现代设计方法(第三章 有限元法)

现代设计方法(第三章 有限元法)

1.在有限元法中,将求解对象看成由许多小的、彼此相连的杆和梁、一定形状的板和壳所组成。在使用有限元法进行分析时,该结构可近似地看成由若干能过节点彼此相连的单元所组成。根据已知的原始数据,按照有限元法规定的运算步骤,首先可求出各节点位移的数值解,进而可求出整个结构各点的响应。

2.有限元法的基本思路:化整为零,集零为整,把复杂结构看成由若干通过节点相连的单元组成的整体。

3.平衡或稳态问题、特征值问题、瞬态问题;

4.平衡问题:若是固体力学问题或结构力学问题,刚需求出稳态时位移和应力的分布;若是热传导问题,则要找出温度或热流量的分布;若是液体力学问题,则要得到压力和速度的分布规律;

特征值问题:所获得的解呈周期性变化,它可看成是平衡问题的延伸。这需求出某些参数的临界值及相应的稳态形态。在这类问题中,如果研究固体力学或结构力学问题,需求出结构的自然频率以及相应的振型;若是液体力学问题,则是研究层流的稳定特性;对电路问题,是分析其共振特性;

瞬态问题与时间相关。在固体力学问题中,研究在随时间变化的力作用下,物体的响应;在研究热传导问题时,则要找出物体突然受热或冷却时热场的分布等。

5.工程技术人员的任务是:首先,将复杂的工程实际问题简化,分清属哪一类问题,然后,选择合理的、可供使用的计算机程序;下一步,根据程序的说明和要求,准备好并向计算机输入全部所需的数据和信息,最后,一定要检查计算结果的合理性,看所作的简化及所选的程序是否合理。

6.k ij都称为单元刚度系数。它表示该单元内节点j处产生单位位移时,在节点i处所引起的载荷fi。

7.K ij:在整个结构中除节点j产生单位位移外,其余各节点的位移均为零时,在节点i处所引起的载荷F i.

8.有限元法求解问题最重要的几个步骤:

1)对整个结构进行简化。将其分割成若干个单元,单元间彼此通过节点相连。

2)求出各单元的刚度矩阵;

3)集成总体刚度矩阵并写出总体平衡方程;

4)引入支承条件,求出每个节点的位移。

5)求出各单元内的应力和应变。

1.平面刚架问题要比前一节的问题复杂些,主要表现在以下两个方面:

1)节点位移不再只是轴向位移。对于一根平面杆件的两个端点,除轴向位移外,还有垂直于轴向的横向位移和角位移。选定杆的端点为节点,每个节点的位移分量由一个增加到三个。

2)刚架由许多杆件组成,各杆件的取向不同。将每个杆件看成是一个单元,各单元的轴线方向不再相同。

2.总体刚度矩阵集成步骤:

1.对一个有n个节点的结构,将总体刚度矩阵【K】划分成nXn个子区间,然后按节点总码的顺序进行编号。

2.将整体坐标系中单元刚度矩阵的各子矩阵,根据其下标的两个总码对号入座,写在总体刚度矩阵相应的子区间内。

3.同一子区间内的子矩阵相加,成为总体刚度矩阵中相应的子矩阵。

3.没有任何约束的结构是一个悬空结构,可以在空间做刚体运动。

4.刚架结构的节点,从支承条件的角度可分成两类:一些是在支承处,另一些是在无支承处。

5.计算机上:在支承处对某处一位移分量的约束可以有两种情况:一种是该位移分量的值为零,另一种是它等于一个已知的非零值。

支承情况:节点n的水平位移Un=0,在总体刚度矩阵中,与位移Un对应的行码和列码均是3n-2。需对原矩阵作如下修改:

1.在矩阵的第3n-2行与列中,将主对角线元素改为1,其余元素改为零。

2.将等式右边力矢量中的第3n-2个元素改为零。

支承情况2:节点的水平位移Un为给定的非零值。

1.主对角线刚度系数K3n-2,3n-2乘以一个大数A。

2. 将等式右边矢量{F}中的第3n-2个元素改为AK3n-2,3n-2U n*;其余各项保持不变。

3.将式中的第3n-2个方程展开后,除包含大数的两项个,其余各项相对比较小,可以忽略不计。因此,所反映的是给定的支承条件Un=Un*。

6.说明在进行有限元分析时,对刚架单元的非节点载荷的处理原理和计算方法。

载荷移置原理:处理非节点载荷一般可以在整体坐标系进行,其过程包括:将杆单元各自看成是一根两端都固定的梁,各自求出两个固定端的约束反力,然后,将各固定端的约束反力变号,按节点进行集成,获得各节点的等效载荷。

固定端反力和反力矩的计算直接利用材料办学的公式计算。

1.平板问题时存在着两个刚度矩阵:一个是反映平板在其平面内载荷与位移关系的刚度矩阵。另一个是薄板弯曲的刚度矩阵。

2.节点位置的选择:若结构在几何形状、材料性质和外部条件无突变时,该结构应等分成几个单元,节点呈等距分布。若存在不连续性,节点应选在这些突变处。简述有限元分析结果的后处理

后处理所显示的结果主要有两类:意识结构的变形,另一

类是应力和应变在结构中分布的情况。一般用结构的三维

线框图,采用与结构不同的比例尺,放大地显示其变形的

情况,在受动载荷时,也可用动画显示其振动的形态。结

构中应力、应变或唯一的分布用云图或等值线图来显示。

·有限元分析中,为什么要引入支撑条件?

总体刚度矩阵[K],它是节点力矢量[F]与节点位移矢量[Φ]

之间的转移矩阵[K][Φ]=[F]结构的总体刚度矩阵是一个

奇异矩阵,她的逆矩阵不存在,因而从式中无法求得各节

点的位移矢量。因为,没有任何约束的结构运算是一个悬

空结构,可以在空间坐刚体运动。这是,即使各节点力量

是已知的,各节点位移矢量也不存在唯一确定的解。所以,

还必须引入支撑条件。

·在有限元分析中,为什么要采用半带存储?

