线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程
线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化:

(1)忽略转向系统的影响,直接以前轮转角作为输入;

(2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且

l r Z Z F F ;

(3)汽车前进速度u 视为不变;

(4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性围;

(5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。

分析时,令车辆坐标系原点与汽车质心重合。

首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。

为车辆坐标系的纵轴和横轴。质心速度

于时刻在

轴上的分量为

,在

轴上的分量为

。由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变

化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿

轴速度分量变化为:

考虑到很小并忽略二阶微量,上式变成:

除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量

同理得:

下面计算二自由度汽车的动力学方程

二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为

式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。

考虑到很小,上式可以写成:

下面计算二自由度汽车的动力学方程

二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为

式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。

考虑到很小,上式可以写成:

汽车前后轮侧偏角与其运动参数有关。如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为,;质心侧偏角为,;为与轴的夹角,其值为:

根据坐标系的关系,前后轮侧偏角为

由此,可以列出外力,外力矩与汽车参数的关系式为

所以,二自由度汽车的运动微分方程为

由此,可以列出外力,外力矩与汽车参数的关系式为

所以,二自由度汽车的运动微分方程为

上式可以变形为:

写成状态方程为:

详细步骤MATLAB车辆两自由度操纵稳定性模型分析

基于MATLAB的车辆两自由度操纵稳定性模型及分析 汽车操纵稳定性是汽车高速安全行驶的生命线,是汽车主动安全性的重要因素之一;汽车操纵稳定性一直汽车整车性能研究领域的重要课题。本文采用MATLAB仿真建立了汽车二自由度动力学模型,通过仿真分析了不同车速、不同质量和不同侧偏刚度对汽车操纵稳定性的影响。研究表明,降低汽车行驶速度,增加前后轮侧偏刚度和减小汽车质量可以减小质心侧偏角,使固有圆频率增加降低行驶车速还可以使阻尼比增加,超调量及稳定时间减少。 车辆操纵稳定性评价主要有客观评价和主观评价俩种方法。客观评价是通过标准实验得到汽车状态量,再计算汽车操纵稳定性的评价指标,这可通过实车实验和模拟仿真完成,在车辆开发初期可通过车辆动力仿真进行车辆操纵稳定性研究。 1二自由度汽车模 为了便于掌握操纵稳定性的基本特性,对汽车简化为线性二自由度的汽车模型,忽略转向系统的影响,直接一前轮转角作为输入;忽略悬架的作用,认为汽车车厢只作用于地面的平面运动。

2 运动学分析 确定汽车质心的(绝对)加速度在车辆坐标系的分量 和。Ox 与Oy 为车辆坐标系的纵轴与横轴。质心速度 与t 时刻在Ox 轴上 的分量为u ,在oy 轴上的分量为v 。 2.1 沿Ox 轴速度分量的变化为: ()()cos sin cos cos sin sin u u u v v u u u v v θθ θθθθ+??--+??=?+??---?? 考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便 是汽车质心绝对加速度在车辆坐标系。

沿Ox 轴速度分量的变化为: u x r d d v u v dt dt a θω=-=- 同理,汽车质心绝对加速度沿横轴oy 上的分量为:y r v u a ω=+ 2.2 二自由度动力学方程 二自由度汽车受到的外力沿y 轴方向的合力与绕质心的力矩和为: 12 12cos a cos Y Y Y Z Y Y b F F F M F F δδ=+=-∑∑ 式中,,为地面对前后轮的侧向反作用力;为前轮转角。 考虑到很小,上式可以写上: 11221122 a Y Z b k k F k k M αα αα=+=-∑∑ 根据坐标系的规定,前后侧偏角为: ()12r r r a u v b b u u δξβδβωαωωα=--=+ --==- 由此,可以列出外力,外力矩与汽车参数的关系式为: 1212r r Y r r Z a b u u a b a b u u k k F k k M βδββδβωωωω????=+-+- ? ?????????=+--- ? ????? ∑∑ 所以,二自由度汽车的运动微分方程为: ()1212r r r r r z r a b m v u u u a b a b u u k k k k I βδββδβωωωωωω????+-+-=+ ? ?????????+---= ? ???? ? 上式可以变形为:

二自由度简易云台增稳控制系统设计

二自由度简易云台增稳控制系统设计 项目简介:本课题要求学生在查阅相关资料的基础上,利用单片机、IMU姿态测量元件、舵机等设备搭建二自由度增稳控制平台,设计姿态数据的读取程序,设计舵机的控制程序,设计增稳平台的机械结构,对所设计的程序进行调试,实现云台的增稳控制。 项目方案: 本课题分以下步骤展开研究: 2014年4月~ 2014年10月 收集有单片机接口程序设计方面的资料,学习相关理论知识; 2014年11月~2014年12月 学习MWC飞行控制板的程序设计技术; 2015年1月~2015年4月 设计板载姿态传感器数据读取; 2015年5月~ 2015年8月 设计舵机控制程序和平台机械结构,测试平台增稳性能; 2015年9月~2015年10月 撰写研究报告、结题,项目鉴定。 本项目主要使用MWC飞行控制板和舵机实现二自由度平台的增稳控制 预期成果: 本项目要求完成如下成果: 设计并实现二自由度增稳平台的软、硬件系统,搭建增稳平台的机械结构,完成系统的负载测试。完成研究报告一份。 二自由度云台概述: 云台是一种安装、固定摄像装置的支撑设备,用于摄像装置与支撑物的联结。其英文名称为Pan-Tilt(简称PT),即可以在水平方向和俯仰方向旋转的机械装置。主要用于安装监控、动态摄像等需要进行运动图像(视频)捕捉的场合或环境,使采集方式更直接方便;在需要摇摆和摆动的机构中,如机械臂等,也利用云台来实现可接触范围的延伸和扩展。 根据云台的回转特点可以分为只能左右旋转的水平旋转平台和既能左右旋转又能上下旋转的全方位云台,即二自由度(2-Degree of Freedom)云台,简称2-DOF云台。 增稳的意义: 比如飞行器在飞行过程中,由于自身的抖动以及外界因素对它的影响,它的姿态不断变化,装在上面的图像采集装置一起变化,导致图像的不稳定。如果采用反馈控制原理,先测量姿态变化,再传输到控制装置(舵机),达到稳像的目的。将一个二自由度的稳像平台与遥控直升机恰当地结合在一起,实现了在飞行过程中跟踪目标稳定图像,保持图像质量的功能。

动态矩阵和模型预测控制的半自动驾驶汽车(自动控制论文)

