什么叫圆的内接四边形

什么叫圆的内接四边形
什么叫圆的内接四边形

一、教学案例实录

教学过程 :

1. 习旧引新

⑴在⊙O 上 , 任到三个点 A 、 B 、 C, 然后顺次连接 , 得到的是什么图形 ? 这个图形与⊙O 有什么关系 ?

⑵由圆内接三角形的概念 , 能否得出什么叫圆的内接四边形呢 ( 类比 )?

2. 概念学习

⑴什么叫圆的内接四边形 ?

⑵如图 1, 说明四边形 ABCD 与⊙O 的关系。

3. 探讨性质

⑴前面我们已经学习了一类特殊四边形 ---- 平行四边形 , 矩形 , 菱形 , 正方形 , 等腰梯形的性质 , 那么要探讨圆内接四边形的性质 , 一般要从哪几个方面入手 ?

⑵打开《几何画板》 , 让学生动手任意画⊙O 和⊙O 的内接四边形 ABCD 。 ( 教师适当指导 )

⑶量出可试题的所有值 ( 圆的半径和四边形的边 , 内角 , 对角线 , 周长 , 面积 ), 并观察这些量之

间的关系。

⑷改变圆的半径大小 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ?

⑸移动四边形的一个顶点 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? 移动四边形的

四个顶点呢 ? 移动三个顶点呢 ?

⑹如何用命题的形式表述刚才的实验得出来的结论呢 ?( 让学生回答 )

4. 性质的证明及巩固练习

⑴证明猜想

已知 : 如图 1, 四边形 ABCD 内接于⊙O 。求证 :∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。

⑵完善性质

①若将线段 BC 延长到 E( 如图 2), 那么 ,∠DCE 与∠BAD 又有什么关系呢 ?

②圆的内接四边形的性质定理 : 圆内接四边形的对角互补 , 并且任何一个外角都等于它的内对角。

⑶练习

①已知 : 在圆内接四边形 ABCD 中 , 已知∠A=50°,∠D-∠B=40°, 求∠B,∠C,∠D 的度数。

②已知 : 如图 3, 以等腰△ABC 的底边 BC 为直径的⊙O 分别交两腰 AB,AC 于点 E,D, 连结 DE, 求证 :DE∥BC 。 ( 演示作业本 )

5. 例题讲解

引例已知 : 如图 4,AD 是△ABC 中∠BAC 的平分线 , 它与△ABC 的外接圆交于点 D 。

求证 :DB=DC 。 ( 引例由学生证明并板演 )

教师先评价学生的板演情况 , 然后提出 , 若将已知中的“ AD 是△ABC 中的∠BAC 的平分线”改为“ AD 是△ABC 的外角∠EAC 的平分线”, 又该如何证明 ? 引出例题。

例已知 : 如图 5,AD 是△ABC 的外角∠EAC 的平分线 , 与△ABC 的外接圆交于点 D,

求证 :DB=DC 。

6. 小结 : 为了使学生对所学的内容有一个完整而深刻的印象 , 让学生组成小组 , 从概念 , 性质 , 方法 , 特殊性进行讨论 , 然后对讨论的结果进行归纳。

⑴本节课我们学习了圆内接四边形的概念和圆内接四边形的和要性质 , 要求同学们理解圆内接四边形和

四边形的外接圆的概念 , 理解圆内接四边形的性质定理 ; 并初步应用性质定理进行有关命题的证明和计算。

⑵我们结合《几何画板》的使用导出了圆内接四边形的性质 , 在这一过程中用到了许多数学方法 ( 实验 , 观察 , 类比 , 分析 , 归纳 , 猜想等 ), 同学们要逐步学会用并关于应用这些方法去探讨有关的数学问

题 , 提高我们的数学实践能力与创新能力。

7. 作业

⑴如图 6, 在等腰直角△ABC 中 ,∠C=90°, 以 AC 为弦的⊙O 分别交 BC,AB 于 D,E, 连结 DE 。求证 :△BDE 是等腰直角三角形。

⑵已知 :⊙O 和⊙O '相交于 A,B 两点 , 经过 A,B 两点分别作直线 CD 和 EF,CD 交⊙O,⊙O '于C,D,EF 交⊙O,⊙O '于 E,F, 连结 CE,AB,DF 。

问 : 当 CD 和 EF 满足怎样的条件时 , 四边形 CEDF 是怎样的特殊四边形 ? 并证明所得的结论。 ( 选做 )

二、对教学案例的分析

这一教学案例当然不能被看作是培养学生创新意识的初中数学课堂教学的范例 , 其中许多环节还需要进

一步改进完善。但其较为真实地反映了目前数学课堂教学的一些情况 , 一些教学环节的处理还是值得肯定的。

1. 突出了数学课堂教学中的探索性

关于圆的内接四边形性质的引出 , 在本教学案例上没有像教材那样直接给出定理 , 然后证明 ; 而是利

用《几何画板》采取了让学生动手画一画 , 量一量的方式 , 使学生通过对直观图形的观察归纳和猜想 , 自己去发现结论 , 并用命题的形式表述结论。关于圆内接四边形性质的证明 , 没有采用教师给学生演示

定理证明 , 而是引导学生证明猜想 , 并做了进一步的完善。这种探索性的数学教学方式在其后的例题讲

解中亦得到了进一步的贯彻。这样既调动了学生学习数学的积极性和主动性 , 增强了学生参与数学活动的意识 , 又培养了学生的动手实践能力。同时 , 也向学生渗透了实践 ---- 认识 ---- 再实践 ---- 再认