1)单元尺寸越小,单元数越多,分析计算净度越高。单元

数越多,总刚度矩阵的阶数越高,所需计算机的内存量和

计算量越大2)总刚度矩阵具有对称性、稀疏性以及非零元

素带型分布规律 3)只储存对焦线元素以及上(或下)三角

矩阵中宽为NB的斜带形区内的元素,可以大大减小所需内

存量。

·简述有限元分析过程中,求总体刚度矩阵的两种主要方

法和特点

1)直接根据总体刚度矩阵系数的电议分别求出它们,从而

写出总体刚度矩阵,概念清晰,但是在分析复杂结构式运

算极其复杂。 2)分别求出各单元的刚度矩阵,然后根

据叠加原理,利用集成的方法,求出总体刚度矩阵。从单

元刚度矩阵出发,单元刚度矩阵求法统一,简单明了,但

总体刚度需要集成

·有限元分析过程中,如何决定单元数量?

单元数量取决于要求的精度、单元的尺寸、以及自由度的

数量,虽然,单元的数量越多精密度越高,但是也存在一

个界限,超过这个值,精度的提高就不明显。单元数量大,

自自由度数也越大,计算机内存量有时会不够

·在现有的有限元分析程序中,其前处理程序一般包含哪

些主要功能?

1)单元的自动分割生成网格 2)单元和节点的自动优化

编码实现带宽最小。3)各节点坐标值确定 4)可以使用图

形系统显示单元分割情况

·简述平面应力和平面应变的区别

1)应力状态不用:平面应力问题中平板的厚度与长度、高

度相比尺寸小很多,所受的载荷都在平面内并沿厚度方向

均匀分布,可以认为沿厚度方向的应力为零平面应力问

题中由于Z项尺寸大,该方向上的变形是被约束住的,沿Z

项应变为零 2)弹性矩阵不同:将平面应力问题弹性矩

阵中的E换成、把Πμ换成μ/(1-μ),就成为平面应

变问题的弹性矩阵。

在有限元分析中,对结构划分的单元数是否越多越好?为

什么?

答:不是。单元的数量取决于要求的精度、单元的尺寸和

自由度数。

虽然一般单元的数量越多精度越高,但也有一个界限,超

过这个值,精度的提高就不明显。

简述有限元法的前处理主要包括哪些内容?

(1)单元的自动分割生成网格(2)节点的自动优化编码(3)

使用图形系统显示单元分割情况(4)带宽优化(5)节点坐标

的确定(6)检查单元分割的合理性(7)局部网格的自适应加

密(8)有限元模型的尺寸优化

在有限元分析时,什么情况下适合选择一维、二维和三维单

元?

答:(1)当几何形状、材料性质及其它参数能用一个坐标

描述时,选用一维单元;(2)当几何形状、材料性质及

其它参数需要用两个相互独立的坐标描述,选用二维单元;

(3)当几何形状、材料性质及其它参数需要用三个相互独

立的坐标描述,选用三维单元。

单元刚度矩阵所具有的共同特性是什么?

解释产生这些特性的力学上的原因。单元刚度矩阵和总体

刚度矩阵所具有的共同特性:对称性和奇异性

具有对称性是因为材料力学中的位移互等定理:对于一个

构件,作用在点j的力引起i点的挠度等于同样大小的力

作用在i点而引起j点的挠度。

具有奇异性是因为单元或结构在没有约束之前,除本身产

生弹性变形外,还可以做任意的刚体位移。

在有限元分析时,何谓对称结构?一般如何处理?

1)当结构的几何形状、尺寸、载荷和约束条件对称于某一

平面(对平面问题对称于某一直线),其结构内部的应力及

位移也对称于该平面(线),这类结构称为对称结构。2)

对于对称结构一般按如下方法处理:

当对称结构只有一个对称平面(线)时,只研究它的一半。

若对称结构有两个相互垂直的对称平面(线)时,则只研

究它的四分之一。

试述总体刚度矩阵的建立方法

求总体刚度矩阵的两种主要方法:直接根据总体刚度系数

的定义分别求出它们,从而写出总体刚度矩阵,概念清晰,

但是在分析复杂结构时运算极其复杂。分别先求出各单

元的刚度矩阵,然后根据叠加原理,利用集成的方法,求

出总体刚度矩阵,从单元刚度矩阵出发,单元刚度矩阵求

法统一,简单明了,但总体刚度矩阵需要集成。

有限元分析过程中,当划分单元时如何决定单元尺寸?

单元尺寸的概念包括两个方面:一方面是单元本身的大小,

另一方面指一单元内自身几个尺寸之间的比率。单元本身

尺寸小,所得到的精度高,但是所需的计算量大。为减少

计算量,有时对一个结构要用不同的尺寸的单元离散。一个

单元中最大与最小的尺寸要尽量接近。例如,对于三角形单

元,其三条边长应尽量接近;对于矩形单元,长度和宽度不

宜相差太大。

简述可靠性设计传统设计方法的区别。

答:传统设计是将设计变量视为确定性单值变量,并通过确

定性函数进行运算。

而可靠性设计则将设计变量视为随机变量,并运用随机方法

对设计变量进行描述和运算。

1.可靠性:产品在规定的条件下和规定的时间内,完成规定

功能的能力。

可靠度:产品在规定的条件下和规定的时间内,完成规定功

能的概率。是对产品可靠性的概率度量。

可靠度是对产品可靠性的概率度量。

2)可靠性工程领域主要包括以下三方面的内容:

1.可靠性设计。它包括了设计方案的分析、对比与评价,必

要时也包括可靠性试验、生产制造中的质量控制设计及使用

维修规程的设计等。

2.可靠性分析。它主要是指失效分析,也包括必要的可靠性

试验和故障分析。这方面的工作为可靠性设计提供依据,也

为重大事故提供科学的责任分析报告。

3.可靠性数学。这是数理统计方法在开展可靠性工作中发展

起来的一个数学分支。

。可靠性设计具有以下特点:

1.传统设计方法是将安全系数作为衡量安全与否的指标,但

安全系数的大小并没有同可靠度直接挂钩,这就有很大盲目

性。可靠性设计与之不同,它强调在设计阶段就把可靠度直

接引进到零件中去,即由设计直接决定固有的可靠度。

2.传统设计是把设计变量视为确定性的单值变量并通过确定

性的函数进行运算,而可靠性设计则把设计变量视为随机变

量并运用随机方法对设计变量进行描述和运算。

3.在可靠性设计中,由于应力S和强度R都是随机变量,所

以判断一个零件是否安全可靠,就以强度R大于应力S的概

率大小来表示,这就是可靠度指标。

4.传统设计与可靠性设计都是以零件的安全或失效作为研究

内容,因此,两者间又有着密切的联系。可靠性设计是传统

设计的延伸与发展。在某种意义上,也可以认为可靠性设计

只是在传统设计的方法上把设计变量视为随机变量,并通过

随机变量运算法则进行运算而已。

。平均寿命(无故障工作时间):指一批产品从投入运行到发

生失效(或故障)的平均工作时间。

对不可修复的产品而言,T是指从开始使用到发生失效的平

均时间,用MTTF表示;

对可修复的产品而言,是指产品相邻两次故障间工作时间的

平均值,用MTBF表示;

平均寿命的几何意义是:可靠度曲线与时间轴所夹的面积。

6.正态分布曲线的特点是什么?什么是标准正态分布?

:正态分布曲线f(x)具有连续性,对称性,其曲线与横坐标

轴间围成的总面积恒等于1.在均值μ和离均值的距离为标准

差的某一指定倍数z。之间,分布有确定的百分数,均值或

数学期望μ表征随机变量分布的集中趋势,决定正态分布曲

线位置;标准差σ,他表征随机变量分布的离散程度,决定

正态分布曲线的形状。定义μ=0,σ=1,即N(0,1)为标准正

态分布。

7.系统可靠性的大小主要取决于:(1)组成系统的零部件的可

靠性 (2)零部件的组合方式。

1.什么是3σ法则?已知手册上给出的16Mn的抗拉强度为

1100~1400MPa,试利用3σ法则确定该材料抗拉强度的均值

和标准差。

在进行可靠性计算时,引用手册上的数据,可以认为它们服

从正态分布,手册上所给数据范围覆盖了该随机变量的

+-3σ,即6倍的标准差,称这一原则为3σ法则。均值=

(1100+1400)/2=1250MPa 标准差=(1400-1100)/6=50Mpa。

从正态分布知,对应+-3σ范围的可靠度已为0.9973.

2. 简述强度—应力干涉理论中“强度”和“应力”的含义,

试举例说明之。

答:强度一应力干涉理论中“强度”和“应力”具有广义的

含义:“应力”表示导致失效的任何因素;而“强度”表示阻

止失效发生的任何因素。“强度”和“应力”是一对矛盾的

两个方面,它们具有相同的量纲;例如,在解决杆、梁或轴

的尺寸的可靠性设计中,“强度”就是指材料的强度,“应力”

就是指零件危险断面上的应力,但在解决压杆稳定性的可靠

性设计中,“强度”则指的是判断压杆是否失稳的“临界压力”,

而“应力”则指压杆所受的工作压力。

3.说明常规设计方法中采用平均安全数的局限性。

答:平均安全系数未同零件的失效率联系起来,有很大的盲

目性。

从强度一应力干涉图可以看出 1)即使安全系数大于1,仍

然会有一定的失效概率。2)当零件强度和工作应力的均值不

变(即对应的平均安全系数不变),但零件强度或工作应力的

离散程度变大或变小时,其干涉部分也必然随之变大或变小,

失效率亦会增大或减少。

1.所谓系统,是为完成某一功能而由若干零部件相互有机地

组合起来的综合体。系统的可靠度取决于两个因素:一是组

成系统的零部件的可靠度;二是零部件的组合方式。

3.串联系统:若系统中诸零件的失效相互独立,但当系统中

任一个零件发生故障都会导致整个系统失效时,则这种零件

的组合形式称为串联模型。

3.串联系统的可靠度:串联系统的可靠度Rs低于组成零件的

可靠度Ri。因此,要提高串联系统的可靠度,最有效的措施

是减少组成系统的零件数目。

4.并联系统:有冗余系统和表决系统。冗余系统又可分为工作冗

余系统和非工作冗余系统。

5.工作冗余系统:在该系统中,所有零件都同时参加工作,而且

任何一个零件都能单独支持整个系统正常工作。即在该系统中,

只要不是全部零件失效,系统就可以正常工作。

6.非工作冗余系统:在该系统中,只有某一个零件处于工作状态,

其它零件则处于非工作状态。只有当工作的零件出现故障后,非

工作的零件才立即转入工作状态。

。非工作冗余系统的可靠度高于工作冗余系统,这是因为工作冗

余系统的零件虽然都处于不满负荷状态下,但它们总是在工作,

必然会磨损或老化。非工作冗余系统虽不存在这个问题,却存在

一个转换开关的可靠度问题。

。r/n表决系统:在n个零件组成的并联系统中,n个零件都参加

工作,但其中要有r个以上的零件正常工作,系统才能正常工作。

它是属于一种广义的工作冗余系统。当r=1时,就是工作冗余系

统,当r=n时,就是串联系统。

。复杂系统的可靠性预测方法:等效功能图法、布尔真值表法;

。故障树分析的步骤:1,在充分熟悉系统的基础上,建立故障

树;2,进行定性分析,识别系统的薄弱环节;3,进行定量分析,

对系统的可靠性作出评价。

。故障树:是一种倒立的树状逻辑因果关系图,它是用事件符号、

逻辑门符号和转移符号描述系统中各种事件之间因果关系的图。

。故障树的定性分析是寻找故障树的全部最小割集或最小路集。

其目的是为了找出引了系统故障的全部可能的起因,并定性的识

别系统的薄弱环节。

。最小割集:如果将割集中任意去掉一个基本事件后就不再是割

集。

。最小路集:路集也是一些基本事件的集合,当该集合所有的基

本事件同时不发生时,则顶事件必然不发生。如果将路集中任意

去掉一个基本事件后就不再是路集的话,则称此路集为最小路

集。

。最小割集代表系统的一种失效模式;一个最小路集代表系统的

一个正常模式。

。故障树的全部最小割集即是顶事件发生的全部可能原因,构成

了系统的故障谱。因此,在产品设计中要努力降低最小割集发生

的可能性,这就是产品的薄弱环节。反过来说,为保证系统正常

工作,必须至少保证一个最小路集存在。

。故障树的定量分析就是根据基本事件的概率求出顶事件发生的

概率,从而对系统的可靠性作出评价。

。可靠度分配按分配原则的不同,有等同分配法、加权分配法和

动态规划最优分配法;

