几种重要的分布习题

几种重要的分布习题
几种重要的分布习题

第四章 几种重要的分布习题

一 、填空题

1. 设随机变量),2(~P B ξ,若9

5)1(=≥ξP ,则=P 。 2.设ξ服从参数为λ的泊松分布且已知{}{}32===ξξP P ,则{}==1ξP 。 3 .设随机变量ξ在[1,6]上服从均匀分布,则=≤)3(ξP 。

4. 设随机变量ζ~)1,0(N ,12+=ζη , 则 η服从 。

5 .设随机变量),1(~p B ξ,且9

2=ξD ,则ξ的概率函数为________ 6. 一颗均匀骰子重复投掷10次,设ξ表示点3出现的次数,则ξ服从参数为________的________分布,ξ的概率函数为______)(==k P ξ,10次中点数3出现________次 7 .设随机变量ξ服从一区间上的均匀分布,且3

1,3==ξξD E ,则ξ的概率密度为________,______)2(==ξP ,______)31(=<<ξP

8. 设随机变量ξ服从参数为2的指数分布,η服从参数为4的指数分布,则_____)32(2=+ηξE

9 .若随机变量)

,25.01(~N ξ,则ξ2的概率密度函数为________ 10.设随机变量),2(~σμξN ,则23

-=ξη服从参数为________的正态分布

二、选择题

1.设随机变量ηξ,相互独立,且都服从泊松分布,又知3,2==ηξE E , 则)()(2=+ηξE

A 2

B 30

C 26

D 5 2. 如果随机变量ξ服从( )上的均匀分布,则34,3=

=ξξD E A [0,6] B [1,5] C [2,4] D [-3,3]

3.设随机变量),2(~σμξN ,且)()(c P c P >=≤ξξ,则)(=c

A 0

B μ

C μ-

D σ

4.设随机变量),2(~σμξN ,且1,3==ξξD E ,则)(

)11(=≤<-ξP A 1)1(2-Φ B )2()4(Φ-Φ C )2()4(-Φ--Φ D )4)2((Φ-Φ

5.设随机变量)

,222(~N ξ,则)()21(=ξD

A 1

B 2

C 0.5

D 4 三 、计算题

1 .将一颗骰子分别掷25次和35次,求点数2最有可能出现的次数

2 .设ζ~B(2,p) , η~B(4,p) ,且9

5)1(=≥ζP , 求 )1(≥ηP 3. 某地每年夏季遭受台风袭击的次数服从参数为4的泊松分布,

(1) 求台风袭击次数小于1的概率;(2)求台风袭击次数大于1的概率。

4. 已知随机变量ξ服从指数分布,且方差3=ξD ,写出ξ的概率密度,并计算)31(≤<ξP

5. 设随机变量ζ在区间[1,6]上服从均匀分布,求方程012=++x x ζ有实根的概率。 6 .设随机变量)

6.0,1(~2N ξ,求:(1){}0>ξP ;

(2){}8.12.0<<ξP 7. 已知ζ~),2(2σN ,且6826.0)31(=<<ζP ,求 )21(≤-ζP 。

8. 设每页书上的印刷错误个数服从泊松分布,现从一本有500个印刷错误的书中随机地取5页,求这5页各页上的错误个数都不超过2个的概率

9.公共汽车门的高度是保证成年男子与车门地步碰头的概率在1℅一下设计的,如果某地成年男子的身高)6,175(~2

N ξ(单位:米)

,问车门应设计多高? 10 .已知测量误差)10,5.7(~2N ξ (单位:米),必须进行多少次测量才能使至少有一次测量的绝对误差不超过10米的概率大于0.9? 四、证明题