识的辩证观点。一方面 , 使数学不再是一门单调枯燥 , 缺乏直观印象的高度抽象的学科 , 通过提供生动活泼的直观演示 , 让学生多角度 , 快节奏地去认识教学内容 , 达到事半功倍的教学效果 ; 另一方面 , 计算机所特有的 , 对数学活动过程的展示 , 对数学细节问题的处理可以使学生体验到用运动的观点来研

究图形的思想 , 让学生充分感受到发现总是代和解决问题带来的愉悦 , 培养学生的数学创新意识。

2. 引进了计算机《几何画板》技术

本课例在引导学生得出圆内接四边形的性质时 , 通过使用《几何画板》 , 从而实现了改变圆的半径 , 移动四边形的顶点等 , 从而使初中平面几何教学发生了重大的变化 , 那就是让图形出来说话 , 充分调动

学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣 , 而且比过去的教学更能够使学生深刻地理解几何。当然 , 本教学案例在这方面的探索还是初步的 , 设想今后通过计算机技术的进一步开发与应用 , 初中平面几何课能够给学生更多动手的机会 , 让学生以研究的方式学习几何 , 进一步突出学生在学习中

的主体地位。

3. 引入了数学开放题

本教学案例在增大数学课堂教学的探索性 , 计算机技术进入数学课堂的同时 , 在学生作业中还增加了开

放题 ( 作业 2), 为学生创造了更为广阔的思维空间 , 对此应大力提倡。目前 , 世界各国在数学教育改

革中都十分强调高层次思维能力的培养 , 这些高层次思维能力包括了推理 , 交流 , 概括和解决问题等

方面的能力。要提高学生这种高层次的思维 , 在数学课堂教学中引进开放性问题是十分有益的。我国的数学题一直是化归型的 , 即将结论化归为条件 , 所求的对象化归为已知的结果。这种只考查逻辑连接的能

力固然重要 , 并且永远是主要部分 , 但是 , 它不能是惟一的。单一的题型已经严惩阻碍了学生数学创新能力的培养。

在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明 : 顺次连接四边形四条边的中点 , 所得的四边形是平行四边形。”这是一个常规性题目 , 我们可以把它发行为“画

一个四边形是什么样的特殊四边形 , 并加以证明。”我们还可用计算机来演示一个形状不断变化的四边形 , 让学生观察它们四条边中点的连线组成一个什么样的特殊四边形 , 在学生完成猜想和证明过程后 , 我们进而可提出如下问题 :”要使顺次连接四条边的中点所得的四边形是菱形 , 那么对原来的四边形应

有哪些新的要求 ? 如果要使所得的四边形是正方形 , 还需要有什么新的要求 ?”通过这些改造 , 常规题便具有了“开放题”的形式 , 例题的功能也可更充分地发挥。

在此 , 我们进一步强调培养学生创新意识的数学课堂教学 , 不应仅仅把开放题作为一种习题形式 , 而应作为一咱教学思想。这种教学思想反映了数学教学观的转变 , 这主要反映在开放性问题强调了数学知识的整体性 , 数学教学的思维性 , 数学解决问题的过程性 , 强调了学生在教学活动中的主体作用于以及有利于提高学生学习的乐趣 , 提高了学生学习的内在动力等。

4. 学生学习方式被确定为“发现学习”

在学习理论上 , 按不同的学习方式 , 可分为接受学习 (reception learning) 和发现学习 (discovery learning) 。所谓接受学习 , 是指学习者将别人的经验变成自己的经验的时候 , 所学习的内容是以定论或确定的形式通过传授者的传授 , 不需要自己任何方式的独立发现 ; 发现学习则是由学习者自己发现问题和解决问题的一种学习方式 , 在课堂教学中则主要是指发现学习。尽管发现学习效率比接受学习的效率低 , 但却十分有利于培养学生发现与创新的意识 , 鉴于初中学生的身心与教学内容特点 , 发现学习应是培养创新意识的初中数学课堂教学中学生学习的主要方式。本教学案例中学生的学被确定为发现学习 , 那么教师的教学行为就应根据学生的这一学习特点来设计相应的教学方法以及教学的组织形式。即教师在指导学生学习概念和原理时 , 只给他们一些事实和问题 , 让学生积极思考 , 独立探索 , 自己发现并掌握相应的原理和规则。对此本教学案例中圆的内接四边形的概念、性质等均没有直接给学生 , 而是在教师创设的问题情境中让学生发现而获得。但不足的是本案例似乎在这方面还不够典型 , 学生学习积极性的发挥与调动亦没有充分反映出来。这些问题都有待于我们继续进行深入的研究。

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》 "说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴! 高中数学说课稿:《圆的标准方程》 【一】教学背景分析 1.教材结构分析 《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用. 2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强. 根据上述教材结构与内容分析,考虑到学生已有的认知结构和

心理特征,我制定如下教学目标: 3.教学目标 (1) 知识目标:①掌握圆的标准方程; ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; ③利用圆的标准方程解决简单的实际问题. (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力; ②加深对数形结合思想的理解和加强对待定系数法的运用; ③增强学生用数学的意识. (3) 情感目标:①培养学生主动探究知识、合作交流的意识; ②在体验数学美的过程中激发学生的学习兴趣. 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4. 教学重点与难点 (1)重点:圆的标准方程的求法及其应用. (2)难点:①会根据不同的已知条件求圆的标准方程; ②选择恰当的坐标系解决与圆有关的实际问题. 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 【二】教法学法分析 1.教法分析为了充分调动学生学习的积极性,本节课采用"

