民用飞机纵向气动参数辨识研究

民用飞机纵向气动参数辨识研究
民用飞机纵向气动参数辨识研究

民用飞机纵向气动参数辨识研究

摘要:飞机气动参数辨识是利用飞机在飞行试验过程中测得的状态响应数据对飞机的气动参数进行辨识的技术。设计了纵向气动参数辨识的激励信号,建立了非线性辨识模型。基于极大似然法对飞行试验数据进行辨识研究,得到纵向气动参数。对比飞行试验和辨识结果仿真的时间历程,表明辨识结果准确。

关键词:参数辨识纵向气动参数民用飞机

中图分类号:v212.1 文献标识码:a 文章编号:1674-098x (2013)04(c)-0061-02

基于飞行试验数据的气动参数辨识技术与计算流体力学、飞机缩比模型的风洞试验成为建立飞机气动模型的三种主要方法[1]。随着系统辨识学科的形成和在飞行试验数据分析中的应用,使民机气动参数辨识研究飞速发展,被应用于验证和校正气动参数风洞实验和理论计算结果、为民机控制系统设计和改进提供基本依据、鉴定飞机的飞行品质、对失事飞行器事故进行分析等[2]。

飞机气动参数辨识是利用飞机在飞行试验过程中测得的状态响应数据对飞机的气动参数进行辨识,从而建立飞机本体的飞行动力学模型。为了研究方便,一般将飞机的运动按纵向和横航向分开。在飞机的纵向气动参数辨识中,国内外利用小扰动线性辨识模型进行了大量的研究和工程应用[3~5],但基于非线性辨识模型的参数辨识却鲜有研究。本文结合飞行试验和工程应用的特点,建立了纵向气动参数非线性辨识模型,并采用极大似然法在时域内辨识参

飞机气动力参数辨识技术的工程应用

飞机气动力参数辨识技术的工程应用 在介绍飞机气动参数辨识原理的基础上,论述了该技术在飞机气动设计、飞行品质鉴定、飞行模拟机的飞行动力学模型开发等方面的应用情况,提出了涉及飞机试飞、模型开发等技术应用场景中的相关注意事项。 标签:飞机;气动参数辨识;试飞;仿真 引言 目前,常用的飞机气动建模技术手段有三种[1]:流体力学、风洞试验和飞行试验。基于飞行试验数据的飞机气动力参数辨识技术作为最重要的手段之一,受到了越来越多的重视,并被广泛地应用于校正飞机气动参数的流体力学计算和风洞试验结果、飞行品质评价、飞行模拟机建模仿真等方面。本文结合飞机/飞行模工程研制工作,详细介绍该技术的具体应用现状,并提出相关注意事项。 1 气动参数辨识原理 飞机气动力参数辨识作为飞机动力学系统辨识中发展最为成熟的一个分支,是系统辨识理论在飞行动力学系统方面的具体应用。该辨识通过测量飞机的发动机推力(测算)、舵面偏转和飞行状态数据,以飞机气动模型和飞机飞行动力方程作为状态方程,以上述测量得到的数据作为状态量和观测量,以此建立作用于飞机的空气动力(矩)与飞机运动状态参数和控制输入之间的解析关系式[2]。在图1所示的辨识基本原理 中,激励信号、辨识模型、参数估计和结果验证是辨识结果可信度的四大影响因素。 图1 飞机气动力参数辨识的基本原理 激励信号设计是通过舵偏操纵信号的优化设计,充分激励飞机的运动特性,确保飞机的运动模态信息尽可能多地包含在飞机试飞数据中[3]。辨识模型建立是基于空气动力学的先验知识初步确定模型的结构,将模型辨识问题转化为参数估计问题。辨识方法应用是选取合适的参数寻优准则和算法,通过飞机真实响应与模型仿真响应之间的差异进行模型参数的优化。辨识结果验证是确保建立的数学模型能够合理、精确地表征飞机的飞行动力学特性。 2 在飞机气动设计中的应用 在飞机的工程研制中建立准确的飞机气动模型,是飞行控制律参数调整、工程模拟机仿真等工作的前提和基础。而在飞机的初步/详细设计阶段,飞机气动模型的建立通常通过流体力学计算和风洞试验两种技术手段实现,但其模型的精度往往与真实飞机存在明显的差异。因此,飞机制造商多在飞机的研发试飞中开