。等同分配法:它按照系统中各单元(子系统或零部件)的可靠

度均相等的原则进行分配。其计算简单,缺点是没有考虑各子系

统现有的可靠度水平、重要性等因素。

。加权分配法:它是把各子系统在整个系统中的重要度以及各子

系统的复杂度作为权重来分配可靠度的。

。最优分配法:采用动态规划最优分配法,可以把系统的成本、

重量、体积或研制周期等因素为最小作为目标函数,而把可靠度

不小于某一给定值作为约束条件进行可靠度分配;也可以把系统

可靠度尽可能大作为目标函数,而将成本等因素视为约束条件进

行可靠度分配。这要根据具体问题来确定。特点:机电产品的可

靠性指标不仅取决于零部件的可靠度,而且还将受制造成本、研

制周期、重量、体积等因素的制约。因此,要全面考虑这些因素

的影响,必须采用优化方法分配可靠度。

。一是可靠性设计的有效性取决于所采用的统计参数是否准确可

靠;二是应用明确规定产品失效的形式和判据。

。试简述强度和应力均为正态分布时,强度和应力干涉的三种典

型情况下手失效率情况。

1.强度的均值大于应力的均值,这时的干涉概率,即不可靠度F

小于50%。当强度的均值减去应力的均值为一定值时,概率F的

大小,随强度和应力的标准增大而增大。常规设计的安全系数大

于1时属于这种情况。这种情况下,还可能出现失效。

2.强度的均值等于应力的均值,此时,失效率F为50%

3.强度的均值小于应力的均值,此时安全系数小于1,失效概率

大于50%,零件仍具有一定的可靠度。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元课程设计

一.问题描述 如图所示的平面矩形结构,设E=1,NU=0.25,h=1,考虑以下约束和外载: 位移边界条件BC(u):U A=0,V A=0,U D=0, 力边界条件BC(p):在CD边上有均布载荷q=1, 建模情形:使用四个四节点矩形单元, 试在该建模情形下,求各节点的位移以及各个单元的应力分布。

二.Matlab程序 (1).函数定义: function k= Quad2D4Node_Stiffness(E,NU,h,xi,yi,xj,yj,xm,ym,xp,yp,ID) syms s t; a = (yi*(s-1)+yj*(-1-s)+ym*(1+s)+yp*(1-s))/4; b = (yi*(t-1)+yj*(1-t)+ym*(1+t)+yp*(-1-t))/4; c = (xi*(t-1)+xj*(1-t)+xm*(1+t)+xp*(-1-t))/4; d = (xi*(s-1)+xj*(-1-s)+xm*(1+s)+xp*(1-s))/4; B1 = [a*(t-1)/4-b*(s-1)/4 0 ; 0 c*(s-1)/4-d*(t-1)/4 ; c*(s-1)/4-d*(t-1)/4 a*(t-1)/4-b*(s-1)/4]; B2 = [a*(1-t)/4-b*(-1-s)/4 0 ; 0 c*(-1-s)/4-d*(1-t)/4 ; c*(-1-s)/4-d*(1-t)/4 a*(1-t)/4-b*(-1-s)/4]; B3 = [a*(t+1)/4-b*(s+1)/4 0 ; 0 c*(s+1)/4-d*(t+1)/4 ; c*(s+1)/4-d*(t+1)/4 a*(t+1)/4-b*(s+1)/4]; B4 = [a*(-1-t)/4-b*(1-s)/4 0 ; 0 c*(1-s)/4-d*(-1-t)/4 ; c*(1-s)/4-d*(-1-t)/4 a*(-1-t)/4-b*(1-s)/4]; Bfirst = [B1 B2 B3 B4]; Jfirst = [0 1-t t-s s-1 ; t-1 0 s+1 -s-t ; s-t -s-1 0 t+1 ; 1-s s+t -t-1 0]; J = [xi xjxmxp]*Jfirst*[yi ;yj ; ym ; yp]/8; B = Bfirst/J; if ID == 1 D = (E/(1-NU*NU))*[1 NU 0 ; NU 1 0 ; 0 0 (1-NU)/2]; elseif ID == 2 D = (E/(1+NU)/(1-2*NU))*[1-NU NU 0 ; NU 1-NU 0 ; 0 0 (1-2*NU)/2]; end BD = J*transpose(B)*D*B; r = int(int(BD, t, -1, 1), s, -1, 1); z = h*r; k = double(z); end function z = Quad2D4Node_Assembly(KK,k,i,j,m,p) DOF(1)=2*i-1; DOF(2)=2*i; DOF(3)=2*j-1; DOF(4)=2*j; DOF(5)=2*m-1; DOF(6)=2*m; DOF(7)=2*p-1; DOF(8)=2*p; for n1=1:8

现代设计方法

考试科目:《现代设计方法》 (总分100分) 时间:90分钟 __________学习中心(教学点) 批次: 层次: 专业: 学号: 身份证号: 姓名: 得分: 一、单项选择题(每小题1.5分,共27分) 1.试判别矩阵1111???? ? ?,它是( ) A 、单位矩阵 B 、正定矩阵 C 、负定矩阵 D 、不定矩阵 2.约束极值点的库恩——塔克条件为:-?=?=∑F X g X i i q i ()()* * λ1 ,当约束函数是g i (X)≤0和 λi >0时,则q 应为( ) A 、等式约束数目 B 、不等式约束数目 C 、起作用的等式约束数目 D 、起作用的不等式约束数目 3.在图示极小化的约束优化问题中,最优点为( ) A 、A B 、B C 、C D 、D 4.下列优化方法中,不需计算迭代点一阶导数和二阶导数的是( ) A 、可行方向法 B 、复合形法 C 、DFP 法 D 、BFGS 法 5.内点罚函数Φ(X,r (k) )=F(X)-r (k) 1 01g X g X u u u m () ,(())≤=∑,在其无约束极值点X ·(r (k))逼近原 目标函数的约束最优点时,惩罚项中( ) A 、r (k) 趋向零, 11 g X u u m ()=∑ 不趋向零 B 、r (k) 趋向零,11g X u u m ()=∑ 趋向零 C 、r (k) 不趋向零, 11 g X u u m ()=∑ 趋向零 D 、④r (k) 不趋向零,11g X u u m ()=∑ 不趋向零 6.0.618法在迭代运算的过程中,区间的缩短率是( )

