圆内接四边形的性质与判定

圆内接四边形的性质与判定
圆内接四边形的性质与判定

第二单元(章)

第一节圆内接四边形的性质与判定

A 学案

B导案

C 练案

年级 学科 “问题导学练案”

【课题】圆内接四边形的性质与判定

【课型】: 编写人: 审核人: 【练习导航】:与内接四边形的判定定理 圆内接四边形的性质定理

【练习目标】1.理解圆内接四边形的概念;

2.掌握圆内接四边形的性质定理、判定定理及其推论,并能解决有关问题. 【自主学习】

1.圆内接四边形的性质定理:

定理1 圆的内接四边形的对角___ ___.

定理2 圆内接四边形的外角等于它的内角的__ ____.

思考:内接于圆的平行四边形、菱形、梯形分别是矩形、正方形、等腰梯形?

2.圆内接四边形的判定定理:如果一个四边形的对角互补,那么_ _____. 推论 如果四边形的一个外角等于 ,那么这个四边形的四个顶点共圆. 思考:圆内接四边形的性质定理和它的判定定理及推论有何关系?

【即学即练】

1.如图所示,四边形ABCD 内接于⊙O ,110BOD ∠= ,

则BCD ∠=______度.

2.如图,,AD BE 是ABC ?的两条高,求证:CED ABC ∠=∠

【知能提升】:1.如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相

交于点P ,若15PB PD =,则BC

AD

的值为 .

2.如图,D 、E 分别为ABC ?的边AB 、AC 上的点,且不与ABC ?的顶点重合,

圆的内接四边形

例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数. 解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x . ∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°, ∴x=18°, ∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°, ∴∠D=180°一36°=144°. 说明:①巩固性质;②方程思想的应用. 例如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC . 分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决. 说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁. 例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA . 分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明. 证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC . △ABC 是等边三角形.∴AB=AC . ∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD . ∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC . ∵∠ADE=∠ACB , 又 ∵∠ABC=∠ACB =60°, ∴∠AEB=∠ADE=60°. ∴△AED 是等边三角形,∴AD=DE=DB+BE . ∵BE=DC ,∴DB+DC=DA . 说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视. 例 如图,ABCD 是⊙O 的内接四边形,CD AH ⊥,如果?=∠30HAD ,那么=∠B ( ) A .90° B .120° C .135° D .150° E

圆的内接四边形教案及课后练习

S3.6 圆内接四边形 一、认识圆的内接四边形 1.知识要点 (1)我们以前学习过圆的内接三角形 圆的内接三角形:如果一个三角形的各个顶点在同一个圆上,那么这个三角形叫做圆 的内接三角形,这个圆叫做三角形的外接圆。 (2)今天我们学习圆的内接四边形 圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的 内接四边形,这个圆叫做四边形的外接圆。如右图中,四边形ABCD 是⊙O 的内接四边 形;⊙O 是四边形ABCD 的外接圆。 二、圆内接四边形的性质定理 1.知识要点 定理一:圆内接四边形的对角互补. 定理二:圆内接四边形的外角等于它的内对角(内角的对角). 2.典型例题 S3.6.1如图,四边形ABCD 内接于⊙O ,∠BOD=110°,求∠BCD 的度数. S3.6.2如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P.若PB PA =12,PC PD =13,求BC AD 的值. 三、圆内接四边形的判定定理 1.知识要点 (1)定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆). (2)推论:如果四边形的一个外角等于它内对角,那么这个四边形的四个顶点共圆.

2.典型例题 S3.6.3如图,CF是△ABC的AB边上的高,FP⊥BC,FQ⊥AC.求证:ABPQ四点共圆. S3.6 圆内接四边形练习 1.下列四边形中一定有外接圆的是() A.对角线相等的四边形B.菱形C.直角梯形D.等腰梯形 2.过四边形ABCD的顶点D,B,C作一个圆,若∠A+∠C>180°,则点A在( ) A.圆内B.圆外C.圆上D.不能确定 3.四边形ABCD内接于圆,∠A:∠B:∠C:∠D= 5:m:4:n,则m,n满足的条件是() A.5m=4n B.4m=5n C.m+n=9 D.m+n=180° 4.如下图,圆心角∠AOB=120°,P是上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC 等于() A.45°B.60° C.75°D.85° 5.圆上四点,A、B、C、D分圆周为四段弧,:::=1:2:3:4,则圆内接四边形的最大内角为______. 6.如下图,在梯形ABCD中,AB∥DC,AD=DC=BC,∠ADC=138°,E是梯形外一点,若点E在梯形ABCD 的外接圆上,则∠AEB=________.

