体设计的一些考虑

光纤通信系统总体设计的一些考虑 内蒙古铁通通信工程公司 师林 摘 要:当设计一个光纤通信系统(例如一个数字段)时,首先要弄清所设计系统的整体情况,它所处的地理位置,当前和未来3~5年内对容量的要求,ITU—T的各项建议及系统的各项性能指标,以及当前设备和技术的成熟程度等。在弄清楚情况的基础上,对下述问题进行具体的考虑和设计。 关键词:光纤通信系统,总体设计。 一、选择路由,设置局站 对于一个需要设计的系统,首先要在两个终端站之间选择最合理的路由、设置中继站(或转接站和分路站)。选择路由一般以直、近为依据,同时应考虑不同级别线路(例如一级干线和二级干线)的配合,以达到最高的线路利用效率和覆盖面积。 中间站的设置(中继站、转接站和分路站)既要考虑上下话路的需要,又要考虑信号放大再生的需要。由于光纤通道的衰减和色散使传输距离受限,需要在适当的距离上设置光再生器以恢复信号的幅度和波形,从而实现长距离传输的目的。 传统的O/E/O实再生器具有所谓的3R功能,即再整形(Reshaping)、再定时(Retiming)和再生(Regenerating)功能。这种再生器相当于光接收机和光发射机的组合,设备较复杂,成本很高,耗电也大。目前,在1.55μm波段运行的系统,已普遍采用掺铒光纤放大器(EDFA)代替传统的O/E/O再生器。虽然国际上也在研究具备3R功能的EDFA,但目前实用的EDFA只具备光放大的功能。因此,对高速率、长距离光纤通信系统,当使用级联EDFA时,须考虑对色散的补偿和对放大的自发辐射(ASE)噪声的抑制。 二、确定系统的制式、速率 20世纪90年代中期,SDH设备已经成熟并在通信网中大量使用,考虑到SDH设备良好的兼容性和组网的灵活性,新建设的长途干线和大城市的市话通信一般都应选择SDH设备,长途干线已采用STM-16、多路波分复用的2.5Gbit/s系统、甚至10Gbit/s系统。 对于农话线路,为了节省投资,也可采用速率为34Mbit/s,140 Mbit/s的PDH系统。 三、光纤选型 目前可选择的光纤类型有G.652光纤、G.653光纤、G.654光纤、G.655光纤及大有效面积光纤。G.652光纤是目前已大量敷设。在1.3μm波段性能最佳的单模光纤,该光纤设计简单、工艺成熟、成本底。但这种光纤工作在1.55μm波段时,有+17ps/km﹒nm左右的色散, 109

(通信企业管理)第章_光纤通信系统的设计精编

(通信企业管理)第章_光纤通信系统的设计

第7章光纤通信系统 于前面几章中,我们已经学习了光纤通信系统中基本元器件的功能,从光源、光检测器、光放大器等有源器件到连接器、隔离器等无源器件。于这章里我们将讨论如何将这些器件通过光纤组合形成具有完整通信功能的系统。光纤通信系统就其拓扑而言是多种多样的,有星形结构、环形结构、总线结构和树形结构等,其中最简单是点到点传输结构。从应用的技术来见,分光同步传输网、光纤用户网、复用技术、高速光纤通信系统、光孤子通信和光纤通信于计算机网络中的应用等等。从其地位来分,又有骨干网、城域网、局域网等。不同的应用环境和传输体系,对光纤通信系统设计的要求是不壹样的,这里我们只研究简单系统的设计,即点到点传输的光纤通信系统。内容包括设计原则、数字和模拟通信系统的设计,最后给出了设计实例,以期读者对光纤通信方面的知识有壹全面了解。 6.1设计原则 6.1.1工程设计和系统设计 光纤通信系统的设计包括俩方面的内容:工程设计和系统设计。 工程设计的主要任务是工程建设中的详细经费概预算,设备、线路的具体工程安装细节。主要内容包括对近期及远期通信业务量的预测;光缆线路路由的选择及确定;光缆线路敷设方式的选择;光缆接续及接头保护措施;光缆线路的防护要求;中继站站址的选择以及建筑方式;光缆线路施工中的注意事项。设计过程大致可分为:项目的提出和可行性研究;设计任务书的下达;工程技术人员的现场勘察;初步设计;施工图设计;设计文件的会审;对施工现场的技术指导及对客户的回访等。 系统设计的任务遵循建议规范,采用较为先进成熟的技术,综合考虑系统经济成本,合理选用器件和设备,明确系统的全部技术参数,完成实用系统的合成。 6.1.2系统设计的内容 光纤通信系统的设计涉及到许多相互关联的变量,如光纤、光源和光检测器的工作特性、

数字光纤通信系统课程设计

~~~~~~学院课程设计报告 课程名称:通信系统课程设计 院部:电气与信息工程学院 专业班级: 学生姓名: 指导教师: 完成时间:2010 年12 月31日 报告成绩:

高速数字光纤通信系统的设计