设随机变量),10(~N ξ,证明),2(~σμσξμηN +=

五、附加题

设随机变量ζ~),(2σμN ,而且已知0793.0)5.0(=<ζP ,7611.0)5.1(=>ζP ,

求 μ与σ。

几种重要的概率分布

1、均匀分布(uniform) 定义:设连续型 随机变量X的分布函数为F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]. 若[x1,x2]是[a,b]的任一子区间,则P{x1≤x≤x2}=(x2-x1)/(b-a) 这表明X落在[a,b]的子区间内的概率只与子区间长度有关,而与子区间位置无关,因此X落在[a,b]的长度相等的子区间内的可能性是相等的,所谓的均匀指的就是这种等可能性. 在实际问题中,当我们无法区分在区间[a,b]内取值的随机变量X取不同值的可能性有何不同时,我们就可以假定X服从[a,b]上的均匀分布 若随机变量X的密度函数为 则称随机变量X服从区间[a,b]上的均匀分布。记作X~U(a,b). 均匀分布的分布函数为

图像如下图所示: 均匀分布的数学期望E(X)=1/(2*(b+a)),方差为D(X)=1/(12*(b-a)2)。 2、正态分布 如果连续型随机变量X的密度函数为

其中,-∞

3.F分布 F分布定义为: 设X、Y为两个独立的随机变量,X服从自由度为k1的>2分布,Y服从自由度为k2的>2 分布,这2 个独立的>2分布被各自的自由度除以后的比率这一统计量的分布。即:上式F服从第一自由度为k1,第二自由度为k2的F分布 F分布的性质 1、它是一种非对称分布; 2、它有两个自由度,即n1 -1和n2-1,相应的分布记为F(n1 –1,n2-1),n1 –1通常称为分子自由度,n2-1通常称为分母自由度; 3、F分布是一个以自由度n1 –1和n2-1为参数的分布族,不同的自由度决定了F 分布的形状。 4、F分布的倒数性质:Fα,df1,df2=1/F1-α,df1,df2 密度函数表达式

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

二项分布专题练习

二项分布专题练习 1.已知随机变量X 服从二项分布,X ~B 16,3?? ??? ,则P (X =2)=( ). A . 316 B . 4243 C . 13 243 D . 80 243 2.设某批电子手表正品率为 34,次品率为1 4 ,现对该批电子手表进行测试,设第X 次首次测到正品,则P (X =3)等于( ). A .223 13C 44??? ??? B .2 2331C 44 ??? ? ?? C .2 1344 ??? ??? D .2 3144 ??? ??? 3.甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为0.4,乙投中的概率为0.6,而且不受其他次投篮结果的影响,设投篮的轮数为X ,若甲先投,则P (X =k )等于( ). A .0.6k - 1×0.4 B .0.24k -1×0.76 C .0.4k -1×0.6 D .0.76k - 1×0.24 4.10个球中有一个红球,有放回地抽取,每次取出一球,直到第n 次才取得k (k ≤n )次红球的概率为( ). A .2191010n k -???? ? ? ???? B . 191010k n k -???? ? ? ???? C .1119C 1010k n k k n ---???? ? ????? D .1 1119C 1010k n k k n ----???? ? ??? ?? 5.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为 65 81 ,则事件A 在1次试验中发生的概率为( ). A . 13 B . 25 C . 56 D . 34 6.某一批花生种子,如果每一粒发芽的概率为4 5 ,那么播下4粒种子恰有2粒发芽的概率是__________. 7.一个病人服用某种新药后被治愈的概率为0.9,则服用这种新药的4个病人中至少3人被治愈的概率为__________.(用数字作答) 8.假定人在365天中的任意一天出生的概率是一样的,某班级中有50名同学,其中有两个以上的同学生于元旦的概率是多少?(结果保留四位小数)

《概率论与数理统计》习题随机变量及其分布

第二章 随机变量及其分布 一. 填空题 1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =9 5 , 则P(Y ≥ 1) = _________. 解. 9 4951)1(1)0(=-=≥-==X P X P 94)1(2 = -p , 3 1=p 2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为c c c c 162 , 85,43,21, 则c = ______. 解. 2,16321628543211==+++= c c c c c c 3. 用随机变量X 的分布函数F(x)表示下述概率: P(X ≤ a) = ________. P(X = a) = ________. P(X > a) = ________. P(x 1 < X ≤ x 2) = ________. 解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1) 4. 设k 在(0, 5)上服从均匀分布, 则02442 =+++k kx x 有实根的概率为_____. 解. k 的分布密度为??? ??=0 51 )(k f 其它50≤≤k P{02442 =+++k kx x 有实根} = P{03216162 ≥--k k } = P{k ≤-1或k ≥ 2} =5 3 515 2=?dk 5. 已知2}{,}{k b k Y P k a k X P =-== =(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++ a a a a . 49 36 ,194= =++b b b b (X, Y)