3.圆内接四边形的性质与判定

3.圆内接四边形的性质与判定 一、基础知识回顾 1.在同圆或等圆中,相等的圆心角所对 的相等,所对的 也相等。 2. 在同圆或等圆中, 如果两个圆心角、两条 、两条 、两个 中有一对量相等,那么它们所对应的其余各对量都相等。 3. 圆周角定理:一条弧所对的圆周角等于它所对 。 (1) 半圆(或直径)所对的圆周角是 ; 90o的圆周角所对的弦是 . (2) 在同圆或等圆中,同弧或等弧所对的圆周角 ; 相等的圆周角所对的弧也 . 二、知识延伸拓展 如果四边形的各顶点在一个圆上,这个四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆。例如,图1中,四边形ABCD 是⊙O 的内接四边形;⊙O 是四边形ABCD 的外接圆。圆内接四边形有以下性质: 性质定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的相邻内角的对角。 已知:如图2,四边形ABCD 内接于⊙O ,∠DCE 是四边形ABCD 的外角。 求证:(1)∠A+∠BCD=180o,∠B+∠D=180o; (2)∠DCE=∠A 。 证明:(1)∵ , , ∴ ∵ 和 的度数和是360 o ∴ 同理,∠B+∠D=180o。 (2) ∵∠DCE 是四边形ABCD 的外角, ∴∠DCE+∠BCD=180o 由(1)得∠A+∠BCD=180o ∴∠DCE=∠A 。 图1 E 图2 BAD ⌒ BCD ⌒ ⌒ ∠A 所对的弧是BCD ∠BCD 所对的弧是BAD ⌒ ⌒ ⌒ m m .2 1 ,21A BAD BCD BCD =∠=∠.1803602 1 )(212121?=??=+=+=∠+∠BAD BCD BAD BCD BCD A m ⌒ ⌒ ⌒ ⌒

什么叫圆的内接四边形

一、教学案例实录 教学过程 : 1. 习旧引新 ⑴在⊙O 上 , 任到三个点 A 、 B 、 C, 然后顺次连接 , 得到的是什么图形 ? 这个图形与⊙O 有什么关系 ? ⑵由圆内接三角形的概念 , 能否得出什么叫圆的内接四边形呢 ( 类比 )? 2. 概念学习 ⑴什么叫圆的内接四边形 ? ⑵如图 1, 说明四边形 ABCD 与⊙O 的关系。 3. 探讨性质 ⑴前面我们已经学习了一类特殊四边形 ---- 平行四边形 , 矩形 , 菱形 , 正方形 , 等腰梯形的性质 , 那么要探讨圆内接四边形的性质 , 一般要从哪几个方面入手 ? ⑵打开《几何画板》 , 让学生动手任意画⊙O 和⊙O 的内接四边形 ABCD 。 ( 教师适当指导 ) ⑶量出可试题的所有值 ( 圆的半径和四边形的边 , 内角 , 对角线 , 周长 , 面积 ), 并观察这些量之 间的关系。 ⑷改变圆的半径大小 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? ⑸移动四边形的一个顶点 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? 移动四边形的 四个顶点呢 ? 移动三个顶点呢 ? ⑹如何用命题的形式表述刚才的实验得出来的结论呢 ?( 让学生回答 ) 4. 性质的证明及巩固练习

⑴证明猜想 已知 : 如图 1, 四边形 ABCD 内接于⊙O 。求证 :∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。 ⑵完善性质 ①若将线段 BC 延长到 E( 如图 2), 那么 ,∠DCE 与∠BAD 又有什么关系呢 ? ②圆的内接四边形的性质定理 : 圆内接四边形的对角互补 , 并且任何一个外角都等于它的内对角。 ⑶练习 ①已知 : 在圆内接四边形 ABCD 中 , 已知∠A=50°,∠D-∠B=40°, 求∠B,∠C,∠D 的度数。 ②已知 : 如图 3, 以等腰△ABC 的底边 BC 为直径的⊙O 分别交两腰 AB,AC 于点 E,D, 连结 DE, 求证 :DE∥BC 。 ( 演示作业本 ) 5. 例题讲解 引例已知 : 如图 4,AD 是△ABC 中∠BAC 的平分线 , 它与△ABC 的外接圆交于点 D 。 求证 :DB=DC 。 ( 引例由学生证明并板演 ) 教师先评价学生的板演情况 , 然后提出 , 若将已知中的“ AD 是△ABC 中的∠BAC 的平分线”改为“ AD 是△ABC 的外角∠EAC 的平分线”, 又该如何证明 ? 引出例题。 例已知 : 如图 5,AD 是△ABC 的外角∠EAC 的平分线 , 与△ABC 的外接圆交于点 D, 求证 :DB=DC 。 6. 小结 : 为了使学生对所学的内容有一个完整而深刻的印象 , 让学生组成小组 , 从概念 , 性质 , 方法 , 特殊性进行讨论 , 然后对讨论的结果进行归纳。