设备性能及参数

设备性能及参数 品目号品目单位数量 1 视频解码器台 1 品牌:海康型号:DS-6408HD-T 制造厂家:海康产地:中国 技术指标及相关要求: 功能特性①备必须符合《GB/T28181-2011 安全防范视频监控联网系统信息传输、交换、控制技术要求》中的相关规定,包括解注册、注销、校时、心跳、实时点播、信息查询、状态查询、远程启动功能、会话流程及格式均须符合GB/T 28181-2011中的相关要求; ②单台设备支持大屏拼接及画面分割功能,支持2*2、2*3、2*4的大屏拼接,支持1/4/9/16画面分割; ③支持主动解码和被动解码两种解码模式; ④支持直连前端设备和通过流媒体转发的方式获取网络实时数据。 解码卡①解码最大分辨率支持≥1920*1080,HDMI输出≥8路,VGA输出≥8路 ②单台设备支持≥8路1080P或16路720P或32路4CIF解码输出 ③解码输出图像语音延时小于40ms; ④支持远程录像文件的解码输出。 网络特性RJ45 10M/100M/1000Mbps自适应以太网口≥1个,标准RS-485串行接口≥1个,标准RS-232串行接口≥1个。 品目号品目单位数量 2 数字交互系统 (包括数字交互硬件设备1台、数字交互软件开发 1套、数字白板软件1套) 套 1 (1)数字交互系统硬件设备套 1 品牌:威创型号:IDB VL6561 制造厂家:威创产地:广东 技术指标: 显示尺寸65英寸以上 产品结构LED屏窄边设计 屏幕宽高比16:9 分辨率≥1920*1080@60Hz 亮度300cd/㎡ 对比度40000:1 色彩深度10bit 可视角度178° 响应时间≤16ms 触摸性能触摸分辨率≥32767*32767,触摸扫描速度>60fps

主要技术性能指标及参数

主要技术性能指标及参数 序号项目名称项目特征描述计量 单位 数量 1 水平输送机1.带宽550,长10m, 2.输送功率4kw,升降,线速度≤s, 3.处理能力:50t/h。 台 1 2 升降输送机1.带宽550,长15m 或18m, 2.输送功率,升降,线速度≤s, 3.处理能力:50-80t/h 台 1 3 卸粮机1.带宽550,8S+4D, 2.输送功率4kw,线速度≤s, 3.处理能力:50-100t/h 台 1 4 电动行走装仓 机 1.带宽550,12+6、含电动行走,新式方向盘, 2.输送,升降3kw,伸缩,行走 台 1 5 探粮器1.主机功率:1800w; 2.电源:220 50hz; 3.不锈钢管直径28mm。。 台 1 6 分样器适用于小麦、玉米、大豆等颗粒粮食样品的等量分样台 1 7 快速水分检测 仪 1.测量范围:3~35%(因样品种类而异) 2.显示分辨率:%, 3.测量精度:水分:干燥法的标准误差为%以下(水 分低于20%的全部样品), 4.测量品种:小麦、玉米等多个品种; 5.重复性误差:≤±%,重量:内置电子天平, 6.温度:自动温度补偿。 台 1 8 小麦容重器1.容重器大工作称重:1000±2g ; 2.容重器小工作称重:100g ; 3.容重器分辨力:1g ; 4.容重筒容积:1000± ; 5.供电电源:220v; 6.工作条件环境温度5℃-40℃ 7.相对湿度<90%RH ; 台 1

8.测量方式:组合式测量 9 玉米容重器1.容重器大工作称重:1000±2g ; 2.容重器小工作称重:100g ; 3.容重器分辨力:1g ; 4.容重筒容积:1000± ; 5.供电电源:220v; 6.工作条件环境温度5℃-40℃ 7.相对湿度<90%RH ; 8.测量方式:组合式测量 台 1 10 天平1.称量范围0-200g; 2.读取精度; 3.重复性±; 4.线性误差±; 5.称盘尺寸Ф80mm; 6.输出接口RS232C; 7.外型尺寸34cm××35cm(长*宽*高); 8.电源AC 110-240V; 台 1 11 害虫显微镜1.产品倍数:40-1600倍; 2.产品材质:全金属材质; 3.产品光源:LED上下电光源; 4.供电方式:电池; 5.产品配置:广角目镜、倍增镜、标本移动卡尺; 6.具有精细调节及微调功能 台 2 12 地磅1.称台规格:宽米、长16米、10mm-12mm(+, 2.称重量:100t; 3.数字高精度30吨桥式传感器; 4.不锈钢外壳数字仪表; 5.不锈钢防浪涌10线接线盒;衡器专用?4#主线;5H 防水外显屏; 6.称重管理软件一套; 7.附件含台式电脑、打印机; 8.含称台基础。 台 1