Dhaval Shroff1, Harsh Nangalia1, Akash Metawala1, Mayur Parulekar1, Viraj Padte1 Research and Innovation Center Dwarkadas J. Sanghvi College of Engineering Mumbai, India. dhaval92shroff@https://www.360docs.net/doc/583629380.html,; mvparulekar@https://www.360docs.net/doc/583629380.html, Abstract—Dynamic matrix and model predictive control in a car aims at vehicle localization in order to avoid collisions by providing computational control for driver assistance whichprevents car crashes by taking control of the car away from the driver on incidences of driver’s negligence or distraction. This paper provides ways in which the vehicle’s position with reference to the surrounding objects and the vehicle’s dynamic movement parameters are synchronized and stored in dynamic matrices with samples at regular instants and hence predict the behavior of the car’s surrounding to provide the drivers and the passengers with a driving experience that eliminates any reflex braking or steering reactions and tedious driving in traffic conditions or at junctions.It aims at taking corrective action based on the feedback available from the closed loop system which is recursively accessed by the central controller of the car and it controls the propulsion and steeringand provides a greater restoring force to move the vehicle to a safer region.Our work is towards the development of an application for the DSRC framework (Dedicated Short Range Communication for Inter-Vehicular Communication) by US Department of Traffic (DoT) and DARPA (Defense Advanced Research Projects Agency) and European Commission- funded Project SAVE-U (Sensors and System Architecture for Vulnerable road Users Protection) and is a step towards Intelligent Transportation Systems such as Autonomous Unmanned Ground and Aerial Vehicular systems. Keywords-Driver assist, Model predictive control, Multi-vehicle co-operation, Dynamic matrix control, Self-mapping I.INTRODUCTION Driver assist technologies aim at reducing the driver stress and fatigue, enhance his/her vigilance, and perception of the environment around the vehicle. It compensates for the driver’s ability to react [6].In this paper, we present experimental results obtained in the process of developing a consumer car based on the initiative of US DoT for the need for safe vehicular movement to reduce fatalities due to accidents [5]. We aim at developing computational assist for the car using the surrounding map data obtained by the LiDAR (Light Detection and Ranging) sensors which is evaluated and specific commands are issued to the vehicle’s propellers to avoid static and dynamic obstacles. This is also an initiative by the Volvo car company [1] where they plan to drive some of these control systems in their cars and trucks by 2020 and by General Motors, which aims to implement semi-autonomous control in cars for consumers by the end of this decade [18].Developments in wireless and mobile communication technologies are advancing methods for ex- changing driving information between vehicles and roadside infrastructures to improve driving safety and efficiency [3]. We attempt to implement multi-vehicle co-operative communication using the principle of swarm robotics, which will not only prevent collisions but also define specific patterns, which the nearby cars can form and pass through any patch of road without causing traffic jams. The position of the car and the position of the obstacles in its path, static or moving, will be updated in real time for every sampling point and stored in constantly updated matrices using the algorithm of dynamic matrix control. Comparing the sequence of previous outputs available with change in time and the inputs given to the car, we can predict its non-linear behavior with the help of model predictive control. One of the advantages of predictive control is that if the future evolution of the reference is known priori, the system can react before the change has effectively been made, thus avoiding the effects of delay in the process response [16]. We propose an approach in which human driving behavior is modeled as a hybrid automation, in which the mode is unknown and represents primitive driving dynamics such as braking and acceleration. On the basis of this hybrid model, the vehicles equipped with the cooperative active safety system estimate in real-time the current driving mode of non-communicating human-driven vehicles and exploit this information to establish least restrictive safe control actions [13].For each current mode uncertainty, a mode dependent dynamic matrix is constructed, which determines the set of all continuous states that lead to an unsafe configuration for the given mode uncertainty. Then a feedback is obtained for different uncertainties and corrective action is applied accordingly [7].This ITS (Intelligent Transport System) -equipped car engages in a sort of game-theoretic decision, in which it uses information from its onboard sensors as well as roadside and traffic-light sensors to try to predict what the other car will do, reacting accordingly to prevent a crash.When both cars are ITS-equipped, the “game” becomes a cooperative one, with both cars communicating their positions and working together to avoid a collision [19]. The focus is to improve the reaction time and the speed of communication along with more accurate vehicle localization. In this paper, we concentrate on improving vehicle localization using model predictive control and dynamic matrix control algorithm by sampling inputs of the car such as velocity, steering frame angle, self-created maps Dynamic Matrix and Model Predictive Control for a Semi-Auto Pilot Car

双自由度控制器

第一章绪论 在工程和科学技术发展过程中,自动控制担负着重要的角色。除了在宇宙飞船系统、导弹制导系统和机器人系统等领域中,自动控制具有特别重要的作用之外,它已成为现代机器制造业和工业生产过程中的重要而不可缺少的组成部分。例如,在制造工业的数控机床控制中,在航空和航天工业的自动驾驶仪系统设计中,以及在汽车工业的小汽车和大卡车设计中,自动控制都是必不可少的。此外,在工业中的过程控制,对压力、温度、湿度、黏性和流量的控制等工业操作过程,自动控制也是不可缺少的。 自动控制理论和实践的不断发展,为人们提供了获得动态系统最佳性能的方法,提高了生产率,并且使人们从繁重的体力劳动和大量重复性的手工操作中解放出来。 1.2控制系统的分类 1.2.1 反馈控制系统 能对输出量与参考输入量进行比较,并且将它们的偏差作为控制手段,以 保持两者之间预定关系的系统,称为反馈控制系统。室温控制系统就是反馈系统的例子。通过实际室温,并且将其与参考温度(希望的室温)进行比较,温室调机器就会按照某种方式,加温或冷却设备打开或关闭,从而将室温保持在使人们感到舒适的水平上,且与外界条件无关。反馈系统并不限于工程系统,在各种不同的非工程领域,同样存在着反馈控制系统。 1.2.2 闭环控制系统 反馈控制系统通常属于闭环控制系统。在实践中,反馈控制和闭环控制这两个术语通常交换使用。在闭环控制系统中,作为输入信号与反馈信号(反馈信号可以是输出信号本身,也可以是输出信号的函数及其导数和/或其积分)之差的作用误差信号被传送到控制器,以便减小误差,并且使系统的输出达到希望的值。闭环控制这个术语,总是意味着采用反馈控制作用,以减小系统误差。