目录 (3) 摘要 (4) 关键词 (4) Abstract (5) 第一章数字光纤通信系统的整体设计 (6) 1.1数字光纤通信系统的简介 (6) 1.2 数字光纤通信系统的基本设计思想 (7) 1.3 数字光纤通信系统设计的方案分析 (7) 第二章数字光纤通信系统的具体设计 (8) 2.1 A—E的工程分站设计 (8) 2.2 系统部件的选择 (8) 2.2.1光源的选择 (8) 2.2.2光纤的选择 (8) 2.2.3光电检测器的选择 (9) 2.2.4光接口规范的选择 (9) 2.3 应用代码的选择 (9) 2.4 衰耗预算 (10) 2.4.1无光放大器系统的衰耗预算 (10) 2.4.2带光放大器系统的衰耗预算 (10) 2.5色散预算 (11) 2.5.1码间干扰与频率啁啾的功率代价 (11) 2.5.2色散相关参数的确定 (12) 2.5.3色散的具体计算 (12) 第三章数字光纤通信系统设计结果 (14) 总结 (16) 参考文献 (17)

当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和广波的变革极大的提高着信息的传输。进入1993年以后,我国光纤通信已处于持续大反战时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(solition)、掺铒光纤放大器(EDFA)、SDH产品等开发实用实用化开展大量、深入研究工作。同时,各种专用光纤系统组成及其系统参数测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 20世纪70年代末,光纤通信开始进入实用化阶段,各种各样的光纤通信系统如雨后春笋在世界各地建立起来,逐渐成为电信传送网的主要传送手段。近几年来,光纤通信中的各种新技术,新系统也日新月异地发展着,在全球信息高速公路建设中扮演重要角色。 光纤通信是以光波为载波,光纤为传输媒介的通信方式。本次课程设计论文主要介绍光纤系统的基本组成,性能指标,还要对损耗和色散进行预算,用最坏值设计方法来设计高速数字光纤系统。 关键词:光纤通信系统、光纤、损耗、色散、光缆

数字光纤通信系统及其设计

` 数字光纤通信系统及其设计 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。进入1993年以后,我国光纤通信已处于持续大发展时期。其特征是大量新技术,特别是网络技术、高速介质接入网(HMAV)、光时分复用接入(OTMMA)和波分复用接入(WDMA)、光孤子(soliton)、掺铒光纤放大器(EDFA)、 SDH产品等开始实用化并开展大量、深入的研究工作。面对光纤通信技术的普遍应用,了解光纤通信系统组成及其系统参数的测量技术现状,无论是对光纤通信的业主、经销商,还是对光纤通信的广大用户都是重要的。 本论文主要介绍数字光纤通信系统基本组成,含义及其特点,阐述数字光信通信系统的设计方法。针对WDM+EPFA数字光纤链路系统进行具体设计。 关键字; 数字光纤通信系统掺铒光纤放大器(EDFA) 波分复用(WDM) Digital optical communications system and its design ] Abstrac In today's world, the combination of computer and communication technology, the height of optical fiber communication with rapid development. In today's main technology of telecommunications, optical fiber and light changes greatly improves the information transmission capacity. Since 1993, China into a continuous fiber communication has great development period. Its characteristic is a new technology, in particular network technology, high-speed medium access (HMAV), light time multiplex access (OTMMA) and WDM access (WDMA), optical solitons (soliton), erbium doped fiber amplifier (EDFA), SDH products began to

第五章数字光纤通信系统的设计