圆内接四边形的性质

11.2.5 圆内接四边形的性质 1、(1)圆的内接四边形对角互补。 如图:四边形ABCD内接于⊙o ,则有:∠A+∠B=1800.∠B+∠C=1800. (2)圆内接四边形的外角等于它的内角的对角。 如图:∠CBE是圆内接四边形ABCDD的一外角,则有:∠CBE=∠D. 2、圆内接四边形的判定。 (1)判定定理:如果一个四边形对角互补,那么这个四边形的四个顶点共圆。(2)推论;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。 〖例1〗如图所示,已知四边形ABCD内接于圆,延长AB和DC相交于E,EG平分∠BEC,且与BC、AD分别相交于FG. 求证:∠CFG=∠DGF. 分析:已知四边形ABCD内接于圆,自然想到圆内接四边形的性质定理,即∠BCE=∠BAD,又EG平分∠BEC,故△CFE∽△AGE.

[证明]因为四边形ABCD是圆内接四边形。 所以∠ECF=∠EAG. 又因为EG平分∠BEC, 即∠CEF=∠AEG,所以△EFC∽△EGA. 所以∠EFC=∠EGA. 而∠DGF=1800-∠EGA,∠CFG=1800-∠EFC, 所以∠CFG=∠DGF. 3、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 几何语言:∵PT切⊙0于T,PBA是⊙0的割线. ∴PT2=PA·PB(切割线定理) 4、割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆的交点的两条线段长的积相等。 几何语言:∵PT是⊙0的切线,PBA、PDC是⊙0的割线. ∴PO·PC=PA·PB (割线定理) 由上可知:PT2=PA·PB=PC·PD. 5、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 证明:连结AB,CD由圆周角定理的推论,得∠A=∠C,∠B=∠D。(圆周角推论2: 同(等)弧所对圆周角相等) ∴△PAB∽△PCD ∴PA∶PC=PB∶PD,PA·PD=PB·PC

圆内接四边形性质定理

C D ·O B A E P 圆内接四边形性质定理证明: 如右图:圆内接四边形ABCD ,圆心为O ,延长BC 至E ,AC 、BD 交于P ,则: 一、圆内接四边形的对角互补:∠ABC +∠A DC=180°,∠BC D +∠B AD=180° 二、圆内接四边形的任意一个外角等于它的内对角:∠D CE=∠BAD 三、圆内接四边形对应三角形相似:△B C P∽△ADP 四、相交弦定理:AP×CP=BP×DP 五、托勒密定理:AB×CD+AD×CB=AC×BD 一、圆内接四边形的对角互补的证明(三种方法) 【证明】方法一: 利用一条弧所对圆周角等于它所对圆心角的一半。 如图,连接OB 、OD 则∠A= 21β,∠C=2 1α ∵α+β=360° ∴∠A+∠C= 2 1 ×360°=180° 同理得∠B+∠D=180° (也可利用四边形内角和等于360°) 【证明】方法二: 利用直径所对应的圆周角为直角。 设圆内接四边形ABCD 证明:∠A+∠C=180°,∠B+∠D=180° 连接BO 并延长,交⊙O 于E 。连接AE 、CE 。 则BE 为⊙O 的直径 ∴∠BAE=∠BCE=90° ∴∠BAE+∠BCE=180° ∴∠BAE+∠BCE -∠D AE+∠DAE=180° 即∠BAE -∠DAE+∠BCE +∠DAE=180° ∵∠DAE=∠DCE(同弧所对的圆周角相等) ∴∠BAE -∠DAE+∠BCE+∠DCE=180° 即∠BAD+∠BCD=180° ∠A+∠C=180° ∴∠B+∠D=360°-(∠A+∠C )=180° (四边形内角和等于360°) 【证明】方法三: 利用四边形内角和为360°及同弧所对的圆周角均相等 连接AC 、BD ,将∠A 、∠B、∠C 、∠D 分为八个角 ∠1、∠2、∠3、∠4、∠5、∠6、∠7、∠8 ∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360(四边形内角和为360°) ∠4=∠1,∠7=∠2,∠8=∠5,∠3=∠6 (同弧所对的圆周角相等) ∴∠1+∠2+∠5+∠6= 2 1 ×360°=180° ∵∠1+∠2=∠A ∠5+∠6=∠C ∴∠A+∠C=180° C A B D ·O α β ·O B C D 1 2 4 3 5 6 7 8