闭环气动参数辨识的两步方法

闭环气动参数辨识的两步方法 王贵东,崔尔杰,刘子强 (中国航天空气动力技术研究院气动理论与应用研究所,北京100074) 摘 要:对于闭环控制飞行器动力学系统,如果输入输出数据中含有误差和噪声,将其直接用于辨识气动参数是有偏差的。针对这个问题,利用闭环控制飞行仿真数据,采用两步方法辨识飞行器的气动参数,并与直接开环辨识的结果及参数真值进行对比,表明两步方法辨识结果较直接开环辨识方法具有更高的精度,是一种有效的闭环气动参数辨识方法。 关 键 词:闭环系统;气动参数辨识;极大似然估计 中图分类号:V 412 文献标识码:A 文章编号:1002 0853(2010)02 0016 04 引言 收稿日期:2009 07 17;修订日期:2009 11 16 作者简介:王贵东(1976 ),男,河南鹿邑人,高级工程师,主要从事飞行力学和飞行器系统辨识研究; 崔尔杰(1935 ),男,河北高阳人,中科院院士,主要从事飞行器动态气动力与气动弹性研究。 飞行器气动参数辨识研究可以追溯到1919年W arner 和N orton 所进行的先导性工作,至今已有近九十年的历史。随着计算机技术和现代控制理论的 发展,不同国家在频域和时域辨识方面都开展了深入的研究,使得飞行器气动参数辨识技术得到了迅速发展,并成功地应用于飞机、导弹和返回舱等飞行器[1] 。出于飞行安全的考虑,大多数飞行器的飞行试验都是在闭环控制条件下进行的。飞行器闭环控制飞行时,由于控制系统的增稳作用,使得输入输出数据中有关系统动态特性的信息量减少,进而影响到系统参数的可辨识性。同时,如果输入输出数据中存在误差和噪声,将其直接用于辨识气动参数会使结果产生偏差。特别是一些量值较小的气动参数会被噪声淹没,使得这些参数不可辨识或辨识的误差很大。为了提高辨识结果的准确度,有必要研究飞行器在闭环控制条件下的气动参数辨识方法。目前,对于闭环控制飞行器飞行试验,一般采用开环处理的方法,即直接利用控制输出的测量数据和飞行状态的测量数据进行辨识。但理论已经证明,闭环系统的开环辨识是有偏估计,只是当噪声水平较小时,上述偏差是可以接受的。两步辨识方法是一种间接辨识方法,是指当飞行器的控制规律已知,且具有线性时不变的特性时,可以先辨识得到控制律参数和常值测量误差,并估计控制输出。进而利用控制输出的估计结果和飞行状态测量数据辨识前向通道的动力学参数[2 4] 。本文利用闭环控制飞行仿真数据,采用两步方法辨识飞行器的控制参数和气动参数,并与直接开环辨识结果及参数真值进 行比较,验证了两步方法是一种有效的闭环控制飞行器气动参数辨识方法。 1 参数辨识的极大似然算法 飞行器飞行动力学系统参数辨识问题的一般性描述为: x (t)=F [x (t),u (t), ,t]+ (t)x (0)=x 0 y (t)=H [x (t),u (t), ,t] z i =y i +G v i (i =1,2, ,N ) (1) 式中,x (t)为n 维状态向量;y (t)为m 维输出向量;z (t)为m 维观测向量;u (t)为l 维输入向量; 为p 维参数向量; 为n !q 过程噪声分布矩阵; (t)为q 维随机噪声向量;F 和H 为已知的实值函数。 取似然函数为: J = ? N i=1 {v T i B -1 i v i +ln |B i |} (2) 式中,v i 和B i 分别为t i 时刻的新息和新息协方差矩阵,其表达式为: v i =z i -y i ,B i =E {v i v T i } (3) 参数估计的极大似然方法就是求取参数 ^ ,使似然函数J 达到极小值[5] 。这是一个泛函极值问题,无法得到解析解,也无法直接数值积分,只能采用迭代求解算法。泛函极值的迭代求解法有多种,实践表明,N e w ton Raphson 寻优方法对于动力学系统辨识是最有效的。优化过程为: 设未知参数 第k 步的预估值 k ,由式(2)算出判据J k ,若J k 不是极小值,需调整 k ,即 k +1= k +! k ,使J k +1达到极小值,其必要条件为: 第28卷 第2期 飞 行 力 学 V o.l 28 N o .22010年4月 FL I GHT DYNAM ICS Apr .2010