第五章数字光纤通信系统的设计 (2学时) 一、教学目的及要求: 使学生了解整个数字光纤通信系统在整体进行设计时应考虑的因素和设计时使用的主要方法。 二、教学重点及难点: 本章重点:掌握损耗限制系统和色散限制系统中再生中继距离的设计方法。 本章难点:中继距离与系统传输速率的关系。 三、教学手段: 板书与多媒体课件演示相结合 四、教学方法: 课堂讲解、提问 五、作业: 课外作业: 5-1 5-2 5-5 六、参考资料: 《光纤通信》刘增基第五章。 《光纤通信》杨祥林第八章 七、教学内容与教学设计:

第五章数字光纤通信系统的设计 对数字光纤通信系统而言,系统设计的主要任 务是,根据用户对传输距离和传输容量(话路数或 比特率)及其分布的要求,按照国家相关的技术标准 和当前设备的技术水平,经过综合考虑和反复计算, 选择最佳路由和局站设置、传输体制和传输速率以 及光纤光缆和光端机的基本参数和性能指标,以使 系统的实施达到最佳的性能价格比。 在技术上,系统设计的主要问题是确定中继距 离,尤其对长途光纤通信系统,中继距离设计是否 合理,对系统的性能和经济效益影响很大。 中继距离的设计有三种方法:最坏情况法(参数 完全已知)、统计法(所有参数都是统计定义)和半 统计法(只有某些参数是统计定义)。 5.1 中继距离受损耗的限制 下图示出了无中继器和中间有一个中继器的数 字光纤线路系统的示意图。 数字光纤线路系统 (a)无中继器; (b) 一个中继器 如果系统传输速率较低,光纤损耗系数较大, 中继距离主要受光纤线路损耗的限制。在这种情况 下,要求S和R两点之间光纤线路总损耗必须不超 过系统的总功率衰减,即 [板书] [板书] [板书] [多媒体课件] 96分钟

第6章 光纤通信系统的设计

第6章光纤通信系统的设计 在前面几章中,我们已经学习了光纤通信系统中基本元器件的功能,从光源、光检测器、光放大器等有源器件到连接器、隔离器等无源器件。在这章里我们将讨论如何将这些器件通过光纤组合形成具有完整通信功能的系统。光纤通信系统就其拓扑而言是多种多样的,有星形结构、环形结构、总线结构和树形结构等,其中最简单是点到点传输结构。从应用的技术来看,分光同步传输网、光纤用户网、复用技术、高速光纤通信系统、光孤子通信和光纤通信在计算机网络中的应用等等。从其地位来分,又有骨干网、城域网、局域网等。不同的应用环境和传输体系,对光纤通信系统设计的要求是不一样的,这里我们只研究简单系统的设计,即点到点传输的光纤通信系统。内容包括设计原则、数字和模拟通信系统的设计,最后给出了设计实例,以期读者对光纤通信方面的知识有一全面了解。 6.1 设计原则 6.1.1 工程设计与系统设计 光纤通信系统的设计包括两方面的内容:工程设计和系统设计。 工程设计的主要任务是工程建设中的详细经费概预算,设备、线路的具体工程安装细节。主要内容包括对近期及远期通信业务量的预测;光缆线路路由的选择及确定;光缆线路敷设方式的选择;光缆接续及接头保护措施;光缆线路的防护要求;中继站站址的选择以及建筑方式;光缆线路施工中的注意事项。设计过程大致可分为:项目的提出和可行性研究;设计任务书的下达;工程技术人员的现场勘察;初步设计;施工图设计;设计文件的会审;对施工现场的技术指导及对客户的回访等。 系统设计的任务遵循建议规范,采用较为先进成熟的技术,综合考虑系统经济成本,合理选用器件和设备,明确系统的全部技术参数,完成实用系统的合成。 6.1.2系统设计的内容 光纤通信系统的设计涉及到许多相互关联的变量,如光纤、光源和光检测器的工作特性、系统结构和传输体制等。 例如,目前在骨干网和城域网中普遍选择同步数字序列SDH(Synchronous Digital Hierarchy)作为系统制式,在设计SDH体制的光纤通信系统时,首先要掌握其标准和规范,SDH的传输速率分为STM-1(155.52Mb/s)、STM-4(622.08Mb/s)、STM-16(2.5Gb/s)和STM-64(10Gb/s)等四个级别。ITU-T对每个级别(STM-64正在研究中)所使用的工作波长范围、光纤通道特性、光发射机和接收机的特性都作了规定,并对其应用给出了分类代码,表6.1给出了STM-1标准光接口的主要指标,其中应用分类代码中的符号I表示距离不超过2km的局内应用,S表示距离在15km的局间短距离应用,L表示距离在40~80km的局间长距离应用,符号后的数字表示STM的速率等级和工作波长(1310nm)。 又例,对于局域网(LAN)的设计,IEEE、TIA/EIA等组织也有相关的标准,见表6.2,对数据速率、波长作了规定。表6.3表示了波长范围以及相应技术的要求。对于数据速率为10Mbit/s或100Mbit/s的LAN系统,其光缆的长度可以查阅IEEE802.3u和TIA/EIA568A标准。表6.4为其建议的最大光缆长度。 虽然光纤通信系统的形式多样,但在设计时,不管是否有有成熟的标准可循,以下几点是必须考虑的:①传输距离。②数据速率或信道带宽。③误码率(数字系统)或载噪比和非线性失真(模拟系统)。在作过相关的分析后,我们要决定:是采用多模光纤还是单模光纤,并涉及到纤芯尺寸、折射率剖面、带宽或色散、损耗、数值孔径或模场直径等参数的选取;是采用LED还是LD光源,涉及到波长、谱线宽度、输出功率、有效辐射区、发射方向图、发射模式数量等指标的确定;是采用PIN还是APD接收器,它涉及到响应度、工作波长、