圆内接四边形的性质判定定理习题及答案

圆内接四边形的性质与判定定理习题及答案

2.处理过程:让学生独立完成这两道自测题 成两组,每一组推荐一名同学说出解题思路和答案. 例1 (2011·课标全国卷)如图3,D,E分别为△ABC 的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于方程x2-14x+mn=0的两个根. (1)证明:C,B,D,E四点共圆; (2)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径. 1.选题立意:本题考查三角形相似、四点共圆的基本知识与方法,考查推理论证能力及运算求解能力. 2.处理过程:第(1)小题是证明四点共圆问题,那么要证四点共圆,我们有那些方法呢?通过提问让学生在大脑中搜索相关知识,寻找最佳解题方案这样问题可以转化为证明Rt△ADE与 似,从而利用本节的推论来证明四点共圆 题是计算问题,关键是引导学生如何确定圆心的位置.根据圆的性质可知,圆心即为该圆弦的中垂线的交点,问题就转化为在矩形AFHG 半径了. 3.老师点评:证明四点共圆主要是利用圆内接四

能力锤炼: 能说的让学生说,学生能做的让学生做第(2)小题实际上是证明角相等问题,请一个学生用分析法来寻求证明思路.当学生“找路”有困难时,及时正确引导,同时注意引导方式3.老师点评:解答平面几何问题时不仅要用到几何定理,而且还要用到各种不同的推理形式,推理策略,有时还要使用“添加辅助线”之类的技巧性较高的方法.在几何学习中,除了运用逻辑推理外,还要应用观察、比较、类比、直觉、猜想、归纳、概括等合情推理. 如图6,已知△ABC 中,AB=AC,D 是△ABC 外接圆劣弧AC ⌒ 上的点(不与A,C 重合),延长BD 到E. (1)求证:AD 的延长线平分∠CDE; (2)若∠BAC=30°,△ABC 中 BC 边上的高为2+ 3 , 求△ABC 外接圆的面积. 设计意图:检验所学习的知识,从而熟练掌握本节的重点,形成相应的数学能力.

圆周角定理及圆的内接四边形-练习题 含答案

圆周角定理及圆的内接四边形 副标题 题号一二三总分 得分 一、选择题(本大题共5小题,共15.0分) 1.如图,A,B,C是上三个点,,则下列 说法中正确的是 A. B. 四边形OABC内接于 C. D. 【答案】D 【解析】解:过O作于D交于E , 则, ,, , , , , ,故C错误; , , , ,故A错误; 点A,B,C在上,而点O在圆心, 四边形OABC不内接于,故B错误; , , ,故D正确; 故选D. 过O作于D交于E,由垂径定理得到,于是得到,推出,根据三角形的三边关系得到,故C错误;根据三角形内角和得到, ,推出,故A错误;由点A,B, 1 / 7第1页,共7页

C 在上,而点O在圆心,得到四边形OABC 不内接于,故B错误;根据余角的性质得到,故D正确; 本题考查了圆心角,弧,弦的关系,垂径定理,三角形的三边关系,正确的作出辅助线是解题的关键. 2.如图,四边形ABCD 内接于,AC 平分,则下 列结论正确的是 A. B. C. D. 【答案】B 【解析】解:A 、与的大小关系不确定,与AD不一定相等,故本选项错误; B 、平分,,,故本选项正确; C 、与的大小关系不确定,与不一定相等,故本选项错误; D 、与的大小关系不确定,故本选项错误. 故选:B. 根据圆心角、弧、弦的关系对各选项进行逐一判断即可. 本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 3.如图,四边形ABCD 内接于,若四边形ABCO是平行 四边形,则的大小为 A. B. C. D. 【答案】C 【解析】解:设的度数,的度数; 四边形ABCO是平行四边形, ; ,;而, , 解得:,,, 故选:C. 第2页,共7页

圆内接四边形教案

1. 知识结构 2. 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3. 教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究; (2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法. 一、教学目标: (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)掌握圆内接四边形的概念及其性质定理;

(3)熟练运用圆内接四边形的性质进行计算和证明. (二)能力目标 (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力; (2)通过定理的证明探讨过程,促进学生的发散思维; (3)通过定理的应用,进一步提高学生的应用能力和思维能力. (三)情感目标 (1)充分发挥学生的主体作用,激发学生的探究的热情; (2)渗透教学内容中普遍存在的相互联系、相互转化的观点. 二、教学重点和难点: 重点:圆内接四边形的性质定理. 难点:定理的灵活运用. 三、教学过程设计 (一)基本概念 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆. (二)创设研究情境 问题:一般的圆内接四边形具有什么性质?