二项分布经典例题+测验题资料

二项分布经典例题+测 验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】

1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球, 且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每 次投篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮 互不影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是 1 2 ,试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

二维随机变量及其分布题目

一、单项选择题 1.设随机变量21,X X 独立,且2 1 }1{}0{= ===i i X P X P (2,1=i ),那么下列结论正确的是 ( ) A .21X X = B .1}{21==X X P C .2 1 }{21= =X X P D .以上都不正确 2设X 与Y 相互独立,X 服从参数为12的0—1分布,Y 服从参数为1 3 的0—1分布,则方程 220t Xt Y ++=中t 有相同实根的概率为 (A ) 13 (B )12 (C )16 (D )2 3 [] 3.设二维随机变量(X ,Y )的概率密度为 ()22 ,02,14, (,)0, .k x y x y f x y ?+<<<

第十二章 几种主要的大众传播效果理论

第十二章几种主要的大众传播效果理论 第一节大众传播与环境认知——“议程设置”Agenda-setting ?美国传播学者M.E.麦库姆斯和D.L肖“议程设置”(the agenda-setting )理论 ?Agenda-setting: how to think what to think about ?一、“议程设置功能”理论的主要内容 ?1、假说的提出 ?M.E.麦库姆斯和唐纳德.L.肖研究了1968年总统竞选情况,具体分析了当地报纸及晚间新闻,其目的是探讨媒介在总统竞选 活动中对选民们判断什么是重要问题所起的作用,主要就公众 对特殊问题的注意力和对重要问题的判断力进行测定。 ?2、研究方法 ?(1)对选民进行抽样调查 ?(2)对8家传播媒介的同期报道进行内容分析 把内容分析与问卷调查的结果对比,发现媒介议题与选民议题非常一致,其相关系数在0.96以上。 ?3、“议程设置功能”理论的主要内容 ?1972在《舆论季刊》发表《大众传播的议程设置功能》 ?大众媒介具有一种突出报道什么问题就会引起大众特别重视什么问题的功能,这种功能是大众传播重要的社会效果之一。大 众传媒越是突出某个议题或某个事件就越会影响公众关心此议

题或事件。这就是媒介的“议程设置功能”。 ?“某些话题或争论的焦点,如果被大众媒介强调,它们在公众心目中的重要性、显著性也会随之增长” ?二、“议程设置功能”理论的特点 ?1、传播效果分为认知、态度和行动三个层面,议程设置功能假说着眼于这个过程的最初阶段即认知层面。 ?2、议程设置功能揭示的是作为整体的大众传播具有较长时间跨度的一系列报道活动所产生的中长期的、综合的、宏观的社会效果。 ?3、议程设置功能暗示了传播媒介是从事“环境再构成作业”的机构。 ?三、“议程设置功能”概念发展 ?1、“议程设置功能”的作用机制趋于明确化 ?知觉模式(0/1效果) ?显著性模式(0/1/2 效果) ?优先顺序模式(0/1/2/n 效果) ?2、对“议题”不同类型进行较为深入的研究 ?个人议题、谈话议题、公共议题 ?3、分析不同媒体“议程设置”的不同特点 ?四、受众属性对议程设置效果的影响 ?1、受众对各种议题的经验程度:经验越是间接受媒介的影响越大;