主要性能参数

智能辅助驾驶(ADAS)测试能力构建申请 1 背景 JT/T 1094-2016营运客车安全技术条件要求,9米以上营运车应安装车道偏离预警系统和自动紧急制动系统。GB7258-2016送审稿中要求11米以上公路客车和旅游车客车应装备车道保持系统和自动紧急制动系统。为了满足法规需求和智能汽车未来发展趋势,我司汽车电子课也立项进行自动驾驶技术研究(QC201701030006),第一阶段预计17年底开发完成。 智能辅助驾驶是自动驾驶的低级阶段也是必经之路。现阶段,智能辅助驾驶主要包含FCW(前撞预警)、LDW(车道偏离报警)、AEB (自动紧急制动)LKA(车道保持)ACC (自适应巡航)。从功能的实现到批量商用需要经过软件仿真→硬件在环(HiL)→室内试验室→受控场地测试→开放公路测试这一历程。ADAS技术涉及主动安全,目前还不完全成熟,需要大量测试以提高产品精度和可靠性,为了降低委外测试费用,提高我司ADAS配置装车性能,道路试验课申请分阶段构建ADAS测试能力,包含人员培训和设备采购,本次申请主要是测试设备购买。 2 ADAS测试能力构建计划(2017-2020) 智能辅助驾驶测试设备要求精度高,价格昂贵,考虑到成本因素,建议分阶段构建测试能力,构建计划见表1 表1 ADAS能力构建计划 201 7 年 AD AS 测 试能构建计划 设备测试功能仅满足现阶段法规和研发需求,并考虑未来功能拓展性,能力构建见表2。试验用假车和假人采用自制方式,暂不购买;与汽车电子课协商,目前满足2车测试需求即可,暂不购买第三车设备;用于开放道路测试的移动基站暂不购买。 数据采集与分析用笔记本电脑建议单独购买,要求性能稳定,坚固耐用,抗震防水性好。配置要求:15寸屏幕,酷睿i7处理器,128G以上固态硬盘,500G以上机械硬盘。推 荐型号:tkinkpadT570,Dell的Latitude系列。

气动系统压力、流量、气管壁厚、用气量计算

气动系统压力、流量、气管壁厚、用气量计算 1 气动系统相关计算 (1) 1.1 试验用气量计算 (1) 1.2 充气压力计算 (2) 1.3 管径及管路数量计算 (2) 1.3.1 根据流量计计算管径及管路数量 (2) 1.3.2 根据减压阀计算管径及管路数量 (4) 1.3.3 管径及管路数确定 (5) 1.4 气管壁厚计算 (6) 1.5 理论充气时间和一次试验用气量核算 (6) 1气动系统相关计算 1.1试验用气量计算 根据系统要求,最大气流量需求发生于:漏气量为 2.5m3/s(标准大气压下的气体体积)时,筒内压力充至 1.35MPa压力的时间不大于30s,并能保证持续不少于10s。 根据公式P1V1=P2V2(1) 求得单位最小流量:Vmin-0.1MPa=((1.35/0.1)×(0.0675+0.01)/30)+2.5=2.539m3/s 其中0.0675m3是装置密闭腔容积; 0.01m3是管路容积(管路长度取20m)。 因为气源提供的流量在10MPa压力下不小于2.6m3/s(标准大气压),而系统输入压力最大为16MPa,所以气源满足系统流量要求。后文中按照输入

流量为2.6m3/s进行计算。 质量流量(Kg/h)=体积流量×密度,20℃时,标准大气压下气体密度为1.205kg/m3,即质量流量=2.6×1.205×3600=13014kg/h。 1.2充气压力计算 一般密闭腔充气压力设置为目标值的1.05至1.1倍,由于系统要求的漏气量较大,初步设定充气压力为目标值的2.0倍。本装置需对密闭腔充气至最大1.35MPa,即目标值为1.35MPa,充气压力为P:P=2.0×1.35=2.70MPa。 即减压阀出口压力初步设定为2.70MPa。 1.3管径及管路数量计算 1.3.1根据流量计计算管径及管路数量 流量计一般都有量程限制,如果流量过大,就必须将总气量分几路进行输送,以保证单路的输送流量符合流量计量程,根据流量计的量程计算分路数。 表4 流量计计算参数表 量(体积流量=质量流量/减压阀出口密度ρ)。 表5 流量计计算参数表