研究:圆的特殊内接四边形(矩形、正方形、等腰梯形) 教师组织、引导学生研究. 1、边的性质: (1)矩形:对边相等,对边平行. (2)正方形:对边相等,对边平行,邻边相等. (3)等腰梯形:两腰相等,有一组对边平行. 归纳:圆内接四边形的边之间看不出存在什么公同的性质. 2、角的关系 猜想:圆内接四边形的对角互补. (三)证明猜想 教师引导学生证明.(参看思路) 思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢? ∠A=,∠C=

圆内接四边形的性质与判定定理

圆内接四边形的性质与判定定理 一、 选择题 1. 下列关于圆内接四边形叙述正确的有 ①圆内接四边形的任何一个外角都等于它的内对角;②圆内接四边形对角相等;③圆内接四边形中不相邻的两个内角互补;④在圆内部的四边形叫圆内接四边形. A.1个 B.2个 C.3个 D.4个 2.圆内接四边形ABCD 中,//AD BC ,AC 与BD 交于点E ,在下图中全等三角形的对数为 A.2对 B.3对 C.4对 D.5对 3.圆内接四边形ABCD 中,39,25,60,52AB BC CD DA ====,则圆的直径为 A.62 B.63 C.65 D.66 T2 T4 T5 4.如图,四边形ABCD 为圆内接四边形,AC 为BD 的垂直平分线,60,ACB AB a ∠==o ,则CD = C.12a D.13 a 5.圆内接四边形ABCD 中,BA 与CD 的延长线交于点P ,AC 与BD 交于点E,则图中相似三角形有 A.5对 B.4对 C.3对 D.2对 6.如图,已知圆内接四边形ABCD 的边长为2,6,4AB BC CD DA ====,则四边形ABCD 面积为 A. 163 B.8 C.323 D. D T6 T7 T12 7.如图,在以BC 为直径的半圆上任取一点P ,过弧BP 的中点A 作AD BC ⊥于D.连接BP 交AD 于点E,交AC 于点F,则:BE EF = A.1:1 B.1:2 C.2:1 D.以上结论都不对 8.直线370x y +-=与20kx y --=与两坐标轴围成的四边形内接于一个圆,则实数k =

A.-3 B.3 C.-6 D.6 二、填空题 9.圆内接四边形ABCD 中,cos cos cos cos A B C D +++= . 10.三角形三边长为5,12,13,则它的外接圆圆心到顶点的距离为 . 11.圆内接四边形ABCD 中,::1:2:3A B C ∠∠∠=,则D ∠= . 12.如图,AB 为半圆O 的直径,C 、D 为半圆上的两点,20BAC ∠=o ,则ADC ∠= . 三、解答题 13.如图,锐角三角形ABC 中,60A ∠=o ,BC 为圆O 的直径,⊙O 交AB 、AC 于D 、E ,求证:2BC DE =. B 14.求证:在圆内接四边形ABCD 中,AC BD AD BC AB CD ?=?+?. 15.在等边三角形ABC 外取一点P ,若PA PB PC =+,求证:P 、A 、B 、C 四点共圆. 16.如图,⊙O 的内接四边形ABCD 中,M 为CD 中点,N 为AB 中点,AC BD ⊥于点E ,连接ON 、ME ,并延长ME 交AB 于点F.求证:MF AB ⊥. A D B C

圆的内接四边形

圆的内接四边形 知识结构 2.重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3.教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究; (2)在教学中以发现证明应用为主线,以特殊一般的探究方法,引导学生发现与证明的思想方法. 一、教学目标: (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)掌握圆内接四边形的概念及其性质定理; (3)熟练运用圆内接四边形的性质进行计算和证明. (二)能力目标 (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力;