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

六自由度机械手复杂运动控制

本文以示教型六自由度串联机械手为试验设备,进行机械手的复杂运动控制,使机械手完成各种复杂轨迹的运动控制等功能,能够在现代工业焊接、喷漆等方面的任务。 本文从运动学分析的基础上着手研究轨迹控制的问题,利用运动学逆解的方式分析复杂轨迹运动的可行性和实用性。目前,六自由度机械手的复杂运动控制已经有了比较好的逆解算法,也有一些针对欠自由度机械手的逆解算法。逆解算法求出的解不是唯一的,它能使机械手达到更多位姿,完成大部分的原计划任务,但其中的一些解并不是最优化的,因此必须讨论其反解的存在性和唯一性。 本文通过建立机械手的笛卡尔坐标系,推导出机械手的正、逆运动学矩阵方程,并研究了正、逆运动学方程的解;在此基础上建立机械手的工作空间,并讨论其工作空间的灵活性和存在可能性。因此本文的另一种方式对六自由度串联机械手的复杂运动控制问题进行研究,提出以机械手示教手柄引导末端执行器对复杂运动轨迹进行预设计。然后通过记录程序进行复杂轨迹的再实现,再对记录程序进行预修改,最终通过现有的程序进行设计编程完成复杂轨迹设计任务。并利用MATLAB对轨迹进行仿真,对比其实际与计算的正确性。 最后本设计通过六自由度串联机械手实现平面文字轨迹,得出其设计的方式。即首先利用示教手柄实现轨迹预设,记录预设轨迹程序,然后再对比程序初始化坐标进行手动编程。 关键词:六自由度机械手,笛卡尔坐标系,运动学方程,仿真,示教手柄ABSTRACT

In this paper, mechanical hand control the complex movement based on the series of six degrees of freedom manipulator so that the mechanical hand complete the complex trajectory of the movement control functions. In modern industrial welding, painting, and other aspects of the mandate can be used. This article based on the analysis of kinematics to study the trajectory control problems, use of inverse kinematics of the complex mode of tracking movement of the feasibility and practicality. At present, the six degrees of freedom manipulator complex movement has been relatively good control of the inverse algorithm.There are also some less freedom for the inverse of the manipulator algorithm. Solutions sought by inverse algorithm is not the only solution, it can reach more manipulator Pose, originally planned to complete most of the task.But some of these solutions is not the most optimal, it is necessary to discuss their anti-the existence of solutions and uniqueness. Through the establishment of the manipulator Cartesian coordinates, derived manipulator is the inverse kinematics matrix equation and the study is the inverse kinematics of the equation solution on the basis of this establishment manipulator working space. And discuss their work space The flexibility and the possibility exists. So in another way to the six degrees of freedom series manipulator motion control the complex issues of research, to handle the machinery Shoushi guide for the implementation of the end of the complex pre-designed trajectory. Then track record of the complicated procedure to achieve, and then record the pre-amended procedures.The eventual adoption of the existing procedures designed trajectory design of complex programming tasks. And using MATLAB simulation of the track, compared with its actual calculation is correct. The final design through six degrees of freedom series manipulator track to achieve flat text, draw their design approach. That is, first of all use of teaching handle achieve trajectory default the track record of default procedures, and then compared to manual procedures initialized coordinate programming. key words:Six degree-of-freedom manipulators,Cartesian coordinates,Equations of motion,Simulation,Demonstration handle.

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z 轴的位移、绕 y 轴的俯仰角和绕 x 轴的侧倾角均为零,且 l r Z Z F F ; (3)汽车前进速度u 视为不变; (4)侧向加速度限定在0.4g 一下,确保轮胎侧偏特性处于线性范围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用。 在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 与 为车辆坐标系的纵轴和横轴。质心速度 于时刻在 轴上的分量为 ,在 轴上的分量为 。由于汽车转向行驶时伴有平移和转动,在时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿 轴速度分量变化为:

考虑到很小并忽略二阶微量,上式变成: 除以并取极限,便是汽车质心绝对加速度在车辆坐标系上的分量 同理得: 下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成:

下面计算二自由度汽车的动力学方程 二自由度汽车受到的外力沿轴方向的合力与绕质心的力矩和为 式中,,为地面对前后轮的侧向反作用力,即侧偏力;为前轮转角。 考虑到很小,上式可以写成: 汽车前后轮侧偏角与其运动参数有关。如上图所示,汽车前后轴中点的速度为,;前后轮侧偏角为, ;质心侧偏角为,;为与轴的夹角,其值为:

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

线性二自由度汽车模型的运动微分方程

线性二自由度汽车模型的运动微分方程 为了便于建立运动方程,做以下简化: (1)忽略转向系统的影响,直接以前轮转角作为输入; (2)忽略悬架的作用;车身只作平行于地面的平面运动,沿z轴的位移、绕y轴的俯仰角和绕x轴的侧倾角均为零,且F Zr Fzi ; (3)汽车前进速度u视为不变; (4)侧向加速度限定在0.4g —下,确保轮胎侧偏特性处于线性围; (5)驱动力不大,不考虑地面切向力对轮胎侧偏特性的影响,没有空气动力的作用在上述假设下,汽车被简化为只有侧向和横摆两个自由度的两轮摩托车模型。 閒代后护曲轮汽车枠即及车辆咐标丟 分析时,令车辆坐标系原点与汽车质心重合。 首先确定汽车质心的(绝对)加速度在车辆坐标系中的分量。 "T与W为车辆坐标系的纵轴和横轴。质心速度V l于f时刻在轴上的分量为|/<,在°匸轴上的分量为 卜。由于汽车转向行驶时伴有平移和转动,在'时刻,车辆坐标系中质心速度的大小与方向均发生变 化,而车辆坐标系中的纵轴和横轴亦发生变化,所以沿'■轴速度分量变化为: (? + Av)sin A" =u cos A6? + cos A 0 it -vsin 0 Avsin \0 考虑到△ 6很小并忽略二阶微量,上式变成:\u -K A0

除以Ar并取极限,便是汽车质心绝对加速度在车辆坐标系\ox上的分量 du dO * a -- ----- v——= n-va) x dt dt r 同理得:叭"刊叫 下面计算二自由度汽车的动力学方程 < ------------------------------ --------------------------------------- ih 二自由度汽车受到的外力沿匸"|轴方向的合力与绕质心的力矩和为 》禺=洛心方"二11 式中,如,比为地面对前后轮的侧向反作用力,即侧偏力;/为前轮转角考虑到’很小,上式可以写成:

云台两自由度控制

云台两自由度控制 作者:04——715班王天指导老师:李 云台是搭载激光测距仪座,摄像头座,机械手座之物,为这些仪器部件提供更大的适用范围。 此品主要采用蜗轮蜗杆的结构来作为传动机构。 其优点是可以得到很大的传动比,比交错轴斜齿轮机构紧凑,因为线接触,故承载能力比交错轴斜齿轮大得多,另外传动平稳无噪音,这样仿生蛇可以执行更隐蔽的任务。还有蜗杆的到程角r小于轮齿间的当量摩擦角时,机构具有自锁性,即只能由蜗杆带动蜗轮,而不能有蜗轮带动蜗杆,这样便于抬板稳定在某一位置工作。而蜗轮蜗杆将纵向转动变为侧向转动方可以使我们的布局更合理。 当然蜗轮蜗杆机构也具有一定的缺点,(1)齿合时相对滑动速度v较大,以磨损,以发热股效率低,而对于具有自锁性的蜗杆传动其效率更低。(2)为了散热和减小摩擦,常需贵重的抗磨材料和良好的润滑装置,故成本较高(3)蜗杆的轴向力较大。看起来去点多多,但在我们的设备本身的运作状况下这些也便不再是缺点了。首相我们的设备转速要求不大,阻力也不大,并不要求时刻保持运作,因此以磨损,易发热,效率较低情况便可忽略。也因如此便不用采用贵重的材料了,所以成本的问题也便不再成为问题。因为阻力不大,轴向力大的问题也便不是问题了。 我们用的电机是瑞士产的ZGR17AL支流减速电机。每分钟转速15转。正好可以迎合我们的设备不需要告诉运作的要求,而起匀速,慢速转动的特性,可以很好的进行控制,在开环控制的情况下获得较大的精度。 控制用数字化控制,利用双极坐标控制,(X,Y).X为底盘转角。Y为台办的转角。X介于0度到360度之间,Y介于0度到90度之间。我们并没有安装测算转过角度的设备,我们通过测算电机转动时间来推算转过的角度,此过程在我们要求转动精度不高的情况下是一种很实用经济有效的手法。我们的转盘上安装一个触碰开关,这样在每次反应前,反转,当碰及触碰开关时停止,以此作为基准。这个既为校准的过程,此位置作为0度。在开始转动命令要求的角度。如此,可以是误差不累加化,提高了工作精度! 我们的电子系统主要是利用plcc封装的51单片机来进行控制,其优点在于功能全面执行能力强,开发工具完善,衍生产品丰富,大量的设计资源可以继承和共享。此单片机成本较低,可以反复擦写1000次左右,可以在没有仿真器的情况下进行反复测试。有效的降低了成本,而plcc封装是正方形而且体积小重量轻,安装于抬板上,云台上,其重心较为稳定,可避免在蛇身高速运动,灵活转向时出现不必要的问题。而运抬要升高到很高高度时,其承载能力较差,所以减轻重量是必要之举。而且使用此单片机可是总体电路紧凑,简明,便于制作和日后维修。 工作原理简述:从并口输入坐标值(X,Y).经过程序中的一套算法,其中包括蜗轮蜗杆的传动比,电机转速,时钟,底座(齿轮)半径,始终,最后转化为电机开启时间,使设备转到预定位置。