高中数学-圆与圆的位置关系教案

圆与圆的位置关系教案 【教学目标】 1.能根据给定圆的方程,判断圆与圆的位置关系. 2.通过圆与圆的位置关系的学习,体会用代数方法解决几何问题的思想. 3.通过本节内容的学习,进一步体会到用坐标法解决几何问题的优越性,逐步养成自觉应用坐标法解决几何问题的习惯. 【教学重难点】 教学重点:能根据给定圆的方程,判断圆与圆的位置关系. 教学难点:用坐标法判断两圆的位置关系. 【教学过程】 ㈠复习导入、展示目标 问题:如何利用代数与几何方法判别直线与圆的位置关系? 前面我们运用直线与圆的方程,研究了直线与圆的位置关系,这节课我们用圆的方程,讨论圆与圆的位置关系. ㈡检查预习、交流展示 1.圆与圆的位置关系有哪几种呢? 2.如何判断圆与圆之间的位置关系呢? ㈢合作探究、精讲精练 探究一:用圆的方程怎样判断圆与圆之间的位置关系? 例1.已知圆 C 1:01322 2 =++++y x y x ,圆C 2 : 02342 2 =++++y x y x ,是 判断圆C 1 与圆C 2 的位置关系. 解析:方法一,判断圆与圆的位置关系,就是看由它们的方程组成的方程组有无实数解;方法二,可以依据连心线的长与两半径长的和或两半径长的差的绝对值的大小关系,判断圆与圆的位置关系. 解:(法一) 圆C 1 的方程配方,得4 923)1(2 2 = +?? ? ??++y x . 圆心的坐标是??? ??- -23,1,半径长2 3 1 =r . 圆C 2 的方程配方,得4 1723)2(2 2 = +? ? ? ??++y x .

圆心的坐标是?? ? ??--23,2,半径长 2 172= r . 连心线的距离为1, 217321+= +r r ,2 3 1721-=-r r . 因为 2 17 312317+<<-, 所以两圆相交. (法二) 方程 01322 2 =++++y x y x 与02342 2 =++++ y x y x 相减,得 2 1 = x 把2 1= x 代入01322 2=++++y x y x ,得 011242 =++y y 因为根的判别式016144>-=?,所以方程011242 =++y y 有两个实数根,因此两 圆相交. 点评:巩固用方程判断圆与圆位置关系的两种方法. 变式2 2 2 2 (1)(2)(2)1(2)(5)16x y x y ++-=-+-=与的位置关系 解:根据题意得,两圆的半径分别为1214r r ==和,两圆的圆心距 5.d == 因为 12d r r =+,所以两圆外切. ㈣反馈测试 导学案当堂检测 ㈤总结反思、共同提高 判断两圆的位置关系的方法: (1)由两圆的方程组成的方程组有几组实数解确定; (2)依据连心线的长与两半径长的和12r r +或两半径的差的绝对值的大小关系. 【板书设计】 一.圆与圆的位置关系 (1)相离,无交点 (2)外切,一个交点 (3)相交,两个交点;

《备课参考》圆周角和直径的关系及圆内接四边形

3.4 圆周角和圆心角的关系 第2课时圆周角和直径的关系及圆内接四边形 1.掌握圆周角和直径的关系,会熟练 运用解决问题;(重点) 2.培养学生观察、分析及理解问题的 能力,经历猜想、推理、验证等环节,获得 正确的学习方式.(难点) 一、情境导入 你喜欢看足球比赛吗?你踢过足球吗? 如图②所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守到圆上 C处,依然把球传给了甲,你知道为什么 吗?你能用数学知识解释一下吗? 二、合作探究 探究点一:圆周角和直径的关系 【类型一】利用直径所对的圆周角是 直角求角的度数 如图,BD是⊙O的直径,∠CBD =30°,则∠A的度数为() A.30°B.45° C.60°D.75° 解析:∵BD是⊙O的直径,∴∠BCD =90°.∵∠CBD=30°,∴∠D=60°,∴∠A=∠D=60°.故选C. 方法总结:在圆中,如果有直径,一般要找直径所对的圆周角,构造直角三角形解题. 变式训练:见《学练优》本课时练习“课堂达标训练”第3题 【类型二】作辅助线构造直角三角形 解决问题 如图,点A、B、D、E在⊙O上,弦AE、BD的延长线相交于点 C.若AB是⊙O 的直径,D是BC的中点. (1)试判断AB、AC之间的大小关系,并给出证明; (2)在上述题设条件下,当△ABC为正三角形时,点E是否为AC的中点?为什么? 解析:(1)连接AD,先根据圆周角定理 求出∠ADB=90°,再根据线段垂直平分线 性质判断;(2)连接BE,根据圆周角定理求 出∠AEB=90°,根据等腰三角形性质求 解. 解:(1)AB=AC.证明如下:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵BD=DC,∴AD垂直平分BC,∴AB=AC; (2)当△ABC为正三角形时,E是AC的中点.理由如下:连接BE,∵AB为⊙O的直径,∴∠BEA=90°,即BE⊥AC.∵△ABC 为正三角形,∴AE=EC,即E是AC的中点. 方法总结:在解决圆的问题时,如果有直径往往考虑作辅助线,构造直径所对的圆 周角. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题 探究点二:圆内接四边形 【类型一】圆内接四边形性质的运用 如图,四边形ABCD内接于⊙O,