(2)通过定理的证明探讨过程,促进学生的发散思维;(3)通过定理的应用,进一步提高学生的应用能力和思维能力. (三)情感目标 (1)充分发挥学生的主体作用,激发学生的探究的热情;(2)渗透教学内容中普遍存在的相互联系、相互转化的观点. 二、教学重点和难点: 重点:圆内接四边形的性质定理. 难点:定理的灵活运用. 三、教学过程设计 (一)基本概念 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆. (二)创设研究情境 问题:一般的圆内接四边形具有什么性质? 研究:圆的特殊内接四边形(矩形、正方形、等腰梯形)教师组织、引导学生研究. 1、边的性质: (1)矩形:对边相等,对边平行. (2)正方形:对边相等,对边平行,邻边相等. (3)等腰梯形:两腰相等,有一组对边平行. 归纳:圆内接四边形的边之间看不出存在什么公同的性质.2、角的关系

【中考冲刺】圆内接四边形的性质

【中考冲刺】圆内接四边形的性质

【中考冲刺】圆内接四边形的性质 一、选择题(共15小题) 1.(2011?肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是() 2.(2010?北海)如图,四边形ABCD内接于⊙O,若∠C=36°,则∠A的度数为() 3.(2006?宁德)如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为() 4.(2001?咸宁)如图,圆内接四边形ABCD的外角∠ABE为85°,则∠ADC的度数为() 5.(2010?台湾)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和()

7.(2004?武汉)如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是() 8.(2004?丰台区)如图,ABCD为圆内接四边形,若∠A=60°,则∠C等于() 9.(2003?泉州)如图,在⊙O的内接四边形ABCD中,若∠BAD=110°,则∠BCD等于() 10.(2003?海淀区)如图,四边形ABCD内接于⊙O,E在BC延长线上,若∠A=50°,则∠DCE等于() 11.(2003?甘肃)如图,ABCD为圆内接四边形,E为DA延长线上一点,若∠C=45°,则∠BAE等于()

12.(2002?苏州)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=() 13.(2000?西城区)如图,ABCD为圆内接四边形,如果∠C=50°,那么∠A等于() 15.(1999?成都)如图,ABCD是⊙O的内接四边形,且∠ABC=115°,那么∠AOC等于() 二、填空题(共14小题)(除非特别说明,请填准确值) 16.(2011?江津区)已知如图,在圆内接四边形ABCD中,∠B=30°,则∠D=_________. 17.(2005?滨州)如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=_________度.

圆内接四边形性质定理

C D ·O B A E P 圆内接四边形性质定理证明: 如右图:圆内接四边形ABCD ,圆心为O ,延长BC 至E ,AC 、BD 交于P ,则: 一、圆内接四边形的对角互补:∠ABC+∠ADC=180°,∠BCD+∠BAD=180° 二、圆内接四边形的任意一个外角等于它的内对角:∠DCE=∠BAD 三、圆内接四边形对应三角形相似:△BCP ∽△ADP 四、相交弦定理:AP×CP=BP×DP 五、托勒密定理:AB×CD+AD×CB=AC×BD 一、圆内接四边形的对角互补的证明(三种方法) 【证明】方法一: 利用一条弧所对圆周角等于它所对圆心角的一半。 如图,连接OB 、OD 则∠A= 21β,∠C=2 1 α ∵α+β=360° ∴∠A+∠C=2 1 ×360°=180° 同理得∠B+∠D=180° (也可利用四边形内角和等于360°) 【证明】方法二: 利用直径所对应的圆周角为直角。 设圆内接四边形ABCD 证明:∠A+∠C=180°,∠B+∠D=180° 连接BO 并延长,交⊙O 于E 。连接AE 、CE 。 则BE 为⊙O 的直径 ∴∠BAE=∠BCE=90° ∴∠BAE+∠BCE=180° ∴∠BAE+∠BCE-∠DAE+∠DAE=180° 即∠BAE-∠DAE+∠BCE+∠DAE=180° ∵∠DAE=∠DCE (同弧所对的圆周角相等) ∴∠BAE-∠DAE+∠BCE+∠DCE=180° 即∠BAD+∠BCD=180° ∠A+∠C=180° ∴∠B+∠D=360°-(∠A+∠C )=180° (四边形内角和等于360°) 【证明】方法三: 利用四边形内角和为360°及同弧所对的圆周角均相等 连接AC 、BD ,将∠A 、∠B 、∠C 、∠D 分为八个角 ∠1、∠2、∠3、∠4、∠5、∠6、∠7、∠8 ∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360(四边形内角和为360°) ∠4=∠1,∠7=∠2,∠8=∠5,∠3=∠6 (同弧所对的圆周角相等) ∴∠1+∠2+∠5+∠6=2 1 ×360°=180° ∵∠1+∠2=∠A ∠5+∠6=∠C ∴∠A+∠C=180° ∴∠B+∠D=360°-(∠A+∠C )=180° (四边形内角和等于360°) 二、圆内接四边形的任意一个外角等于它的内对角证明 如图,求证:∠DCE=∠BAD ∠BCD+∠DCE=180°(平角为180°) ∠BCD+∠BAD=180°(圆内接四边形的对角互补) ∴∠DCE=∠BAD 三、圆内接四边形对应三角形相似 如上图,求证:△BCP ∽△ADP ,△ABP ∽△DCP 证明: ∵∠CBP=∠DAP ,∠BCP=∠ADP (一条弧所对圆周角等于它所对圆心角的一半。) 又∵∠APD=∠BPC (对顶角相等) C A B D ·O α β C D ·O B A E P ·O B C D 1 2 4 3 5 6 7 8