主要设备技术指标概况

1.1主要设备技术指标 1.1.1KXJ660(A)矿用隔爆兼本安型PLC控制箱 1)工作电压:660 V/380 V/127 V AC 2)电压波动范围:75~110%; 3)频率:48Hz~52 Hz ; 4)控制箱本安直流电源输出特性: 5)输入信号: ●4路本安(4~20)mA电流信号(负载阻抗350Ω); ●4路非本安(4~20)mA电流信号(负载阻抗350Ω); ●23路本安开关量信号; ●7路非本安开关量信号。 6)输出信号: ●4路非本安(4~20)mA电流信号(负载阻抗600Ω); ●10非本安开关量信号,接点容量250V/6A; ●1路电压信号,接通时输出电压90VAC~150VAC(受电压波动影响),断开时输出电压≤1VAC。 7)本安RS485通信:2路,波特率2400 bps,最大传输距离1 km; 8)本安以太网电口:1路,10/100Mbps自适应,最大传输距离100 m; 9)本安以太网光口:2路,100Mbps单模光纤接口,最大传输距离10 km;

1.1.2KTK18(A)矿用本安型扩音电话 1)额定工作电压:18V DC; 2)工作电压:(11.5~25.0)V DC; 3)工作电流:≤600mA; 4)FXS通信:2路,最大传输距离1Km; 5)FXO通信:1路,最大传输距离5Km; 6)以太网电口通信:1路,10/100Base-T/TX自适应,最大传输距离100 m; 7)音频通信:1路,最大传输距离5Km; 8)声级强度:不小于100dB(A); 9)支持的通信协议:VoIP、PSTN; 1.1.3KTK18(B)矿用本安型扩音电话 1)额定工作电压:18V DC; 2)工作电压:(9.0~25.0)V DC; 3)工作电流:≤50 mA; 4)音频通信:1路,最大传输距离5Km; 5)声级强度:不小于100dB(A); 1.1.4KHJ18矿用本安型急停开关 1)额定工作电压:18V DC; 2)工作电压:(9.0~25.0)V DC; 3)工作电流:≤20mA; 4)输入信号:4路无源触点信号; 1.1.5TH15矿用本安型显示控制台 1)额定工作电压:15V DC; 2)工作电压范围:(11.5~25.0)V DC;

手把手教你识别显卡主要性能参数

手把手教你识别显卡主要性能参数 手把手教你识别显卡主要性能参数 初识显卡的玩家朋友估计在选购显卡的时候对显卡的各项性能参数有点摸不着头脑,不知道谁对显卡的性能影响最大、哪些参数并非越大越好以及同是等价位的显卡但在某些单项上A 卡或者是N卡其中的一家要比对手强悍等等。这些问题想必是每个刚刚接触显卡的朋友所最想了解的信息,可以说不少卖场的销售员也正是利用这些用户对显卡基本性能参数的不了解来欺骗和蒙蔽消费者。今天显卡帝就来为入门级的显卡用户来详细解读显卡的主要性能参数的意义。 手把手教你识别显卡主要性能参数 关于显卡的性能参数,有许多硬件检测软件可以对显卡的硬件信息进行详细的检测,比如:Everest,GPU-Z,GPU-Shark等。这里我们以玩家最常用的GPU-Z软件来作为本文解析显卡性能参数的示例软件。

GTX590的GPU-Z截图 首先我们对GPU-Z这款软件的界面进行一个大致分区的解读,从上至下共8个分区,其中每个分区的具体含义是: ①.显卡名称部分: 名称/Name:此处显示的是显卡的名称,也就是显卡型号。 ②.显示芯片型号部分: 核心代号/GPU:此处显示GPU芯片的代号,如上图所示的:GF110、Antilles等。 修订版本/Revision:此处显示GPU芯片的步进制程编号。 制造工艺/Technology:此处显示GPU芯片的制程工艺,如55nm、40nm等。 核心面积/Die Size:此处显示GPU芯片的核心尺寸。 ③.显卡的硬件信息部分: BIOS版本/BIOS Version:此处显示显卡BIOS的版本号。 设备ID/Device ID:此处显示设备的ID码。 制造厂商/Subvendor:此处显示该显卡OEM制造厂商的名称。