几种常见的分布

一、常见数据类型 在正式的解释分布之前,我们先来看一看平时遇到的数据。数据可大致分为离散型数据和连续型数据。 离散型数据 离散型数据顾名思义就是只取几个特定的值。例如:当你掷骰子的时候,结果只有1,2,3,4,5,6,不会出现类似1.5,2.5。 连续型数据 在一个给定的范围内,连续型数据可以取任意值。这个范围可以是有限的或者是无穷的。例如:一个人的体重或者身高,可以取值54kg,54.4kg,54.33333kg等等都没有问题。 下面就开始介绍分布的类型。 二、分布类型 伯努利分布(Bernoulli Distribution) 首先从最简单的分布开始,伯努利分布实际上是一个听起来最容易理解的分布。伯努利分布一次实验有两个可能的结果,比如1代表success及0代表failure。随机变量X X一个取值为1并代表成功,成功概率为p p,一个取值为0表示失败,失败概率为q q或者说1?p1?p。 这里,概率分布函数为p x(1?p)1?x px(1?p)1?x,其中x∈(0,1)x∈(0,1),我们也可以写成如下形式: P(x)={1?p,p,x=0x=1P(x)={1?p,x=0p,x=1 成功和失败的概率没必要相同,也就是没必要都是0.5,但是这俩概率加和应该为1,比如可以是下面的图:

这个图就是p(success)=0.15,p(failure)=0.85p(success)=0.15,p(failure) =0.85。 下面说一下随机变量的期望,一个分布的期望就是这个分布的均值。服从伯努利分布的随机变量X X的期望值就是: E(X)=1?p+0?(1?p)=p E(X)=1?p+0?(1?p)=p 服从伯努利分布的随机变量的方差是: V(X)=E(X2)?[E(X)]2=p?p2=p(1?p)V(X)=E(X2)?[E(X)]2=p?p2=p(1?p) 还有许多伯努利分布的例子,比如说明天是否会下雨,今天会不会去健身,明天乒乓球比赛是不是会赢。 均匀分布(Uniform Distribution) 当你掷骰子的时候,结果出现1到6中的任何一个,而任何一个结果出现的概率都是相同的,这就是均匀分布最原始的雏形。你可能看出来了,与伯努利分布不同的是,这n n个出现的结果的概率都是相同的。 一个随机变量X X为均匀分布是指密度函数如下: f(x)=1b?a?∞

二项分布经典例题+测验题

二项分布 1.n 次独立重复实验 一般地,由n 次实验构成,且每次实验相互独立完成,每次实验的结果仅有两种对立的状态,即A 与A ,每次实验中()0P A p =>。我们将这样的实验称为n 次独立重复实验,也称为伯努利实验。 (1)独立重复实验满足的条件第一:每次实验是在同样条件下进行的;第二:各次实验中的事件是互相独立的;第三:每次实验都只有两种结果。 (2)n 次独立重复实验中事件A 恰好发生k 次的概率 ()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k == k k n k n C p q -,其中 0 1.1,0,1,2,,,p p q k n <<+==则称X 服从参数为,n p 的二项分布,记作(,)X B n p 。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3.甲乙两人各进行3次射击,甲每次击中目标的概率为2 1,乙每次击中目标的概率为3 2 . (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且

规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和. (Ⅰ)求X的分布列。 (Ⅱ)求X的数学期望E(X). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投 篮投中的概率为1 3,乙每次投篮投中的概率为1 2 ,且各次投篮互不 影响. (Ⅰ) 求甲获胜的概率。 (Ⅱ) 求投篮结束时甲的投篮次数 的分布列与期望 3.设篮球队A与B进行比赛,每场比赛均有一队胜,若有一队胜 4场则比赛宣告结束,假定,A B在每场比赛中获胜的概率都是1 2 , 试求需要比赛场数的期望. 3.(2012年高考(辽宁理))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查. 下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。