《圆的内接四边形的性质》课堂教学分析

《圆的内接四边形的性质》课堂教学分 析 《圆的内接四边形的性质》课堂教学分析 授课教师:韩河元听课教师:张磊 一、课堂教学过程实录 1.习旧引新 ⑴在⊙O上,任到三个点A、B、C,然后顺次连接,得到的是什么图形?这个图形与⊙O有什么关系? ⑵由圆内接三角形的概念,能否得出什么叫圆的内接四边形呢(类比)? 2.概念学习 ⑴什么叫圆的内接四边形? ⑵如图1,说明四边形ABCD与⊙O的关系。

3.探讨性质 ⑴前面我们已经学习了一类特殊四边形----平行四边形、矩形、菱形、正方形、等腰梯形的性质,那么要探讨圆内接四边形的性质,一般要从哪几个方面入手? ⑵打开《几何画板》,让学生动手任意画⊙O和⊙O的内接四边形ABCD。(教师适当指导) ⑶量出可试题的所有值(圆的半径和四边形的边、内角、对角线、周长、面积),并观察这些量之间的关系。 ⑷改变圆的半径大小,这些量有无变化?由(3)观察得出的某些关系有无变化? ⑸移动四边形的一个顶点,这些量有无变化?由(3)观察得出的某些关系有无变化?移动四边形的四个顶点呢?移动三个顶点呢? ⑹如何用命题的形式表述刚才的实验得出来的结论呢?(让学生回答) 4.性质的证明及巩固练习

⑴证明猜想已知:如图1,四边形ABCD内接于⊙O。求证:∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。 ⑵完善性质①若将线段BC延长到E(如图2),那么,∠DCE与∠BAD又有什么关系呢?②圆的内接四边形的性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ⑶练习 ①已知:在圆内接四边形ABCD中,已知∠A=50°,∠D-∠B=40°,求∠B,∠C,∠D的度数。 ②已知:如图3,以等腰△ABC的底边BC为直径的⊙O分别交两腰AB,AC于点E,D,连结DE,求证E∥BC。(演示作业本) 5.例题讲解引例已知:如图4,AD是△ABC中∠BAC的平分线,它与△ABC的外接圆交于点D。求证B=DC。(引例由学生证明并板演)教师先评价学生的板演情况,然后提出,若将已知中的“AD是△ABC 中的∠BAC的平分线”改为“AD是△ABC的外角∠EAC的平分线”,又该如何证明?引出例题。

案例圆内接四边形的概念和圆内接四边形的和要性质

案例圆内接四边形的概念和圆内 接四边形的和要性质 圆内接四边形的概念和圆内接四边形的和要性质 一、教学案例实录 教学过程: 1.习旧引新 ⑴在。0上,任到三个点A、B、C,然后顺次连接,得到的是什么图形?这个图形与O O有什 么关系? ⑵由圆内接三角形的概念,能否得出什么叫圆的内接四边形呢(类比)? 2?概念学习 ⑴什么叫圆的内接四边形? ⑵ 如图1,说明四边形ABCD与O0的关系。 3.探讨性质 ⑴前面我们已经学习了一类特殊四边形----平行四边形,矩形,菱形,正方形,等腰梯形的性质,

那么要探讨圆内接四边形的性质,一般要从哪几个方面入手? ⑵打开《几何画板》,让学生动手任意画O0和O0的内接四边形ABCD。(教师适当指导) ⑶ 量出可试题的所有值(圆的半径和四边形的边,内角,对角线,周长,面积),并观察这些量之间 的关系。 ⑷改变圆的半径大小,这些量有无变化?由(3)观察得出的某些关系有无变化? ⑸移动四边形的一个顶点,这些量有无变化?由(3)观察得出的某些关系有无变化?移动四边形的四个顶点呢?移动三个顶点呢?