OptiSystem仿真实例

OptiSystem 仿真实例 目录 1光发送机(Optical Transmitters)设计 1.1光发送机简介 1.2光发送机设计模型案例:铌酸锂(LiNbO3)型Mach-Zehnder调制器的啁啾(Chirp) 分析 2光接收机(Optical Receivers)设计 2.1光接收机简介 2.2光接收机设计模型案例:PIN光电二极管的噪声分析 3光纤(Optical Fiber)系统设计 3.1光纤简介 3.2光纤设计模型案例:自相位调制(SPM)导致脉冲展宽分析 4光放大器(Optical Amplifiers)设计 4.1光放大器简介 4.2光放大器设计模型案例:EDFA的增益优化 5光波分复用系统(WDM Systems)设计 5.1光波分复用系统简介 5.2光波分复用系统使用OptiSystem设计模型案例:阵列波导光栅波分复用器(AWG ) 的设计分析 6光波系统(Lightwave Systems)设计 6.1 光波系统简介 6.2 光波系统使用OptiSystem设计模型案例:40G单模光纤的单信道传输系统设计 7色散补偿(Dispersion Compensation)设计 8.1 色散简介 8.2 色散补偿模型设计案例:使用理想色散补偿元件的色散补偿分析 8孤子和孤子系统(Soliton Systems) 9.1 孤子和孤子系统简介 9.2 孤子系统模型设计案例: 9结语

1 光发送机(Optical Transmitters )设计 1.1 光发送机简介 一个基本的光通讯系统主要由三个部分构成,如下图1.1所示: 作为一个完整的光通讯系统,光发送机是它的一个重要组成部分,它的作用是将电信号转变为光信号,并有效地把光信号送入传输光纤。光发送机的核心是光源及其驱动电路。现在广泛应用的有两种半导体光源:发光二级管(LED )和激光二级管(LD )。其中LED 输出的是非相干光,频谱宽,入纤功率小,调制速率低;而LD 是相干光输出,频谱窄,入纤功率大、调制速率高。前者适宜于短距离低速系统,后者适宜于长距离高速系统。 一般光发送机由以下三个部分组成: 1) 光源(Optical Source ):一般为LED 和LD 。 2) 脉冲驱动电路(Electrical Pulse Generator ):提供数字量或模拟量的电信号。 3) 光调制器(Optical Modulator ):将电信号(数字或模拟量)“加载”到光波上。以 光源和调制器的关系来看,可划分为光源的内调制和光源的外调制。采用外调制器,让调制信息加到光源的直流输出上,可获得更好的调制特性、更好的调制速率。目前常采用的外调制方法为晶体的电光、声光及磁光效应。 图1.2为一个基本的外调制激光发射机结构:在该结构中,光源为频率193.1Thz 的激光二极管,同时我们使用一个Pseudo-Random Bit Sequence Generator 模拟所需的数字信号序列,经过一个NRZ 脉冲发生器(None-Return-to-Zero Generator 转换为所需要的电脉冲信号,该信号通过一个Mach-Zehnder 调制器,通过电光 图1.1 光通讯系统的基本构成 1)光发送机 2) 传输信道 3)光接收机 图2 外调制激光发射机

数字光纤通信系统简介

浅谈数字光纤通信系统 摘要 当今世界,计算机与通信技术高度结合,光纤通信有了长足发展。纵观当今电信的主要技术,光纤和光波的变革极大的提高着信息的传输容量。因而传统的模拟信号的传输的信息容量已经远远不能满足当前生产生活的实际技术需求,从上世纪开始数字信号传输已经逐步取代模拟信号,成为当前电视、电话、网络中信息传输的主要方式。 本文就光纤通信网络中的数字光纤通信部分进行了简要的介绍以及分析,涉及数字光纤通信系统基本概念特点的解析,系统的组成结构,主要传输体制以及线路的编码方式。 关键字数字光纤通信系统准同步数字系列(PDH)同步数字系列(SDH)线路编码 内容 一.数字光纤通信系统概况 光纤是数字通信的理想的传输信道。