圆的内接四边形教案及课后练习

S3.6 圆内接四边形 一、认识圆的内接四边形 1.知识要点 (1)我们以前学习过圆的内接三角形 圆的内接三角形:如果一个三角形的各个顶点在同一个圆上,那么这个三角形叫做圆 的内接三角形,这个圆叫做三角形的外接圆。 (2)今天我们学习圆的内接四边形 圆的内接四边形:如果一个四边形的各个顶点在同一个圆上,那么这个四边形叫做圆的 内接四边形,这个圆叫做四边形的外接圆。如右图中,四边形ABCD 是⊙O 的内接四边 形;⊙O 是四边形ABCD 的外接圆。 二、圆内接四边形的性质定理 1.知识要点 定理一:圆内接四边形的对角互补. 定理二:圆内接四边形的外角等于它的内对角(内角的对角). 2.典型例题 S3.6.1如图,四边形ABCD 内接于⊙O ,∠BOD=110°,求∠BCD 的度数. S3.6.2如图,四边形ABCD 是圆O 的内接四边形,延长AB 和DC 相交于点P.若PB PA =12,PC PD =13,求BC AD 的值. 三、圆内接四边形的判定定理 1.知识要点 (1)定理:如果一个四边形的对角互补,那么它的四个顶点在同一个圆上(简称四点共圆). (2)推论:如果四边形的一个外角等于它内对角,那么这个四边形的四个顶点共圆.

2.典型例题 S3.6.3如图,CF是△ABC的AB边上的高,FP⊥BC,FQ⊥AC.求证:ABPQ四点共圆. S3.6 圆内接四边形练习 1.下列四边形中一定有外接圆的是() A.对角线相等的四边形B.菱形C.直角梯形D.等腰梯形 2.过四边形ABCD的顶点D,B,C作一个圆,若∠A+∠C>180°,则点A在( ) A.圆内B.圆外C.圆上D.不能确定 3.四边形ABCD内接于圆,∠A:∠B:∠C:∠D= 5:m:4:n,则m,n满足的条件是() A.5m=4n B.4m=5n C.m+n=9 D.m+n=180° 4.如下图,圆心角∠AOB=120°,P是上任一点(不与A,B重合),点C在AP的延长线上,则∠BPC 等于() A.45°B.60° C.75°D.85° 5.圆上四点,A、B、C、D分圆周为四段弧,:::=1:2:3:4,则圆内接四边形的最大内角为______. 6.如下图,在梯形ABCD中,AB∥DC,AD=DC=BC,∠ADC=138°,E是梯形外一点,若点E在梯形ABCD 的外接圆上,则∠AEB=________.

高中数学必修二《圆的标准方程》教案

教案说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。 一、设计理念 设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。 二、设计思路 (1)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。 (2)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。 三、媒体设计 本节采用powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时

动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

圆的内接四边形

例 圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数的比是3﹕2﹕7,求四边形各内角度数. 解:设∠A 、∠B 、∠C 的度数分别为3x 、2x 、7x . ∵ABCD 是圆内接四边形.∴∠A +∠C=180°即3x+7x=180°, ∴x=18°, ∴∠A=3x=54°,∠B=2x=36°,∠C=7x=126°, 又∵∠B+∠D=180°, ∴∠D=180°一36°=144°. 说明:①巩固性质;②方程思想的应用. 例如图,已知AD 是△ABC 的外角∠EAC 的平分线,AD 与三角形ABC 的外接圆相交于D .求证:DB=DC . 分析:要证DB=DC ,只要证∠BCD=∠CBD ,充分利用条件和圆周角的定理以及圆内接四边形的性质,即可解决. 说明:角相等的灵活转换,利用圆内接四边形的性质作桥梁. 例 如图,△ABC 是等边三角形,D 是上任一点,求证:DB+DC=DA . 分析:要证明一条线段等于两条线段的和,往往可以“截长”和“补短”法,本题两种方法都可以证明. 证明: 延长DB 至点E ,使BE=DC ,连AE . 在△AEB 和△ADC 中,BE=DC . △ABC 是等边三角形.∴AB=AC . ∵ 四边形ABDC 是⊙O 的内接四边形, ∴∠ABE=∠ACD . ∴△AEB ≌△ADC . ∴∠AEB=∠ADC=∠ABC . ∵∠ADE=∠ACB , 又 ∵∠ABC=∠ACB =60°, ∴∠AEB=∠ADE=60°. ∴△AED 是等边三角形,∴AD=DE=DB+BE . ∵BE=DC ,∴DB+DC=DA . 说明:本例利用“截长”和“补短”法证明.培养学生“角相等的灵活转换”能力.在圆中,圆心角、圆周角、圆内接四边形的性质构成了角度相当转换的一个体系,应重视. 例 如图,ABCD 是⊙O 的内接四边形,CD AH ⊥,如果?=∠30HAD ,那么=∠B ( ) A .90° B .120° C .135° D .150° E