气动调节阀选型及计算

气动调节阀选型及计算 执行器是控制系统的终端控制元件,是重要的环节,气动调节阀在常用的执行器中约占85﹪以上。控制系统中因气动调节阀造成不能投运或运行不良者有占50﹪-60﹪以上。其中除提供的工艺参数出入较大,阀制造质量欠佳和使用不当外,选型与计算的方法不妥则是一个相当突出的因素。因此,如何合理正确地选择和计算气动调节阀就是自控设计中至关重要的问题了。 调节阀按调节仪表的控制信号,直接调节流体的流量,在控制系统中起着十分重要的作用。要根据使用条件和用途来选择调节阀。选择调节阀项目有:结构型式、公称通经、压力-温度等级、管道连接、上阀盖型式、流量特性、材料及执行机构等。深入研究各个项目和它们之间的相互关系,是极其重要的。选择调节阀必须知道控制系统的各种工艺参数,以及调节仪表、管道连接等基本条件,才能正确地选择调节阀。下面为一般选用调节阀的基本准则:(图一、图二)

(图一) 调节阀的选择 工艺流体条件 流体名称、流量、进/出口 确认选择条件 压力、全开/全关时压差、温度、 比重、粘度、泥浆等。 选择品种规格 调节仪表条件 流量特性、作用型式、调节 仪表输出信号等。 写出规格书 管道连接条件 公称压力、法兰连接型式、 材料等。 (图二) 选型和计算(定尺寸)是选择一个调节阀的两个重要部分。它们是不同的,然而又是互相关联的。以往,各工业部门的自控设计的选阀工作有些基本上没有考虑到它们之间的在联系。对国一般产品来说,用一组工艺参数计算两个不同阀型的流通能力,临界条件下的计算结果最大可相差40%以上。

不同结构的调节阀有其各自的压力恢复特性。此特性用压力恢复系数F L或最大有效压差比X T表示。一般的单、双座阀等属于低压力恢复阀,F L和X T较大;蝶阀和球阀等属于高压力恢复阀,F L和X T较小;偏心旋转阀则介于两者之间。参数F L和X T的引入有助于在计算中根据已知的工艺参数来确定真正有效压差,以计算出精确的流通能力。 F L和X T的数值必须在阀型选定之后才能获得,而阀型的选定不仅与流体的性状、压力、温度、腐蚀性等因素有关,并且与流通能力、可调围、允许压差等参数有关;但是这些参数必须经计算后才能得到,而往往由于这些参数的限制又必须改选阀型;因此问题的关键就在于要设计出一套合理的方法和步骤,把选型和计算作为一个有机的整体综合起来考虑。 气动调节阀选型和计算包括以下几部分。 1.气动调节阀的选型和选材 调节阀的选型按照工艺和自控专业提出的各项要求进行。在选型中主要考虑以下各个方面:流体的性状、静压、温度、压差、腐蚀性、对阀的泄漏要求、阀的动作方式、管道配置、以及流通能力和可调围等。 流体腐蚀性的影响主要体现在阀体和阀芯材料的选择上。由于不能排除某些材料只许在某种特殊的阀型中使用的限制条件,因此并不是每种阀型均可任意选择材料。阀体材料的选取主要考虑流体介质的腐蚀性、静压和材料的许用温度。阀芯材料的选取主要考虑流体介质

【CN110187713A】一种基于气动参数在线辨识的高超声速飞行器纵向控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910294878.3 (22)申请日 2019.04.12 (71)申请人 浙江大学 地址 310058 浙江省杭州市西湖区余杭塘 路866号 (72)发明人 杨华 陈丽华 罗鹏 陈加政  (74)专利代理机构 杭州求是专利事务所有限公 司 33200 代理人 万尾甜 韩介梅 (51)Int.Cl. G05D 1/04(2006.01) G05B 13/04(2006.01) (54)发明名称一种基于气动参数在线辨识的高超声速飞行器纵向控制方法(57)摘要本发明公开了一种基于气动参数在线辨识的高超声速飞行器纵向控制方法。该方法是首先采用结合了扩展卡尔曼滤波算法和迭代滤波理论的迭代扩展卡尔曼滤波算法对气动参数进行在线辨识,为后续的控制提供较精确的模型;然后基于辨识得到的气动参数,设计自适应滤波反步控制器对高超声速飞行器的纵向方程进行精确控制。本发明采用的迭代扩展卡尔曼滤波算法相比传统的扩展卡尔曼滤波算法具有更高的精度,能够更加准确地辨识出气动参数。本发明提出的控制策略能有效克服“天地参数不一致”的现象,通过在线辨识提高模型的准确性,减轻控 制系统的压力。权利要求书3页 说明书12页 附图9页CN 110187713 A 2019.08.30 C N 110187713 A