第二章__随机变量及其概率分布_考试模拟题答案

第二章 随机变量及其概率分布 考试模拟题 (共90分) 一.选择题(每题2分共20分) 1.F(X)是随机变量X 的分布函数,则下列结论不正确的是( B ) A.≤0F(x )1≤ B.F(x )=P{X=x } C.F(x )=P{X x ≤} D.F(∞+)=1, F(∞-)=0 解析: A,C,D 都是对于分布函数的正确结论,请记住正确结论!B 是错误的。 2.设随机变量X 的分布函数律为如下表格:F(x)为其分布函数,则F(5)=( C ) A.0.3 B.0.5 C.0.6 D.0.4 解析:由分布函数定义F(5)=P{X ≤5}=P{X=0}+P{X=2}+P{X=4}=0.1+0.2+0.3=0.6 3.下列函数可以作为随机变量分布函数的是( D ) 4x 01≤≤x 2x 10<≤x A.F(x)= B.F(x)= 1 其它 2 其它 -1 x<0 0 x<0 C.F(x)= 2x 10<≤x D.F(x)= 2x 5.00<≤x 1 其它 1 x ≥0.5 解析:由分布函数F(x)性质:01)(≤≤x F ,A,B,C 都不满足这个性质,选D 4 x 31<<-x 4.设X 的密度函数为f(x)= 则P{-2

A. 0 B.83 C. 43 D. 85 解析:P{-2

泊松过程与泊松分布的基本知识

泊松过程与泊松分布的基本知识泊松过程是随机过程的一个经典模型,是一种累积随机事件的发生次数的独立增量过程。也就是说,每次事件的发生是相互独立的。那么泊松分布和泊松过程又什么关系呢?可以说泊松分布是描述稀有事件的统计规律,即可以描述一段时间内发生某个次数的概率。而泊松过程呢,就适合刻画“稀有事件流”的概率特性。 比较:泊松分布 泊松过程的主要公式: 其实没多少不一样对不对?不一样的是泊松过程是一个可以查看在时间t内发生次数的概率,这个t是可变的。泊松分布则是给定了时间。 泊松过程的关键在于,它的到达间隔序列Tn,即每两次发生的时间是服从的独立同指数分布的。如果每次发生的间隔时间不服从指数分布,那么这个随机过程就会更一般化,我们成为是更新过程,这也是随机过程的推广。 泊松过程分为齐次泊松过程和非齐次泊松过程,齐次的意思很简单,就是说过程并不依赖于初始时刻,强度函数是一个常数,从上面的公式也看得出来。而非齐次则是变成了,这意味着什么呢?这以为着随着与时间的改变,强度是会改变的,改变服从强度函数,说了这

么久,强度究竟是个什么概念?强度的意思就是泊松过程的该事件发生的频率,或者说快慢,泊松分布中我们知道期望就是,实际含义就是,在一段时间内,发生的次数平均水平是次。 复合泊松过程:泊松过程我们已经知道,用描述一段时间累积发生的次数,但是如果每次发生带来的后果都是不一样的,我们怎么描述这个过程呢?比如,火车站到达的乘客是服从泊松过程的,但是每个乘客携带有不同重量的行李,我们如何刻画在[0,t]时间内行李总重量呢,这个过程就是复合泊松过程。复合泊松过程的均值函数和方差函数一般可以用全期望和全方差公式进行计算,因为简单泊松过程的期望很容易求。 更新过程: 上文已经说到,更新过程作为泊松过程的推广,更具有一般性,那么在讨论更新过程时,我们更多地讨来更新函数,更新函数是更新过程的均值函数m(t)=E[N(t)],怎么理解呢,就是说需要用t时刻的累积计数的期望特性来表达更新过程。有一条定理: 这个定理是可以证明的,Fn(t)是分布函数,就是说:在t时刻,更新函数值就是在这个时刻,n取遍所有值的分布之和。 那么是否可以这样理解,更新过程和泊松过程的区别就是更新间隔序列不同,那么如果已知了更新间隔序列的概率密度函数,就可以求解该过程的更新函数了,详细的推导就不写了。扔结论出来:对间隔序列概率密度函数做拉氏变换得到Lf(s),然后求 Lm(s)=Lf(s)/s(1-Lf(s)),再对Lm(s)进行逆变换,就得到了m(t),这就是更新函数。

正态分布及其经典习题和答案

专题:正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 答案:8.5。解析:设两数之积为X , ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。 例2:甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