3.圆内接四边形的性质与判定

3.圆内接四边形的性质与判定 一、基础知识回顾 1.在同圆或等圆中,相等的圆心角所对 的相等,所对的 也相等。 2. 在同圆或等圆中, 如果两个圆心角、两条 、两条 、两个 中有一对量相等,那么它们所对应的其余各对量都相等。 3. 圆周角定理:一条弧所对的圆周角等于它所对 。 (1) 半圆(或直径)所对的圆周角是 ; 90o的圆周角所对的弦是 . (2) 在同圆或等圆中,同弧或等弧所对的圆周角 ; 相等的圆周角所对的弧也 . 二、知识延伸拓展 如果四边形的各顶点在一个圆上,这个四边形叫做这个圆的内接四边形,这个圆叫做四边形的外接圆。例如,图1中,四边形ABCD 是⊙O 的内接四边形;⊙O 是四边形ABCD 的外接圆。圆内接四边形有以下性质: 性质定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的相邻内角的对角。 已知:如图2,四边形ABCD 内接于⊙O ,∠DCE 是四边形ABCD 的外角。 求证:(1)∠A+∠BCD=180o,∠B+∠D=180o; (2)∠DCE=∠A 。 证明:(1)∵ , , ∴ ∵ 和 的度数和是360 o ∴ 同理,∠B+∠D=180o。 (2) ∵∠DCE 是四边形ABCD 的外角, ∴∠DCE+∠BCD=180o 由(1)得∠A+∠BCD=180o ∴∠DCE=∠A 。 图1 E 图2 BAD ⌒ BCD ⌒ ⌒ ∠A 所对的弧是BCD ∠BCD 所对的弧是BAD ⌒ ⌒ ⌒ m m .2 1 ,21A BAD BCD BCD =∠=∠.1803602 1 )(212121?=??=+=+=∠+∠BAD BCD BAD BCD BCD A m ⌒ ⌒ ⌒ ⌒

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

圆内接四边形性质定理

C D ·O B A E P 圆内接四边形性质定理证明: 如右图:圆内接四边形ABCD ,圆心为O ,延长BC 至E ,AC 、BD 交于P ,则: 一、圆内接四边形的对角互补:∠ABC +∠A DC=180°,∠BC D +∠B AD=180° 二、圆内接四边形的任意一个外角等于它的内对角:∠D CE=∠BAD 三、圆内接四边形对应三角形相似:△B C P∽△ADP 四、相交弦定理:AP×CP=BP×DP 五、托勒密定理:AB×CD+AD×CB=AC×BD 一、圆内接四边形的对角互补的证明(三种方法) 【证明】方法一: 利用一条弧所对圆周角等于它所对圆心角的一半。 如图,连接OB 、OD 则∠A= 21β,∠C=2 1α ∵α+β=360° ∴∠A+∠C= 2 1 ×360°=180° 同理得∠B+∠D=180° (也可利用四边形内角和等于360°) 【证明】方法二: 利用直径所对应的圆周角为直角。 设圆内接四边形ABCD 证明:∠A+∠C=180°,∠B+∠D=180° 连接BO 并延长,交⊙O 于E 。连接AE 、CE 。 则BE 为⊙O 的直径 ∴∠BAE=∠BCE=90° ∴∠BAE+∠BCE=180° ∴∠BAE+∠BCE -∠D AE+∠DAE=180° 即∠BAE -∠DAE+∠BCE +∠DAE=180° ∵∠DAE=∠DCE(同弧所对的圆周角相等) ∴∠BAE -∠DAE+∠BCE+∠DCE=180° 即∠BAD+∠BCD=180° ∠A+∠C=180° ∴∠B+∠D=360°-(∠A+∠C )=180° (四边形内角和等于360°) 【证明】方法三: 利用四边形内角和为360°及同弧所对的圆周角均相等 连接AC 、BD ,将∠A 、∠B、∠C 、∠D 分为八个角 ∠1、∠2、∠3、∠4、∠5、∠6、∠7、∠8 ∵∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8=360(四边形内角和为360°) ∠4=∠1,∠7=∠2,∠8=∠5,∠3=∠6 (同弧所对的圆周角相等) ∴∠1+∠2+∠5+∠6= 2 1 ×360°=180° ∵∠1+∠2=∠A ∠5+∠6=∠C ∴∠A+∠C=180° C A B D ·O α β ·O B C D 1 2 4 3 5 6 7 8

什么叫圆的内接四边形

一、教学案例实录 教学过程 : 1. 习旧引新 ⑴在⊙O 上 , 任到三个点 A 、 B 、 C, 然后顺次连接 , 得到的是什么图形 ? 这个图形与⊙O 有什么关系 ? ⑵由圆内接三角形的概念 , 能否得出什么叫圆的内接四边形呢 ( 类比 )? 2. 概念学习 ⑴什么叫圆的内接四边形 ? ⑵如图 1, 说明四边形 ABCD 与⊙O 的关系。 3. 探讨性质 ⑴前面我们已经学习了一类特殊四边形 ---- 平行四边形 , 矩形 , 菱形 , 正方形 , 等腰梯形的性质 , 那么要探讨圆内接四边形的性质 , 一般要从哪几个方面入手 ? ⑵打开《几何画板》 , 让学生动手任意画⊙O 和⊙O 的内接四边形 ABCD 。 ( 教师适当指导 ) ⑶量出可试题的所有值 ( 圆的半径和四边形的边 , 内角 , 对角线 , 周长 , 面积 ), 并观察这些量之 间的关系。 ⑷改变圆的半径大小 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? ⑸移动四边形的一个顶点 , 这些量有无变化 ? 由 (3) 观察得出的某些关系有无变化 ? 移动四边形的 四个顶点呢 ? 移动三个顶点呢 ? ⑹如何用命题的形式表述刚才的实验得出来的结论呢 ?( 让学生回答 ) 4. 性质的证明及巩固练习