1.一种基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,该方法是先采用结合了扩展卡尔曼滤波算法和迭代滤波理论的迭代扩展卡尔曼滤波算法对气动参数进行在线辨识;再采用自适应滤波反步控制器对高超声速飞行器进行精确控制。 2.根据权利要求1中所述的基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,包括如下步骤: 步骤(1)针对高超声速飞行器纵向方程,将待辨识参数作为系统状态得到扩展的状态方程, 并将量测方程进行线性化得到扩展卡尔曼滤波算法进行辨识得到实时的状态值 步骤(2)在上述状态估计点对量测方程进行泰勒级数展开来降低线性化误差,从而得到更好的状态的估计值,并迭代多步,得到迭代扩展卡尔曼滤波算法,对气动参数进行在线辨识; 步骤(3)基于步骤(2)辨识得到的气动参数,得到较为精确的高超声速飞行器纵向方程,针对该方程,采用自适应滤波反步控制器进行控制。 3.根据权利要求2所述的基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,步骤(2)采用的迭代扩展卡尔曼滤波算法,是在扩展卡尔曼滤波算法的基础上结合迭代滤波理论,通过在扩展卡尔曼滤波算法得到的状态估计点对量测方程进行泰勒级数展开得到更好的状态估计值,从而得到更精确的辨识结果。 4.根据权利要求2所述的基于气动参数在线辨识的高超声速飞行器纵向控制方法,其特征在于,基于迭代扩展卡尔曼滤波算法进行在线辨识得到气动参数后,即可以得到较为精确的高超声速飞行器纵向方程;由于飞行器的速度主要通过发动机的油门开度η改变推力来控制,高度则通过舵偏角δe 改变俯仰力矩来控制, 因此,将高超声速飞行器的纵向运动分为高度子系统和速度子系统; 则高度子系统的动力学方程为: 速度子系统的方程表示为: 其中:V为飞行器的速度,h为飞行高度,γ表示航迹角,α为迎角,ωy 为俯仰角速度,这五个状态构成了纵向的状态变量;m表示飞行器的质量,μ表示引力常数,I y 为转动惯量,r为飞行器质心到地心的距离,T为发动机提供的推力,D ,L ,M分别为在线辨识具体参数后的阻力、升力和俯仰力矩,其具体的表达式为: 权 利 要 求 书1/3页2CN 110187713 A

参数辨识示例 报告

参数辨识 参数辨识的步骤 飞行器气动参数辨识是一个系统工程,包括四部分:①试验设计,使试验能为辨识提供含有足够信息量且信息分布均匀的试验数据;②气动模型结果确定,即从候选模型集中,根据一定的准则和经验,选出最优的气动模型构式;③气动参数辨识,根据辨识准则和数据求取模型中待定参数,这是气动辨识定量研究的核心阶段;④模型检验,确认所得气动模型是否确实反映了飞行器动力学系统中气动力的本质属性。这四个部分环环相扣,缺一不可,要反复进行,直到对所得气动模型满意为止。 参数辨识的方法 参数辨识方法主要有最小二乘算法、极大似然法、集员辨识法、贝叶斯法、岭估计法、超椭球法和鲁棒辨识法等多种辨识方法。虽然目前参数辨识的领域己经发展了多种算法,但是用于气动参数估计的算法主要有:极大似然法(ML),广义Kalman滤波(EKF)法,模型估计法(EBM )、分割及多分割算法(PIA及MPIA)、最小二乘法,微分动态规划法等。 因为最小二乘法和极大似然法是两种经典的算法,目前己经发展得相当成熟。最小二乘法适于线性模型的参数辨识,可以用于飞行器系统辨识中很多的线性模型,如惯性仪表误差系数的辨识,线性时变离散系统初始状态的辨识及多项式曲线拟合等。目前最小二乘法已经广泛应用于工程实际中。而极大似然算法因其具有渐进一致性、估计的无偏性、良好的收敛特性等特点而被广泛应用于飞行器参数辨识领域。 最小二乘法大约是1975年高斯在其著名的星体运动轨道预报研究工作中提出来的。后来,最小二乘法就成了估计理论的奠基石。由于最小二乘法原理简单,编程容易,所以它颇受人们重视,应用相当广泛。 极大似然估计算法在实践中不断地被加以改进,这种改进主要表现在三个方

气动系统设计与分析大作业

《气动系统设计与分析》大作业 题 目 气动系统设计与分析 姓 名 陈明豪 学 号 3110612003 专业班级 机电111 指导教师 黄方平 学 院 机电与能源工程学院 完成日期 2014年12月30日 宁波理工学院