与模拟通信相比,数字通信有许多优点,最主要的是数字系统可以恢复因传输损失导致的信号畸变,因而传输质量高。大容量长距离的光纤通信系统几乎都是采用数字传输方式。 在光纤通信系统中,光纤中传输的是二进制光脉冲“0”码和“1”码,它由二进制数字信号对光源进行通断调制而产生。而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。这种电的数字信号称为数字基带信号,由PCM电端机产生。 二.数字光纤通信系统组成 数字光纤通信系统如图1所示,与模拟系统主要区别在于数字系统中有模数转换设备和数字复接设备,即为PCM端机。 1.模数转换设备。它将来自用户的模拟信号转换为对应的数字信号。数字 复接设备则将多路低速数字信号按待定的方式复接成一路高速数字信 号,以便在单根光纤中传输。 2.输入接口将来自PCM端机的数字基带信号适配成适合在光纤信道中传 输的形态。

毕业设计单片机光通信系统设计

摘要 LED作为冷光源和节能光源,正在不断发展和普及。所以利用这个新的光源来通信,也变成了目前研究的热门课题之一。LED光传输技术就是利用常见的LED等室内照明设备,发出肉眼感觉不到的高速明暗闪烁的通信信号,以无线通信的方式来传输数据。采用无线光通信最大的特点就是它的波长范围大,可以将可见光讯号用不同的波长来进行信号的传输。可见光还有无电磁辐射、易保密等特点,尤其搭借了照明平台,所以不需要采用另外的传输介质,采用广播方式,受体的数量即容量受到的制约小,但是其缺点是不易实现双向的通信。 这次毕业设计的主要内容是尝试设计并制作一个LED通信试验系统,通过对频率的调制,发出特定的编码信号,接收方利用光电敏感器件接收调制光,解调后还原成数据信号。最后,本次毕业设计完成了基本功能的LED发射管、接收管的发射和接收工作,并且尝试将其时分复用和频分复用。在发送端添加了温度传感器和超声波测距传感器,数码管显示,在接收端用1602液晶屏幕显示出来。两者的对比,反应出通信的正确性。 本设计是基于两个89C51单片机,利用红外led发射装置和HS0038接收装置设计的简单慢速通信。目标是熟悉单片机的编程思路和学习通信的基本原理。基本的慢速光通信在传感器与单片机之间的通信上有着广泛的应用。 关键词:LED;调解;解调;频分复用;时分复用 I

Abstract As a cold light and energy-saving light source, LED is rapidly developing and being popularization. So using this new light source to communicate has become a hot research topic nowadays. The technology of LED light transmission is to using common LED indoor lamps. Communication signal of high speed light by the naked eye can not feel the flashing, in a way of wireless communication to transmit data. The most special characteristic of light communication is that the light wavelength range is very long, and visible light can be signal transmission in different wavelength. Visible light and no electromagnetic radiation, such as confidentiality, especially a borrowed lighting platform, so do not need to use the transmission medium, the broadcast, the number that is restricted by receptor capacity is small, it is not easy to achieve two-way communication. The main purpose of this paper is to try to design a LED communication system, through the modulation of the frequency coding signal, the photoelectric sensitive