大众传播考试要点

1.传播学的四大奠基人及其主要贡献 20世纪20年代以后,有四位学者的研究和学术活动对传播学的建立产生了直接的影响,被称为传播学四大奠基人,他们是拉斯韦尔、卢因、霍夫兰和拉扎斯菲尔德。 (详细见书) 2.符号: 信息的外在形式或物质载体,是信息表达和传播中不可或缺的一种基本要素。 3.拉斯韦尔模式 *5W模式:拉斯韦尔提出,5W分别指:who(传播者)、say what(讯息)、to whom(受传者)、in which channel(媒介)、with what effect(效果)。后来麦奎尔将这五个要素连成一个直线的传播模式。意义:第一次将人们的传播活动表述为一个清晰的过程,为我们理解传播过程的结构和特性提供了具体的出发点。5W模式中五个要素后来还扩展为传播学的五个重要研究领域:控制研究、内容分析、受众研究、媒介研究、效果研究。 4.集合行为: 集合行为(collective behavior),指的是在某种刺激条件下发生的非常态社会聚集现象。多以群集、恐慌、骚乱的形态出现,往往对正常的社会秩序造成巨大的冲击和破坏。 一般认为,集合现象的发生需要三个基本条件: (1)结构性压力。 (2)触发性事件。 (3)正常的社会传播系统功能减弱,非常态的传播机制活跃化。 几种非常态的传播机制:①群体感染与群体暗示——主要是情绪上的感染,传播非常迅速; ②群体模仿与“匿名性”——前者多是出于本能的、无意识的模仿,寻求一种心理上的安全感;后者多是由于责任分散导致人们失去社会责任感和自我控制能力而进行各种宣泄式的破坏行为; ③流言与谣言——流言通常是人们关心的重要问题,但多是证据不足,十分暧昧,传播速度快且经常回流形成一种恶性循环,流言流通量=问题重要性×证据暧昧性;谣言是没有任何根据的信息,往往带有各种不良目的,传播速度极快。 5.大众传播的定义: 大众传播:专业化的媒介组织运用先进的传播技术与产业化手段,以社会上一般大众为对象而进行的大规模的信息生产和传播活动。 6.大众传播的社会功能 1、拉斯韦尔的“三功能说”:1948年在《传播在社会中的结构与功能》一文中提出,主要是环境监测功能、社会协调功能、社会遗产传承功能。 2、赖特的“四功能说”:1959年在《大众传播:功能的探讨》一文中提出,环境与检测、解释与规定、社会化功能、娱乐功能。 3、施拉姆的功能观:1982年在《传播学概论》中提出,包括①政治功能(监视、协调、文化传承)、②经济功能(信息买卖、参与市场经济、大众传播就是知识产业)、③一般社会功能(传播社会主流价值、提供娱乐等等)。 4、拉扎斯菲尔德与默顿的功能观:社会地位赋予功能、社会规范强制功能、“麻醉作用”。

二项分布经典例题练习题

二项分 布 1.n 次独立重复试验 一般地,由n 次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A 与A ,每次试验中()0P A p =>。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都只有两种结果。 (2)n 次独立重复试验中事件A 恰好发生k 次的概率()P X k ==(1)k k n k n C p p --。 2.二项分布 若随机变量X 的分布列为()P X k ==k k n k n C p q -,其中0 1.1,0,1,2,,,p p q k n <<+==L 则称X 服从参数为,n p 的二项分布,记作(,)X B n p :。 1.一盒零件中有9个正品和3个次品,每次取一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 2.一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到 红灯的事件是相互独立的,并且概率都是31 . (1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列;

(3)求这名学生在途中至少遇到一次红灯的概率. 3.甲乙两人各进行3次射击,甲每次击中目标的概率为 21,乙每次击中目标的概率为3 2. (1)记甲击中目标的此时为ξ,求ξ的分布列及数学期望; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率. 【巩固练习】 1.(2012年高考(浙江理))已知箱中装有4个白球和5个黑球,且规定:取出一个白球的 2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和. (Ⅰ)求X 的分布列; (Ⅱ)求X 的数学期望E (X ). 2.(2012年高考(重庆理))(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜 或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为1 3 ,乙每次投篮投中的概 率为1 2 ,且各次投篮互不影响. (Ⅰ)求甲获胜的概率; (Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望