A 、不变的 B 、任意变化的 C 、逐渐变大 D 、逐渐变小 7.对于目标函数F(X)受约束于g u (X)≥0(u=1,2,…,m)的最优化设计问题,外点法惩罚函数的表 达式是( ) A 、Φ(X,M (k) )=F(X)+M (k) {max[(),]},() g X M u u m k 012=∑为递增正数序列 B 、Φ(X,M (k))=F(X)+M (k){max[(),]},() g X M u u m k 012 =∑为递减正数序列 C 、Φ(X,M (k))=F(X)+M (k){min[(),]},()g x M u u m k 01 2 =∑为递增正数序列 D 、Φ(X,M (k))=F(X)+M (k){min[(),]},() g x M u u m k 01 2 =∑为递减正数序列 8.标准正态分布的均值和标准离差为( ) A 、μ=1,σ=0 B 、μ=1,σ=1 C 、μ=0,σ=0 D 、μ=0,σ=1 9.在约束优化方法中,容易处理含等式约束条件的优化设计方法是( ) A 、可行方向法 B 、复合形法 C 、内点罚函数法 D 、外点罚函数法 10.若组成系统的诸零件的失效相互独立,但只有某一个零件处于工作状态,当它出现故障后, 其它处于待命状态的零件立即转入工作状态。这种系统称为( ) A 、串联系统 B 、工作冗余系统 C 、非工作冗余系统 D 、r/n 表决系统 11.对于二次函数F(X)=1 2 X T AX+b T X+c,若X *为其驻点,则▽F(X *)为( ) A 、零 B 、无穷大 C 、正值 D 、负值 12.平面应力问题中(Z 轴与该平面垂直),所有非零应力分量均位于( ) A 、XY 平面内 B 、XZ 平面内 C 、YZ 平面内 D 、XYZ 空间内 13当选线长度l ,弹性模量E 及密度ρ为三个基本量时,用量纲分析法求出包含振幅A 在内的 相似判据为(E 的量纲为( )[ML -1T -2 ] A 、A=l E 1 1212- ρ B 、A=l E -- 1 121 2 ρ C 、A=l E 100ρ D 、A l E =-11 12ρ 14.平面三角形单元内任意点的位移可表示为三个节点位移的( ) A 、算术平均值 B 、代数和车员 C 、矢量和 D 、线性组合 15.已知F(X)=(x 1-2)2+x 22,则在点X (0)=00???? ??处的梯度为( ) A 、?=?????? F X ()()000 B 、?=-?????? F X ()() 020

有限元程序课程设计

重庆大学本科学生课程设计任务书 课程设计题目有限元程序设计 学院资源及环境科学学院专业工程力学年级2010级 已知参数和设计要求: 1.独立完成有限元程序设计。 2.独立选择计算算例,并能通过算例判断程序的正确性。 3.独立完成程序设计报告,报告内容包括理论公式、程序框图、程序本 体、计算算例,算例结果分析、结论等。 学生应完成的工作: 1.复习掌握有限单元法的基本原理。 2.掌握弹性力学平面问题3节点三角形单元或4节点等参单元有限元方法 的计算流程,以及单元刚度矩阵、等效节点载荷、节点应变、节点应力 和高斯积分等的计算公式。 3.用Fortran语言编写弹性力学平面问题3节点三角形单元或4节点等参 单元的有限元程序。 4.在Visual Fortran 程序集成开发环境中完成有限元程序的编辑和调试 工作。 5.利用编写的有限元程序,计算算例,分析计算结果。 6.撰写课程设计报告。 目前资料收集情况(含指定参考资料): 1.王勖成,有限单元法,北京:高等教育出版社,2002。 2.O.C. Zienkiewicz, R. L. Taylor, Finite Element Method, 5th Eition, McGraw-Hall Book Company Limited, 2000。 3.张汝清,董明,结构计算程序设计,重庆:重庆大学出版社,1988。 课程设计的工作计划: 1.第1周星期一上午:教师讲解程序设计方法,程序设计要求和任务安 排。 2.第1周星期一至星期二完成程序框图设计。 3.第1周星期三至第2周星期四完成程序设计。 4.第2周星期五完成课程设计报告。 任务下达日期 2013 年 6 月 6 日完成日期 2013 年 07 月 03 日 指导教师(签名) 学生(签名)

现代设计方法-有限元分析报告

中国地质大学研究生课程论文封面 课程名称现代设计方法 教师姓名 研究生姓名 研究生学号 研究生专业机械工程 所在院系机电学院 日期: 2013 年 1 月 8 日

评语 注:1、无评阅人签名成绩无效; 2、必须用钢笔或圆珠笔批阅,用铅笔阅卷无效; 3、如有平时成绩,必须在上面评分表中标出,并计算入总成绩。

有限元分析简介 摘要: ANSYS 软件具有建模简单、快速、方便的特点, 因而成为大型通用有限元程序的代表。对有限元作了一个总体的介绍, 并着重介绍了ANSYS 软件, 简要地叙述了ANSYS 软件的主要技术特点和各部分构成以及其主要的分析功能,从其构成及功能中可以看到,ANSYS 软件的确是工程应用分析的有效工具。 1、有限元分析的基本概念和计算步骤 1.1、有限元分析的基本概念 有人将CAE技术称为当今“科学与技术的完美结合”。这句话说得比较夸张,但不可否认,CAE技术的确是现代产品研发的重要基础技术,其理论性和需要的学科知识厚重而宽广。有限元软件是目前CAE的主流分析软件之一,在全球拥有最大的用户群。有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