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

6自由度控制算法

由于六自由度位置姿态调整平台动力学特性和串联机器人是相通的,所以可以借鉴。增强型PD控制器,这种控制器是在一个线性PD控制的基础上加上沿期望轨迹计算的名义动力学前馈部分以及一个非线性补偿部分,它的最大优点是可以根据规划好的期望轨迹离线计算前馈补偿部分,从而降低实时计算的计算量。计算力矩控制方法,它通过计算力矩的方式控制非线性系统沿期望轨迹运动,如果机器人动力学模型是准确的,计算力矩控制器可以实现动态解耦,并得到一个指数稳定的闭环动力方程,从而实现跟踪误差的指数收敛。 在并联机器人的控制策略中,除了常用的PID控制之外,还有自适应控制,滑模变结构控制,鲁棒控制以及智能控制等控制方法。 基于滑模控制的方法 在具有不确定性的系统的研究和应用中,滑模控制一直是一个非常有效的控制方法。滑模控制也叫变结构控制,其本质是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”不是一成不变的,而是可根据系统当前的状态有目的地不断变化。对于具有信号传输时延的交互控制遥操作系统,也可以应用滑模控制来实现。只要知道时延大小,滑模控制就可以实现变时延情况下的遥操作系统的稳定控制。由于滑动模态与系统对象参数及扰动无关,因此滑模控制具有响应快、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。 鲁棒控制 由于遥操作系统中操作对象的不确定性,以及操作任务的实时变化,导致遥操作系统的特性和参数随工作状态和工作环境的变化而变化,这样就无法得到精确的描述遥操作系统特性的数学模型,给控制系统的设计带来困难。鲁棒控制设计的目标就是在模型不精确和存在其他变化因素的条件下,使系统仍能保持预期的性能。因此鲁棒控制在遥操作系统中发挥了巨大作用,它较大程度地消除了主观上认识的模型和真实的被控对象之间的误差和不确定性。 基于干扰观测器(DOB)的鲁棒运动控制方法由Ohnishi提出,目前广泛应用于各类电动高精度机械伺服系统"干扰观测器设计基于被控对象的开环数学模型,其基本思想是将外部力矩干扰及模型参数变化造成的实际对象与名义模型输出的差异,统统等效到控制输入端,即观测出等效干扰,在控制中引入等量的补偿,实现对各种干扰的完全抑制,同时还可以减弱非线性环节对伺服系统性能的影响,具有很强的鲁棒性。 六自由度并联平台运动控制器的设计可以分为基于铰接空间控制和基于工作空间控制两大类。 基于铰接空间的控制器设计主要依靠平台机构的运动学关系和驱动装置的动态模型,而不考虑六自由度平台的动力学模型,它假设六个液压缸是独立、无耦合的关系,对每个液压伺服系统分别设计控制器而不用考虑其它关节的影响,这就使得并联平台的控制器设计任务转化为一系列单轴伺服系统的控制器设计。 基于工作空间的控制器设计则需要进行平台动力学分析,建立整个并联平台系统的动力学模型,在给定了平台期望的运动轨迹后,求出按照期望轨迹运动所需的力或力矩,然后控制各个液压伺服系统的驱动装置输出所求出的力或力矩,从而使平台按照期望轨迹运动。 常规PID控制 常规PID目前是最常用的工业控制方法,PID控制器各校正环节的作用

相关文档
最新文档