第二章随机变量与分布函数习题

第二章:随机变量与分布函数习题 一、“离散型随机变量与分布函数”习题: 1. 射手对靶子进行射击,用X 表示击中的环数,已知击中一环的概率为0.2,击中两环的概率为0.8;求:(1)X 的分布列及分布函数;(2)()()10,1≤<≥X P X P . 2. 射手对靶子进行射击,一次射击的命中率为0.8,现在连续射击三枪,用X 表示三枪中命中的次数,求:(1)X 的分布列及分布函数;(2)A “至少命中两枪”的概率. 3. 设随机变量X 的分布函数为 ()()???? ???≥<≤<≤--<=≤=31 318.0114.010 x x x x x X P x F 求:X 的分布列. 4. 设随机变量X 的分布函数为 ()??? ? ????? >≤≤<=2120sin 00ππx x x A x x F 求:(1)A =? (2)??? ??<6πx P . 5. 设随机变量X 的分布列为??? ? ??--22121101q q ; 求: (1)q=? (2)X 的分布函数. 6. 某设备由三个独立工作的元件构成,该设备在一次试验中每个元件发生故障的概率为 0.1,求该设备在一次试验在中发生故障的元件数的分布列. 7. 将一颗骰子投掷两次,以X 表示两次所得点数之和、Y 表示两次中所得的小的点数;分别求X 与Y 的分布列. 8. 设随机变量X ~()p B ,2, 随机变量Y ~()p B ,3; 已知()9 5 1=≥X P , 求:()1≥Y P . 二、“连续型随机变量与分布函数”习题: 1. 设()()??? ??<>≥=-00 0,0212 x a x e a x x f a x ; ()?????<<=其他0 0cos 21 2 πx x x f ; ()????? <<-=其他0 22cos 3ππx x x f ; (1) 以上()()()x f x f x f 321,,是否是某随机变量X 的分布密度函数?

一个复合随机变量的方差

一个复合随机变量的方差 王福昌 (防灾科技学院 河北三河 065201) 【摘要】:对于比较复杂的复合随机变量的方差,一般没有简单公式去求解。这里结合具体例子进行了详细剖析。 【关键词】复合随机变量;方差 随机变量的数字特征在对积极变量的研究中占有重要的地位[1]。在教学过程中,我们发现学生在对简单的随机变量求方差时还能应付,对于稍微复杂的随机变量,不知如何下手。本文通过求一个复合随机变量的方差,指出遇到这种情形时应注意的一些问题. 如果一个随机变量X,它服从的分布与一个参数Y 有关,而Y 也是一个随机变量,它服从一个确定的分布,这时我们称随机变量X 为一个服从复合分布的复合随机变量。在应用问题中,常常遇到服从复合分布的随机变量[2]。下面给出一个例子。 设随机变量X ,以概率0.2服从均值为5的泊松分布,以概率0.8服从均值为1的泊松分布,求X 的方差。 解:由泊松分布性质可得,服从参数λ泊松分布的期望与方差相等,且都等于其参数λ。 设)5(~1πX ,)1(~2πX ,由题设和条件概率公式、全概率公式 ,设全集 } {}{21X X X X S =?==,对于 ,,21=k ()()()} {8.0}{2.0}{}{}{}{} ,{} ,{}{}{}{}{}{2122112121k X P k X P X X k X P X X P X X k X P X X P k X X X P k X X X P X X X X k X P S k X P k X P =+=====+=====+===?=?==?===条件概率可加性 所以 8 .118.052.0} {8.0}{2.0} {)(0 20 10 =?+?==?+=?===∑∑∑∞ =∞=∞ =k k k k X kP k X kP k X kP X E 由方差定义 )()()(22X E X E X D -=,所 以 ) ()()(122 11X E X E X D -=,) ()()(222 22X E X E X D -=,所 以 30 55)()()(21212 1=+=+=X E X D X E , 211)()()(22222 2=+=+=X E X D X E , 6 .728.0302.0) (8.0)(2.0} {8.0}{2.0} {)(2 2210 220 12022 =?+?=?+?==?+=?===∑∑∑∞ =∞=∞ =X E X E k X P k k X P k k X P k X E k k k 所以 36.48.16.7)()()(222=-=-=X E X E X D . 通过这个例子可以看出概率解题方法的灵活多样性。一个有效的策略是吃透概念,从定义和基本公式出发,利用一直的基本性质和技巧往往可使复杂方差的计算变得简捷. 看起来复杂的问题,往往可通过最根本的基本定义和方法解决。 【参考文献】 [1] 邓健,生志荣. 一个随机变量的分布列及数学期望的计算[J].数学学习与研究,2010,(1):93,95. [2]张尚志. 复合随机变量高阶矩的一个积分表达式[J].江西大学学报(自然科学版),1980,4(1):135-137.