有限元课程设计

有限元法分析与建模课程设计报告 学院:机械电子工程学院 专业:机械电子工程 指导教师:杜平安 学生:乔林 学号:201221080212 2012-12-10

摘要 摘要 连杆的作用是将活塞的往复运动变成曲轴的旋转运动, 并把活塞上的力传 给曲轴连杆工作的小端做往复运动, 大端作旋转运动, 杆身做复杂的平面运动。本文用Pro/E建立连杆的三维模型,并运用ANSYS强大的有限元分析和优化功能来实现连杆的分析ANSYS 是一款极其强大的有限元分析软件。通过数据接口,ANSYS 可以方便的实现从CAD 软件中导入实体模型。因此,将Pro/E强大的 建模功能与ANSYS 优越的有限元分析功能结合在一起可以极大地满足设计者 在设计过程中对建模与分析的需求。 关键词:连杆,有限元,Pro/E,ANSYS

ABSTRACT ABSTRACT The role oftheconnecting rodisthesmall end ofthereciprocation of the pistonintoarotational movementofthecrankshaft, and to transmittheforceon the pistontothecrankshaft connecting rodreciprocates, thebig endfor pivotal movement, Shaftdo complexplanar motion. The establishment ofalinkageof thethree-dimensionalmodelusingPro / E, thepowerfulANSYSfinite elementanalysis andoptimization capabilitiestoachievetheconnecting rodfatigueanalysisANSYSisan extremelypowerfulfinite element analysis software. Throughthedata interface, ANSYS canfacilitate the realization ofsolid modelsimportedfromCAD software. Therefore,thesuperiorpowerfulmodeling capabilitiesofPro / Eand ANSYSfinite elementanalysis capabilitiestogethercanmeetthedesignersin the design processmodelingand analysis. Keywords:rod, finite element, Pro / E, ANSYS

有限元课程设计1

目录一. 前言 二.有限元设计部分 1 问题阐述 2 解析法求解 3 模型简化 4 ANSYS软件应用说明 5 结果分析 三.机械优化设计部分 1 问题阐述 2 解析算法 3 黄金分割法顺序流程图 4 C语言源程序代码 5 结果分析 四.设计心得 五. 参考文 一.前言

二.有限元设计部分 1、问题阐述 外伸梁上均布载荷的集中度为q=3kN/m,集中力偶矩M e=3kN·m列出剪力方程和弯矩方程,并绘制剪力图。材料力学Ι(刘鸿文第四版)P121

图2-1 外伸梁简化图 2、解析法求解 由梁的平衡方程,求出支反力为 F RA=14.5kN,F RB=3.5kN 梁的C A、AD、DB等三段内,剪力和弯矩都不能有同一个方程来表示,所以应分为三段考虑。对每一段都可以用同一个方法计算,列出剪力方程和弯矩方程,方程中x以m为单位,Fs(x)以kN为单位,M(x)以kN为单位。 在CA段内: Fs(x)=-qx=-3x(0<=x<2m) (g) M(x)=-(3/2)X2(0<x<=2m) (h)

在AD段内: Fs(x)=F RA-qx=14.5-3x(2m<x<=6m) (i) M(x)=F RA(x-2)-(1/2)X2=14.5(x-2)- (3/2)X 2 (j) (2m< x6m) M(x)是x的二次函数,根据极值条件dM(x)/d(x)=0,得 14.5-3x=0 由此解出x=4.83m,亦即在那这一截面上,弯矩为极值。 代入(j) 式得AD段内的最大弯矩为 M=6.04kN·m 当截面取在DB段,用截面右侧的外力计算剪力和弯矩比较方

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

课程设计ANSYS有限元分析(最完整)

有限元法分析与建模课程设计报告 学院:机电学院 专业:机械制造及其自动化指导教师:**** 学生:* *** 学号:2012011**** 2015-12-31

摘要 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。力求较为真实地反映光盘在光驱中实际应力和应变分布情况,为人们进行合理的标准光盘结构设计和制造工艺提供理论依据。 关键词:ANSYS10.0;光盘;应力;应变。

目录 第一章引言 (3) 1.1 引言 (3) 第二章问题描述 (4) 2.1有限元法及其基本思想 (4) 2.2 问题描述 (4) 第三章力学模型的建立和求解 (5) 3.1设定分析作业名和标题 (5) 3.2定义单元类型 (6) 3.3定义实常数 (9) 3.4定义材料属性 (12) 3.5建立盘面模型 (14) 3.6对盘面划分网格 (22) 3.7施加位移边界 (27) 3.8施加转速惯性载荷并求解 (30) 第四章结果分析 (32) 4.1 旋转结果坐标系 (32) 4.2查看变形 (33) 4.3查看应力 (35) 总结 (38) 参考文献 (39)

第一章引言 1.1 引言 光盘业是我国信息化建设中发展迅速的产业之一,认真研究光盘产业的规律和发展趋势,是一件非常迫切的工作。光盘产业发展的整体性强,宏观调控要求高,因此,对于光盘产业的总体部署、合理布局和有序发展等问题,包括节目制作、软件开发、硬件制造、节目生产、技术标准等。 在高速光盘驱动器中,光盘片会产生应力和应变,在用ANSYS分析时,要施加盘片高速旋转引起的惯性载荷,即可以施加角速度。需要注意的是,利用ANSYS施加边界条件时,要将内孔边缘节点的周向位移固定,为施加周向位移,而且还需要将节点坐标系旋转到柱坐标系下。 本文通过ANSYS10.0建立了标准光盘的离心力分析模型,采用有限元方法对高速旋转的光盘引起的应力及其应变进行分析,同时运用经典弹性力学知识来介绍ANSYS10.0中关于平面应力问题分析的基本过程和注意事项。

现代设计方法(关于有限元)作业

《现代设计方法》作业关于有限元法的研究 学院:机械工程学院 专业:机械制造及其自动化

0.有限元法 有限元法分析起源于50年代初杆系结构矩阵的分析。随后,Clough于1960年第一次提出了“有限元法”的概念。其基本思想是利用结构离散化的概念,将连续介质体或复杂结构体划分成许多有限大小的子区域的集合体,每一个子区域称为单元(或元素),单元的集合称为网格,实际的连续介质体(或结构体)可以看成是这些单元在它们的节点上相互连接而组成的等效集合体;通过对每个单元力学特性的分析,再将各个单元的特性矩阵组集成可以建立整体结构的力学方程式,即力学计算模型;按照所选用计算程序的要求,输入所需的数据和信息,运用计算机进行求解。 当前,有限元方法/理论已经发展的相当成熟和完善,而计算机技术的不断革新,又在很大程度上推进了有限元法分析在工程技术领域的应用。然而,如此快速地推广和应用使得人们很容易忽视一个前提,即有限元分析软件提供的计算结果是否可靠、满足使用精度的前提,是合理地使用软件和专业的工程分析。有限元法分析一般包括四个步骤:物理模型的简化、数学模型的程序化、计算模型的数值化和计算结果的分析。每一个步骤在操作过程中都或多或少地引入了误差,这些误差的累积最终可能会对计算结果造成灾难性的影响,进而蒙蔽我们的认识和判断。 1.受内压空心圆筒的轴对称有限元分析 例图1.1所示为一无限长的受内压的轴对称圆筒,该圆筒置于内径为120mm的刚性圆孔中,试求圆筒内径处的位移。结构的材料参数