⑴证明猜想 已知 : 如图 1, 四边形 ABCD 内接于⊙O 。求证 :∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。 ⑵完善性质 ①若将线段 BC 延长到 E( 如图 2), 那么 ,∠DCE 与∠BAD 又有什么关系呢 ? ②圆的内接四边形的性质定理 : 圆内接四边形的对角互补 , 并且任何一个外角都等于它的内对角。 ⑶练习 ①已知 : 在圆内接四边形 ABCD 中 , 已知∠A=50°,∠D-∠B=40°, 求∠B,∠C,∠D 的度数。 ②已知 : 如图 3, 以等腰△ABC 的底边 BC 为直径的⊙O 分别交两腰 AB,AC 于点 E,D, 连结 DE, 求证 :DE∥BC 。 ( 演示作业本 ) 5. 例题讲解 引例已知 : 如图 4,AD 是△ABC 中∠BAC 的平分线 , 它与△ABC 的外接圆交于点 D 。 求证 :DB=DC 。 ( 引例由学生证明并板演 ) 教师先评价学生的板演情况 , 然后提出 , 若将已知中的“ AD 是△ABC 中的∠BAC 的平分线”改为“ AD 是△ABC 的外角∠EAC 的平分线”, 又该如何证明 ? 引出例题。 例已知 : 如图 5,AD 是△ABC 的外角∠EAC 的平分线 , 与△ABC 的外接圆交于点 D, 求证 :DB=DC 。 6. 小结 : 为了使学生对所学的内容有一个完整而深刻的印象 , 让学生组成小组 , 从概念 , 性质 , 方法 , 特殊性进行讨论 , 然后对讨论的结果进行归纳。

圆周角定理及圆的内接四边形-练习题 含答案

圆周角定理及圆的内接四边形 副标题 题号一二三总分 得分 一、选择题(本大题共5小题,共15.0分) 1.如图,A,B,C是上三个点,,则下列 说法中正确的是 A. B. 四边形OABC内接于 C. D. 【答案】D 【解析】解:过O作于D交于E , 则, ,, , , , , ,故C错误; , , , ,故A错误; 点A,B,C在上,而点O在圆心, 四边形OABC不内接于,故B错误; , , ,故D正确; 故选D. 过O作于D交于E,由垂径定理得到,于是得到,推出,根据三角形的三边关系得到,故C错误;根据三角形内角和得到, ,推出,故A错误;由点A,B, 1 / 7第1页,共7页

C 在上,而点O在圆心,得到四边形OABC 不内接于,故B错误;根据余角的性质得到,故D正确; 本题考查了圆心角,弧,弦的关系,垂径定理,三角形的三边关系,正确的作出辅助线是解题的关键. 2.如图,四边形ABCD 内接于,AC 平分,则下 列结论正确的是 A. B. C. D. 【答案】B 【解析】解:A 、与的大小关系不确定,与AD不一定相等,故本选项错误; B 、平分,,,故本选项正确; C 、与的大小关系不确定,与不一定相等,故本选项错误; D 、与的大小关系不确定,故本选项错误. 故选:B. 根据圆心角、弧、弦的关系对各选项进行逐一判断即可. 本题考查的是圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 3.如图,四边形ABCD 内接于,若四边形ABCO是平行 四边形,则的大小为 A. B. C. D. 【答案】C 【解析】解:设的度数,的度数; 四边形ABCO是平行四边形, ; ,;而, , 解得:,,, 故选:C. 第2页,共7页

新人教版必修二高中数学《圆的标准方程》教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

高中数学人教版必修2 4.2.2圆与圆的位置关系 教案(系列二)

4.2.2 圆与圆的位置关系 整体设计 教学分析 本节课研究圆与圆的位置关系,重点是研究两圆位置关系的判断方法,并应用这些方法解决有关的实际问题.教材是在初中平面几何对圆与圆的位置关系的初步分析的基础上结合前面学习的点与圆、直线与圆的位置关系,得到圆与圆的位置关系的几何方法,用代数的方法来解决几何问题是解析几何的精髓,是平面几何问题的深化,它将是以后处理圆锥曲线的常用方法.因此,增加了用代数方法来分析位置关系,这样有利于培养学生数形结合、经历几何问题代数化等解析几何思想方法及辩证思维能力,其基本思维方法和解决问题的技巧对今后整个圆锥曲线的学习有着非常重要的意义.根据学生的基础,学习的自觉性和主动性,自主学习和探究学习能力,平时的学习养成的善于观察、分析和思考的习惯,同时由于本节课从内容结构与思维方法上与直线与圆的位置关系相似,学生对上节课内容掌握较好,从而本节课从学生学习的角度来看不会存在太多的障碍,因而教学方法可以是引导学生从类比直线与圆位置关系来自主研究圆与圆的位置关系. 三维目标 使学生理解并掌握圆和圆的位置关系及其判定方法.培养学生自主探究的能力.通过用代数的方法分析圆与圆的位置关系,使学生体验几何问题代数化的思想,深入了解解析几何的本质,同时培养学生分析问题、解决问题的能力,并进一步体会数形结合的思想. 重点难点 教学重点:求弦长问题,判断圆和圆的位置关系. 教学难点:判断圆和圆的位置关系. 课时安排 1课时 教学过程 导入新课 思路1.平面几何中,圆与圆的位置关系有哪几种呢?如何判断圆与圆之间的位置关系呢?判断两圆的位置关系的步骤及其判断方法如下:第一步:计算两圆的半径R,r;第二步:计算两圆的圆心距O O2,即d;第三步:根据d与R,r之间的关系,判断两圆的位置关系. 1 两圆的位置关系:

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

北师大版初中数学九年级下册3.4 第2课时 圆周角和直径的关系及圆内接四边形1

北师大初中数学 九年级 重点知识精选 掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!