device receives the light modulation, demodulation back into the data signal. Finally, the graduation design, completed the basic function of the LED launch tube, receiving tube emission and reception work, and try to time division multiplexing and frequency division multiplexing. The temperature sensor and the ultrasonic ranging sensor is added in the transmitter, the digital tube display, the receiver with 1602 LCD screen display. The contrast of the two, reflect the correctness of communication. The design is based on two MCUs, simple slow communication using infrared LED emission device and HS0038 receiver design. The target is the basic principle of the programming ideas and learning communication with single-chip microcomputer. Slow light communication basic is widely used in communication between sensor and MCU. Keywords: LED; mediation; demodulation; frequency; division; II

(完整word版)光纤通信技术及应用习题解答.doc

情境一巩固与提高: 一、填空题 1. 华裔学者高锟科学地预言了制造通信用的超低耗光纤的可能性, 并因此获得诺贝尔物理学奖。 2. 目前光纤通信所使用的光的波长为1260nm-1625 nm 。 3. 数字光纤通信系统由光发射机、光纤和光接收机 构成。 4. 光纤通信的 3 个低衰耗波长窗口分别是0.85um 、 1.31um 、 和1.55um 。 5. 非色散位移光纤零色散波长在1310 nm ,在波长为1550 nm 处衰减最小。 6. 光纤主要由纤芯和包层构成,单模光纤芯径一般为 8-10 μm ,多模光纤的芯径一般在50 μm 左右。 7. 光纤的特性主要分为传输特性、机械特性、温度特性 三种。 二、简答题 1.简述光纤通信的优点和缺点。 答:光纤通信的优点: 1)频带宽、通信容量大 2)损耗低、传输距离远 3)信号串扰小、保密性能好

4)抗电磁干扰、传输质量佳 5)尺寸小、重量轻、便于敷设和运输 6)材料来源丰富、环境适应性强 光纤通信的缺点: 1 )光纤性质脆。需要涂覆加以保护 2 )对切断的连接光纤时,需要高精度技术和仪表器具 3 )光路的分路、耦合不方便 4 )光纤不能输送中继器所需的电能 5 )弯曲半径不宜过小 2.简述光全反射原理。 答:光全反射原理:当光从光密媒质(折射率相对较大)到光疏媒质的 交界面会发生全反射现象,即入射角达到一定值时,折射光线将与法线 成 90 °角,再增大会使折射光线进入原媒质传输。 3.简述光纤通信系统的基本组成。 答:光纤通信系统由光发射机、光纤、光接收机组成。光发射机的作用就是 进行电 / 光转换,并把转换成的光脉冲信号码流输入到光纤中进行传输。光源器 件一般是 LED 和 LD 。 光纤:完成光波的传输。 光接收机的作用就是进行光/ 电转换。光收器件一般是光电二极管PIN 和雪崩光电二极管 APD 。 4. 简述 G.652 、 G.653 、G.655 的特点和主要用途。 答: G.652 :也称标准单模光纤,是指零色散点在1310nm附近的光纤;在

数字光纤通信原理