为:200 =,0.3 E GPa μ=。 图1 结构图 对该问题进行有限元分析的过程如下。 (1)结构的离散化与编号 由于该圆筒为无限长,取出中间一段(20mm高),采用两个三角形轴对称单元,如图1.2所示。对该系统进行离散,单元编号及结点编号如图1.3所示,有关结点和单元的信息见表1.1。 图1.2 有限元模型

有限元分析程序的设计

结构有限元分析程序设计 绪论 §0.1 开设“有限元程序设计”课程的意义和目的 §0.2 课程特点 §0.3 课程安排 §0.4 课程要求 §0.5 基本方法复习 $0.1 意义和目的 1.有限元数值分析技术本身要求工程设计研究人员掌握 1). 有限元数值分析技术的完善标志着现代计算力学的真正成熟和实用化,已在各种 力学中得到了广泛的应用。比如:,已杨为工程结构分析中最得以收敛的技术手段,现代功用大致有: a). 现代结构论证。对结构设计从内力,位移等方面进行优劣评定,从而进 行结构优化设计。 b)可取代部份实验,局部实验+有限元分析,是现代工程设计研究方法的一大 特点。 c)结构的各种功能分析(疲劳断裂,可靠性分析等)都以有限元分析工具作为 核心的计算工具。 2). 有限元数值分析本身包括着理论+技术实现(本身功用所绝定的) 有限元数值分析本身包括着泛函理论+分片插值函数+程序设计 2. 有限元分析的技术实现(近十佘年的事)更依赖于计算机程序设计 有限元分析的技术取得的巨大的成就,从某种意义上说,得益于计算机硬件技术的发展和程序设计技术的发展,这两者的依赖性在当代表现得更加突出。(如可视化技术) 3.从学习的角度,不仅要学习理论,而且要从程序设计设计角度对这些理论的技术实现有 一个深入的了解,应当致力于掌握这些技术实现能力,从而开发它,发展它。(理论本身还有待于进一步完美相应的程序设计必须去开发) 4.程序设计不仅是实现有限元数值分析的工具和桥梁,而且在以下诸方面也有意义: 1). 精通基本概念,深化理论认识; 2). 锻炼实际工程分析,实际动手的能力; 3). 获得以后工作中必备的工具。(作业+老师给元素库) 目的:通过讲述有限元程序设计的技术与技巧,便能达到自编自读的能力。 §0.2 课程特点 总描述:理论+算法+数据结构(程序设计的意义) 理论:有限元算法,构造,步骤,解的等外性,收敛性,稳定性,误差分析 算法;指求解过程的技术方法,含两方面的含义;a. 有限元数值分析算法,b, 与数据结构有关的算法(总刚稀疏存贮,提取,节点优化编号等) 数据结构:指各向量矩阵存贮管理与实现,辅助管理结构(指针,数据记录等) 具体特点: 理论性强:能量泛函理论+有限元构造算法+数据结构构造算法 内容繁杂:理论方法+技术方法+技术技巧 技巧性强:排序,管理结构(指针生成,整型运算等)

现代设计方法基础 有限元法

现代设计方法基础 题目:有限元法的简介 系部:机电系 专业:机械设计制造及其自动化 班级: 姓名: 学号: 2010年5月20日 1.有限元法的概述 1.1 什么是有限元

有限元分析,定义为:将一个连续系统(物体)分隔成有限个单元,对每一个单元给出一个近似解,再将所有单元按照一定的方式进行组合,来模拟或者逼近原来的系统或物体,从而将一个连续的无限自由度问题简化成一个离散的有限自由度问题分析求解的一种数值分析方法。 1.2有限元法的基本思想 许多工程分析问题,如固体力学中位移场和应力场分析、振动特性分析、传热学中的温度场分析、流动力学中的流场分析等都可归结为在给定边界条件下求解其控制方程的问题。 有限元分析的基本概念是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。 目前工程中使用的偏微分方程的数值解法主要有三种:有限差分法、有限元法和边界元法。 有限差分法的出发点是用结点量的差商代表控制方程中的导数。以矩形域二维无源稳定传热问题为例,起控制方程为拉普拉斯方程,即无源场中各点的散度为零: (5-1) 边界条件为 (5-2) 式中,()y ,x u 为区域Ω内任意点()y ,x 的温度;n 为区域Ω边界Γ上任意点的外向法线; u 代表在1Γ上给定的温度(例如左边界C 200。,右边界为C 20。);n u ??代表边界2Γ上 给定的热流密度。 则式中的二阶偏导数可用结点温度的二阶差商近似表达为 ()()()Ω∈=??+??y ,x 0y y ,x u x y ,x u 2222()()?????=??=q n y ,x u u y ,x u ()()21y ,x y x,ΓΓ∈∈

有限元方法的发展及应用

有限元方法的发展及应用 摘要:有限元法是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描 述的各类物理场中。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法或最小二乘法等同样获得了有限元方程,因而有限元法可应用于 以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值 问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 1有限元法介绍 1.1有限元法定义 有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。它是起源于20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。 有限元法的基本思想是将求解域看成是由许多称为有限元的小的互连子域 组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总 的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而 是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得 到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行 之有效的工程分析手段。有限元法最初应用在工程科学技术中,用于模拟并且解 决工程力学、热学、电磁学等物理问题。 1.2有限元法优缺点 有限元方法是目前解决科学和工程问题最有效的数值方法,与其它数值方 法相比,它具有适用于任意几何形状和边界条件、材料和几何非线性问题、容 易编程、成熟的大型商用软件较多等优点。 (1)概念浅显,容易掌握,可以在不同理论层面上建立起对有限元法的理解,既可以通过非常直观的物理解释来理解,也可以建立基于严格的数学理论 分析。 (2)有很强的适用性,应用范围极其广泛。它不仅能成功地处理线性弹性