正态分布附其经典习题及答案

25.3正态分布 【知识网络】 1、取有限值的离散型随机变量均值、方差的概念; 2、能计算简单离散型随机变量的均值、方差,并能解决一些实际问题; 3、通过实际问题,借助直观(如实际问题的直观图),认识正态分布、曲线的特点及曲线所表示的意义。 【典型例题】 例1:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 ( ) A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是() A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102 ), 8080 9080(8090)(01)0.3413,480.3413161010P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________。 ∴ (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ2μ,1σ2σ(填大于,小于) 答案:<,>。解析:由正态密度曲线图象的特征知。 例2 :甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)求甲答对试题数ξ的概率分布及数学期望; (Ⅱ)求甲、乙两人至少有一人考试合格的概率. 答案:解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下: 甲答对试题数ξ的数学期望 E ξ=5 9 61321210313010=?+?+?+? . (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则

二项分布经典例题复习总结练练习习题.doc

二项分布 1.n次独立重复试验 一般地,由 n 次试验构成,且每次试验相互独立完成,每次试验 的结果仅有两种对立的状态,即 A 与 A ,每次试验中P( A) p0 。我们将这样的试验称为n 次独立重复试验,也称为伯努利试验。 (1)独立重复试验满足的条件第一:每次试验是在同样条件下进行的;第二:各次试验中的事件是互相独立的;第三:每次试验都 只有两种结果。 ( 2 )n次独立重复试验中事件A恰好发生k次的概率P( X k) C n k p k (1p) n k。 2.二项分布 若随机变量X的分布列为P( X k ) C n k p k q n k,其中0 p 1.p q 1,k 0,1,2,L ,n, 则称 X 服从参数为 n, p 的二项分布,记作 X : B(n, p) 。 1.一盒零件中有9 个正品和 3 个次品,每次取一个零件,如果取出 的次品不再放回,求在取得正品前已取出的次品数X 的概率分布。 3. 甲乙两人各进行 3 次射击,甲每次击中目标的概率为1 ,乙每次击 中目标的概率为2 . 2 3

(1)记甲击中目标的此时为,求的分布列及数学期望; (2)求乙至多击中目标 2 次的概率; (3)求甲恰好比乙多击中目标 2 次的概率 . 【巩固练习】 1.(2012 年高考(浙江理))已知箱中装有 4 个白球和 5 个黑球 , 且 规定 : 取出一个白球的 2 分, 取出一个黑球的 1 分 . 现从该箱中任取( 无放回 , 且每球取到的机会均等 )3 个球 , 记随机变量X为取出 3 球所得分数之和 . ( Ⅰ) 求X的分布列 ; ( Ⅱ) 求X的数学期望E( X). 2.(2012 年高考(重庆理))( 本小题满分 13 分 ,( Ⅰ) 小问 5 分,( Ⅱ) 小问 8 分.) 甲、乙两人轮流投篮 , 每人每次投一球 ,. 约定甲先投且先投中者获胜, 一直到有人获胜或每人都已投球 3 次时投篮结束 . 设甲每次投 篮投中的概率为影响 . 1 3 ,乙每次投篮投中的概率为 1 2 ,且各次投篮互不 ( Ⅰ) 求甲获胜的概率 ;

相关文档
最新文档