3.4 圆周角和圆心角的关系 第2课时圆周角和直径的关系及圆内接四边形 1.掌握圆周角和直径的关系,会熟练 运用解决问题;(重点) 2.培养学生观察、分析及理解问题的 能力,经历猜想、推理、验证等环节,获 得正确的学习方式.(难点) 一、情境导入 你喜欢看足球比赛吗?你踢过足球 吗? 如图②所示,甲队员在圆心O处,乙 队员在圆上C处,丙队员带球突破防守到 圆上C处,依然把球传给了甲,你知道为 什么吗?你能用数学知识解释一下吗? 二、合作探究 探究点一:圆周角和直径的关系 【类型一】利用直径所对的圆周角是 直角求角的度数 如图,BD是⊙O的直径,∠ CBD=30°,则∠A的度数为( ) A.30°B.45° C.60° D.75° 解析:∵BD是⊙O的直径,∴∠BCD =90°.∵∠CBD=30°,∴∠D=60°, ∴∠A=∠D=60°.故选C. 方法总结:在圆中,如果有直径,一 般要找直径所对的圆周角,构造直角三角 形解题. 变式训练:见《学练优》本课时练习 “课堂达标训练”第3题 【类型二】作辅助线构造直角三角形 解决问题 如图,点A、B、D、E在⊙O 上,弦AE、BD的延长线相交于点C.若AB 是⊙O的直径,D是BC的中点. (1)试判断AB、AC之间的大小关系, 并给出证明; (2)在上述题设条件下,当△ABC为正 三角形时,点E是否为AC的中点?为什 么? 解析:(1)连接AD,先根据圆周角定理 求出∠ADB=90°,再根据线段垂直平分 线性质判断;(2)连接BE,根据圆周角定理 求出∠AEB=90°,根据等腰三角形性质 求解. 解:(1)AB=AC.证明如下:连接AD, ∵AB是⊙O的直径,∴∠ADB=90°, 即AD⊥BC.∵BD=DC,∴AD垂直平分 BC,∴AB=AC; (2)当△ABC为正三角形时,E是AC 的中点.理由如下:连接BE,∵AB为 ⊙O的直径,∴∠BEA=90°,即 BE⊥AC.∵△ABC为正三角形,∴AE= EC,即E是AC的中点. 方法总结:在解决圆的问题时,如果 有直径往往考虑作辅助线,构造直径所对 的圆周角. 变式训练:见《学练优》本课时练习 “课堂达标训练”第6题 探究点二:圆内接四边形 【类型一】圆内接四边形性质的运用 如图,四边形ABCD内接于

圆内接四边形的性质

11.2.5 圆内接四边形的性质 1、(1)圆的内接四边形对角互补。 如图:四边形ABCD内接于⊙o ,则有:∠A+∠B=1800.∠B+∠C=1800. (2)圆内接四边形的外角等于它的内角的对角。 如图:∠CBE是圆内接四边形ABCDD的一外角,则有:∠CBE=∠D. 2、圆内接四边形的判定。 (1)判定定理:如果一个四边形对角互补,那么这个四边形的四个顶点共圆。(2)推论;如果四边形的一个外角等于它的内角的对角,那么这个四边形的四个顶点共圆。 〖例1〗如图所示,已知四边形ABCD内接于圆,延长AB和DC相交于E,EG平分∠BEC,且与BC、AD分别相交于FG. 求证:∠CFG=∠DGF. 分析:已知四边形ABCD内接于圆,自然想到圆内接四边形的性质定理,即∠BCE=∠BAD,又EG平分∠BEC,故△CFE∽△AGE.

[证明]因为四边形ABCD是圆内接四边形。 所以∠ECF=∠EAG. 又因为EG平分∠BEC, 即∠CEF=∠AEG,所以△EFC∽△EGA. 所以∠EFC=∠EGA. 而∠DGF=1800-∠EGA,∠CFG=1800-∠EFC, 所以∠CFG=∠DGF. 3、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。 几何语言:∵PT切⊙0于T,PBA是⊙0的割线. ∴PT2=PA·PB(切割线定理) 4、割线定理:从圆外一点引圆的两条割线,这点到每条割线与圆的交点的两条线段长的积相等。 几何语言:∵PT是⊙0的切线,PBA、PDC是⊙0的割线. ∴PO·PC=PA·PB (割线定理) 由上可知:PT2=PA·PB=PC·PD. 5、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等) 证明:连结AB,CD由圆周角定理的推论,得∠A=∠C,∠B=∠D。(圆周角推论2: 同(等)弧所对圆周角相等) ∴△PAB∽△PCD ∴PA∶PC=PB∶PD,PA·PD=PB·PC

高中数学-圆的标准方程教案

4.1.1 圆的标准方程教案 教学目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆 的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情 和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条 件r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明222 ()()x a y b r -+-=为圆的方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