数字光纤通信 1、概述 八十年代dB/km 2.0低衰减光纤的出现光纤带宽的提高以及InGaAsP长波长激光器 PIN管和APD管的研制成功推动了光纤通信的快速发展。 近几年来数字光纤通信向越来越广泛的应用领域和更高级阶段发展。大容量,长距离的数字光纤通信传输系统正在逐步取代传统的电缆传输通信系统。这是因为数字光纤通信具有明显的优势:如传输带宽很宽,通信容量大,不受电磁场干扰,抗腐蚀和抗辐射能力强,重量轻等。 数字光纤通信的基本原理是将数字通信中的数据传输信号首先经过电/光转换变换成光脉冲数字信号,然后通过光纤光缆传输到数字通信的接收端,最后再经过光/电转换、放大、均衡与定时判决再生成传输的数据信号。这一变换过程如图1所示,光发送机中的光源器件接收数字信号的调制(激光器LD 或发光二极管LED)发射光脉冲信号。光接收机完成光/电变换,即由光检测器(PIN光电二极管或雪崩光电二极管APD)把光信号变成电信号,经光接收器放大、均衡再生成数字信号。 图1 数字基本光纤传输系统 2、数字光发送机 光发送机是数字光纤通信系统的三大组成部分(光发送机、光纤光缆、光接收机)之一。其功能是将电脉冲信号变换成光脉冲信号,并以数字光纤通信系统传输性能所要求的光脉冲信号波形从光源器件组件发射出去。光发送机原理方框图见图2所示,主要由整形或码型变换电路、光源驱动电路和发射光源电路组成,图中的其它部分电路,如光检测放大、比较放大、功控与保护及温度控制电路,是为了实现光发射机的各项技术指标结合光源器件的应用特性而采取的相应补偿措施。

图2 数字光发送机原理框图 光源是光发射机的核心,光发射机的性能基本上取决于光源的特性。在光纤通信中对光源的选择要求如下: (1) 发光波长应与光纤的低损耗窗口相符。已知石英光纤的3个低损耗窗口分别是m μ85.0、m μ31.1、m μ55.1左右,光源的发光波长应在上述之一的范围内。 (2) 光源输出的光功率要足够大,且稳定度要高。一般要求有数十微瓦到数毫瓦才能使光中继距离满足系统要求。 (3) 可靠性高、寿命长。 (4) 发光谱线宽度要窄。即单色性要好,以减少光纤的色散,使较高速率的信号能传输较长的距离。 (5) 调制性能要好,主要是要有较高的调制效率和较高的调制速率(即响应速度要快),以满足大容量高速光纤通信系统的需要。如果调制效率不高,不仅能量消耗大,而且会因发热严重而缩短寿命。 (6) 与光纤的耦合效率要高。当光纤的数值孔径一定时,光源的发射角要小,这样才能有较强的方向性,使能量集中注入光纤。 (7) 光源要体积小、重量轻,便于安装。 目前,在光纤通信系统中可供选择的光源有激光二极管(LD )和发光二极管(LED)两种。 发光二极管的基本结构是一个半导体 PN 结,在外部加上驱动电流后就会发光,产生的波长为m μ9.0~8.0,其制作简单,价格便宜,受温度影响小,但输出光发散较大,功率有限,调制速率不高,只能注入多模光纤,一般用于低成本光通信系统。 激光二极管也是一种半导体 PN 结器件,含有刻蚀或解理衬底作为反射面以增强 PN 结上的光场。因此,激光二极管结合了 LED 和光谐振腔反射的特点,输出的激光功率比较高,发散角度小,调制率高,可以注入多模和单模光纤。 光源驱动电路是光发送机的主干电路 它将电脉冲信号通过电流强度调制的方式调制半导体激光器或发光二极管发射出光脉冲信号。在数字光纤通信系统中

光纤通信系统第三版~沈建华~机械工业出版社

《光纤通信》作业(2016.1.30) 1.1 光纤通信有哪些特点? 1、光纤通信的优点: (1)传输容量大。(2)传输损耗小,中继距离长。(3)信号泄漏小,性好。(4)节省有色金属。(5)抗电磁干扰性能好。(6)重量轻,可挠性好,敷设方便。 2、光纤通信的缺点: (1)抗拉强度低。(2)连接困难。(3)怕水。 1.2 简述光纤通信系统的主要组成部分。 光纤通信系统的主要组成部分为:(1)光纤光缆、(2)光源(光发送机)、(3)光检测器(光接收机)、(4)无源器件、(5)光放大器(光中继器)。 1.4为什么使用石英光纤的光纤通信系统中,工作波长只能选择850nm、1310nm、1550nm三种? 由于目前使用的光纤均为石英光纤,而石英光纤的损耗——波长特性中有三个低损耗的波长区,即波长为850nm、1310nm、1550nm三个低损耗区。为此,光纤通信系统的工作波长只能是选择在这三个波长窗口。

2.1 光纤传输信号产生能量衰减的原因是什么?光纤的损耗系数对通信有什么影响? 1、光纤产生能量衰减的原因包括:(1)吸收、(2)散射和(3)辐射。 2、光纤的损耗系数会导致信号功率损失,造成信号接收困难。 2.2 在一个光纤通信系统中,光源波长为1550nm,光波经过5km长的光纤线路传输后,其光功率下降了25%,则该光纤的损耗系数为多少? 2.3 光脉冲在光纤中传输时,为什么会产生瑞利散射?瑞利散射损耗的大小与什么有关? 瑞利散射是由于光纤部的密度不远匀引起的,从而使折射率沿纵向产生不均匀,其不均匀点的尺寸比光波波长还要小。光在光纤中传输时,遇到这些比波长小,带有随机起伏的不均匀物质时,改变了传输方向,产生了散射。 2、瑞利散射损耗的大小与成正比。

相关文档
最新文档