⑹如何用命题的形式表述刚才的实验得出来的结论呢?(让学生回答) 4.性质的证明及巩固练习 ⑴证明猜想 已知:如图1,四边形ABCD 内接于OO .求证:ZBAD+ZBCD=180°ZABC+ZADC=180° ? ⑵完善性质 ①若将线段BC延长到E(如图2),那么,ZDCE与ZBAD又有什么关系呢? ②圆的内接四边形的性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ⑶练习 ①已知:在圆内接四边形ABCD中,已知ZA=50°ZD-ZB=40?求ZB,ZC,ZD的度数。 ②已知:如图3,以等腰AABC的底边BC为直径的0O分别交两腰AB,AC于点E,D,连结DE, 求证:DE〃BC。(演示作业本) 5.例题讲解 引例已知:如图4,AD是AABC中ZBAC的平分线,它与AABC的外接圆交于点D。 求证:DB=DC o (引例由学生证明并板演) 教师先评价学生的板演情况,然后提出,若将已知中的“ AD是AABC中的ZBAC的平分线”改 为“ AD是AABC的外角ZEAC的平分线”,又该如何证明?引出例题。 例已知:如图5,AD是AABC的外角ZEAC的平分线,与AABC的外接圆交于点D,

数学教案-圆的内接四边形

数学教案-圆的内接四边形 1.知识结构 2.重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形不要弄错四边形的 外角和它的内对角的相互对应位置. 3.教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例)组织学生自主观察、分析和探究; (2)在教学中以“发现——证明——应用”为主线以“特殊——一般”的探究方法引导学生发现与证明的思想方法. 一、教学目标: (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)掌握圆内接四边形的概念及其性质定理; (3)熟练运用圆内接四边形的性质进行计算和证明. (二)能力目标 (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究培养学生观察、分析、概括的能力;

(2)通过定理的证明探讨过程促进学生的发散思维; (3)通过定理的应用进一步提高学生的应用能力和思维能力.(三)情感目标 (1)充分发挥学生的主体作用激发学生的探究的热情; (2)渗透教学内容中普遍存在的相互联系、相互转化的观点. 二、教学重点和难点: 重点:圆内接四边形的性质定理. 难点:定理的灵活运用. 三、教学过程设计 (一)基本概念 如果一个多边形的所有顶点都在同一个圆上这个多边形叫做圆内接多边形这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形而⊙O叫做四边形ABCD的外接圆.(二)创设研究情境 问题:一般的圆内接四边形具有什么性质 研究:圆的特殊内接四边形(矩形、正方形、等腰梯形) 教师组织、引导学生研究. 1、边的性质: (1)矩形:对边相等对边平行. (2)正方形:对边相等对边平行邻边相等. (3)等腰梯形:两腰相等有一组对边平行. 归纳:圆内接四边形的边之间看不出存在什么公同的性质.

圆内接四边形的性质

圆内接四边形的性质 一、选择题(共15小题) 1.(2011?肇庆)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE的大小是() 2.(2010?北海)如图,四边形ABCD内接于⊙O,若∠C=36°,则∠A的度数为() 3.(2006?宁德)如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD为() 4.(2001?咸宁)如图,圆内接四边形ABCD的外角∠ABE为85°,则∠ADC的度数为() 5.(2010?台湾)如图1,平行四边形纸片ABCD的面积为120,AD=20,AB=18.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一线对称图形戊,如图2所示,则图形戊的两对角线长度和()

7.(2004?武汉)如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是() 8.(2004?丰台区)如图,ABCD为圆内接四边形,若∠A=60°,则∠C等于() 9.(2003?泉州)如图,在⊙O的内接四边形ABCD中,若∠BAD=110°,则∠BCD等于() 10.(2003?海淀区)如图,四边形ABCD内接于⊙O,E在BC延长线上,若∠A=50°,则∠DCE等于() 11.(2003?甘肃)如图,ABCD为圆内接四边形,E为DA延长线上一点,若∠C=45°,则∠BAE等于()

12.(2002?苏州)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=() 13.(2000?西城区)如图,ABCD为圆内接四边形,如果∠C=50°,那么∠A等于() 15.(1999?成都)如图,ABCD是⊙O的内接四边形,且∠ABC=115°,那么∠AOC等于() 二、填空题(共14小题)(除非特别说明,请填准确值) 16.(2011?江津区)已知如图,在圆内接四边形ABCD中,∠B=30°,则∠D=_________. 17.(2005?滨州)如图,在⊙O的内接四边形ABCD中,∠BCD=110°,则∠BOD=_________度.

相关文档
最新文档