3.练习 1、圆心为 ,半径长等于5的圆的方程为( )B A (x – 2 )2+(y – 3 )2=25 B (x – 2 )2+(y + 3 )2=25 C (x – 2 )2+(y + 3 )2=5 D (x + 2 )2+(y – 3 )2=5 2、圆 (x -2)2+ y 2=2的圆心C 的坐标及半径r 分别为( )D A C (2,0) r = 2 B C ( – 2,0) r = 2 C C (0,2) r = D C (2,0) r = 3、已知 和圆 (x – 2 )2+(y + 3 )2=25 ,则点M 在( )B A 圆内 B 圆上 C 圆外 D 无法确定 4. 典型例题 例1 AB C ?的三个顶点的坐标分别A (5,1), B (7,-3),C (2, -8),求它的外接圆的方程. 解:设所求圆的方程是 (1) 因为A (5,1), B (7,-3),C (2, -8) 都在圆上,所以它们的坐标都满足方程(1).于是 所求圆的方程为 例2 AB C ?的三个顶点的坐标分别A (5,1), B (7,-3),C (2, -8),求它的外接圆的方程. 解:设圆方程代数求解方程可得 P121练习3 解:设点C (a ,b )为直径的中点,则 所以圆心坐标为(5,6) 圆的方程为 )3,2(-A 22 )7,5(-M 2 22)()(r b y a x =-+-?????=--+-=--+-=-+-222222222)8()2()3()7()1()5(r b a r b a r b a 235a b r =???=-??=?22(2)(3)25 x y -++=5264=+=a 6239=+=b 1 22459610 r CP ==-+-=()()10 6522=-+-)()(y x

高中数学-圆与圆的位置关系练习

高中数学-圆与圆的位置关系练习 课后训练 1.已知01r <<,则两圆x 2+y 2=r 2与(x -1)2+(y +1)2=2的位置关系是( ). A .外切 B .相交 C .外离 D .内含 2.内切两圆的半径长是方程x 2+px +q =0的两根,已知两圆的圆心距为1,其中一圆 的半径为3,则p +q 等于( ). A .1 B .5 C .1或5 D .以上都不对 3.已知圆C 1:x 2+y 2-4x +6y =0和圆C 2:x 2+y 2-6x =0交于A ,B 两点,则线段AB 的垂直平分线方程为( ). A .x +y +3=0 B .2x -y -5=0 C .3x -y -9=0 D .4x -3y +7=0 4.若集合A ={(x ,y )|x 2+y 2≤16},B ={(x ,y )|x 2+(y -2)2≤a -1}且A ∩B =B ,则a 的取值范围是( ). A .a ≤1 B.a ≥5 C .1≤a ≤5 D.a ≤5 5.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a ,b 应 满足的关系式是( ). A .a 2-2a -2b -3=0 B .a 2+2a +2b +5=0 C .a 2+2b 2+2a +2b +1=0 D .3a 2+2b 2+2a +2b +1=0 6.两圆x 2+y 2=4和x 2+y 2-2x +4y +1=0关于直线l 对称,则直线l 的方程为__________. 7.两圆相交于两点(1,3),(m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值为__________. 8.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0,若 A ∩ B 中有且仅有一个元素,则r 的值是__________. 9.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为 直径的圆的方程. 10.已知动圆M 与y 轴相切且与定圆A :(x -3)2+y 2=9外切,求动圆的圆心M 的轨迹 方程.

圆内接四边形教案

1. 知识结构 2. 重点、难点分析 重点:圆内接四边形的性质定理.它是圆中探求角相等或互补关系的常用定理,同时也是转移角的常用方法. 难点:定理的灵活运用.使用性质定理时应注意观察图形、分析图形,不要弄错四边形的 外角和它的内对角的相互对应位置. 3. 教法建议 本节内容需要一个课时. (1)教师的重点是为学生创设一个探究问题的情境(参看教学设计示例),组织学生自主观察、分析和探究; (2)在教学中以“发现——证明——应用”为主线,以“特殊——一般”的探究方法,引导学生发现与证明的思想方法. 一、教学目标: (一)知识目标 (1)了解圆内接多边形和多边形外接圆的概念; (2)掌握圆内接四边形的概念及其性质定理;

(3)熟练运用圆内接四边形的性质进行计算和证明. (二)能力目标 (1)通过圆的特殊内接四边形到圆的一般内接四边形的性质的探究,培养学生观察、分析、概括的能力; (2)通过定理的证明探讨过程,促进学生的发散思维; (3)通过定理的应用,进一步提高学生的应用能力和思维能力. (三)情感目标 (1)充分发挥学生的主体作用,激发学生的探究的热情; (2)渗透教学内容中普遍存在的相互联系、相互转化的观点. 二、教学重点和难点: 重点:圆内接四边形的性质定理. 难点:定理的灵活运用. 三、教学过程设计 (一)基本概念 如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.如图中的四边形ABCD叫做⊙O的内接四边形,而⊙O叫做四边形ABCD的外接圆. (二)创设研究情境 问题:一般的圆内接四边形具有什么性质?

研究:圆的特殊内接四边形(矩形、正方形、等腰梯形) 教师组织、引导学生研究. 1、边的性质: (1)矩形:对边相等,对边平行. (2)正方形:对边相等,对边平行,邻边相等. (3)等腰梯形:两腰相等,有一组对边平行. 归纳:圆内接四边形的边之间看不出存在什么公同的性质. 2、角的关系 猜想:圆内接四边形的对角互补. (三)证明猜想 教师引导学生证明.(参看思路) 思路1:在矩形中,外接圆心即为它的对角线的中点,∠A与∠B均为平角∠BOD的一半,在一般的圆内接四边形中,只要把圆心O与一组对顶点B、D分别相连,能得到什么结果呢? ∠A=,∠C=

相关文档
最新文档