有限元课程设计(0001)

有限元课程设计

目录 0.前言 (3) 1.问题阐述 (4) 2.有限元分析 (5) 2.1.梁的参数设定 (5) 2.2.材料参数 (5) 2.3.单元选择 (5) 2.4.梁的边界条件 (6) 2.5.梁所受的载荷 (6) 2.6.ANSYS软件应用说明 (6) 3.交互式的求解过程 (7) 3.1创建梁的各个节点 (7) 3.2定义单元类型、材料特性和梁的横截面几何参数 (10) 3.3创建单元 (12) 4.施加约束和载荷 (13) 4.1节点自由度约束 (13) 4.2施加节点13处的弯矩m。 (14) 4.3施加单元1到单元12上的的分布载荷q。 (15) 5.求解 (15) 5.1定义分析类型 (15) 5.2求解 (15) 6.后处理 (16) 6.1绘制梁的Y方向变形图 (16) 6.2建立单元结果表 (17) 6.3结果显示 (19) 退出程序 (21) 心得体会 (22) 参考文献 (22)

0.前言 目前,几乎所有高校的力学、土木、机械、航空、航天、船舶、水利、交通、桥梁等理工科专业,都为高年级本科生开设了《有限元方法》基础课程,为研究生开设了《非线性有限元方法》学位课程。学生在学习完有限元课程之后,还必须熟练掌握相关有限元软件的使用,才能将有限元基本理论有效地应用到实际工程问题分析中去。为此,部分有条件的高校也开设了有限元软件应用课程(课程名称可能会因学校及专业的不同而有所差异,但都是以讲解有限元软件ANSYS或其他软件为主)。哈尔滨工业大学航天学院工程力学专业20世纪90年代末即开设了该类课程《应用软件工程--ANSYS》,作者从2003年开始接手讲授该门课程。虽然市面上的ANSYS书籍很多,但却难以找出一本非常适合做教材的书籍,因此作者参考多本书籍自主编写了校内讲稿。经过6年多的试用,目前已基本成型,现将多年的校内讲稿和心得体会完善成书,以期与开设该类课程的兄弟院校分享、共勉,同时也供从事相关科研与工程项目的人员参考阅读。 ANSYS软件是目前国际上最著名的大型通用有限元分析软件,经过三十年的发展,已形成融结构、热、流体、电磁、声学及多物理场耦合为一体的大型通用有限元分析软件,广泛应用于航空航天、石油、化工、汽车、造船、铁道、电子、机械制造、地矿能源、水利、核能、生物、医学、土木工程、轻工、一般工业及科学研究等各个领域,其极强的分析功能覆盖了几乎所有的工程问题。作为世界最具权威的有限元产品和工业化分析标准,目前几乎所有的CAD/CAE/CAM软件都竞相开发了与ANSYS的专用接口,实现数据的共享和交换,如Pro/Engineer、NASTRAN、Alogor、I-DEAS及AutoCAD等。ANSYS软件在Linux 和Windows下均有版本,并同时有32位和64位版本,目前最新的版本为12.0。 本书以ANSYS 12.0版本为依据,以Windows NT为操作平台,将结构有限元分析的基本理论与ANSYS实践操作紧密结合,通过大量精心筛选的具有实际工程应用背景的原创性分析实例,以图形用户界面和命令流两种方式向读者全面介绍了ANSYS结构有限元分析方法。

现代设计方法试卷及答案

课程名称: 现代设计方法 一、 单选题 ( 每题1分,共10题,共10分,下列各小题备选答案中,只有一个符合题意的答案。多选、错选、不选均不得分 ) 1. 参数化绘图在定义图形时关键是利用了图形的( ) A .相似性 B .多样性 C .个别性 D .特殊性 2. 下列设备不属于CAD 作业输入设备的,有( ) A .绘图仪 B .键盘 C .数字化仪 D .光笔 3. 二维图形比例变换矩阵中?? ????=d a T 00,可有( ) A.a=0,d=1 B. a=1,d=0 C. a=d=1 D. a=d=0 4. 内点罚函数法的特点是( ) A.能处理等式约束问题 B.初始点必须在可行域内 C. 初始点可以在可行域外 D.后面产生的迭代点序列可以在可行域外 5. 对于极小化F(x),而受限于约束g μ(x)≤0(μ= 0,1,2,…,m)的优化问题,其内点罚函数表达式为( ) A.∑=-=Φm k k X g r X F r X 1)()()(/1)(),(μμ B.∑=+=Φm k k X g r X F r X 1)()()(/1)(),(μμ C.∑=-=Φm k k X g r X F r X 1)()()](,0m ax[)(),(μμ D.∑=-=Φm k k X g r X F r X 1)()()](,0m in[)(),(μμ 6. 设F (X )为区间(0,3)上的单峰函数,且F (1)=2、F (2)=1.5,则可将搜索区间(0,3)缩小为( ) A .(0,2) B .(1,2) C .(2,3) D .(1,3) 7. 标准正态分布是定义为( ) A.μ=1,σ=0.5的正态分布 B.μ=1,σ=1的正态分布 C.μ=0,σ=1的正态分布 D.μ=0.5,σ=1的正态分布 8. 抽取100只灯泡进行实验,灯泡工作到50小时有12只损坏,工作到70小时有20只损坏,从50小时到70小时这段时间内灯泡的平均失效密度是( ) A.0.006 B.0.004 C.0.01 D.0.12 9. 当转换开关的可靠度为1时,非工作冗余系统的可靠度为R1, 工作冗余系统的可靠度为R2,则R1与R2之间的关系为( ) A. R1<R2 B. R1>R 2 C. R1= R2 D. R1≤R2 10. 设试验数为N 0,累积失效数为N f (t),仍正常工作数N s (t),则存活频率是指( ) A .0) (N t N f B .0)(N t N s C .)()(t N t N f s D .) ()(t N t N s f

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

相关文档
最新文档