目录 1设计任务 ......................................................................... 错误!未定义书签。2总体方案设计 . (2) 2、1 ................................................................................................. 系统控制流程图 2 2、2 ..................................................................................................... 气动原理设计 2 2、3 ............................................................................................................... 工作过程 3 2、4PLC控制程序 (3) 2、5 ............................................................................................................... 系统仿真 3 3气动系统设计计算 (5) 3、1 ..................................................................................................... 执行元件选择 5 3、1、1 ................................................................................. 气缸1参数计算 5 3、1、2 ................................................................................. 气缸2参数计算 5 3、1、3 ................................................................................. 气缸3参数计算 6 3、2 ..................................................................................................... 控制元件选择 6 3、3 ..................................................................................................... 确定管道直径 7 3、4 ........................................................................................ 气动辅助元件的选择 7 3、5 .......................................................................................................... 选择空压机 8

设备性能参数

摄像机 型号:HTF-1026 品牌:中西华特 概述: 该系列红外防水枪型摄像机,它采用高品质的SONY CCD图像传感器和先进的数字信号处理技术,与红外灯相结合,实现了低照度下同时保证输出高质量的画面。金属屏蔽结构,抗电磁干扰,防尘防水、超轻设计,外观新颖美观,精细制造工艺,稳定性高。满足夜间监控要求。密闭防水,特别适合室外安装使用。 可用于室内、室外等光线不足或无光源的日夜监控场所….. 主要功能特性 ●1/3彩色高解SONY CCD ●配置DSP处理器。图像细腻柔和 ●最低照度:彩色0.01Lux,黑白0LUX(红外启动) ●支持自动白平衡、自动电子快门等功能 ●支持自动电子增益 ●选用红外对应镜头,避免晚上偏焦 ●双玻璃设计,有效避免红外漏光现象 ●恒流源电源控制,延长LED灯使用寿命 ●红外灯工作与彩转黑同步 ●全铝合金外壳,防止恶意破坏 ●屏蔽结构,IP66防水防尘标准 性能参数:

硬盘录像机 产品简介 DS-7200HF-S系列网络硬盘录像机是海康威视自主研发的最新款高性价比网络硬盘录像机。它融合了多项IT高新技术,如视频编解码技术、嵌入式系统技术、存储技术和网络技术等。 DS-7200HF-S系列网络硬盘录像机可作为DVR进行本地独立工作,也可联网组成一个强大的安全防范系统,广泛应用于公安、教育、电信、服务等行业的视频监控。订货型号 特别说明 ?VGA视频输出分辨率最高达1024*768; ?所有通道支持4CIF实时编码; ?采用HIKVISION云台控制协议时候,可通过鼠标选定画面任意区域并进行中心缩放; ?支持预览图像与回放图像的电子放大; ?VGA、VIDEO OUT互斥输出; ?4路机型支持环通输出; ?4路机型支持2路同步回放;8路机型支持4路同步回放;16路机型支持8路同步回放;

判断显卡性能的主要参数有哪些

判断显卡性能的主要参数有哪些? 2008-09-09 18:04:17| 分类:科技博览|字号订阅 显示芯片 显示芯片,又称图型处理器- GPU,它在显卡中的作用,就如同CPU在电脑中的作用一样。更直接的比喻就是大脑在人身体里的作用。 先简要介绍一下常见的生产显示芯片的厂商:Intel、ATI、nVidia、VIA(S3)、SIS、Matrox、3D Labs。 Intel、VIA(S3)、SIS 主要生产集成芯片; ATI、nVidia 以独立芯片为主,是目前市场上的主流,但由于ATi现在已经被AMD收购,以后是否会继续出独立显示芯片很难说了; Matrox、3D Labs 则主要面向专业图形市场。 由于ATI和nVidia基本占据了主流显卡市场,下面主要将主要针对这两家公司的产品做介绍。 型号 ATi公司的主要品牌Radeon(镭) 系列,其型号由早其的Radeon Xpress 200 到Radeon (X300、X550、X600、X700、X800、X850) 到近期的 Radeon (X1300、X1600、X1800、X1900、X1950) 性能依次由低到高。 nVIDIA公司的主要品牌GeForce 系列,其型号由早其的GeForce 256、GeForce2 (100/200/400)、GeForce3(200/500)、GeForce4 (420/440/460/4000/4200/4400/4600/4800) 到GeForce FX(5200/5500/5600/5700/5800/5900/5950)、GeForce (6100/6150/6200/6400/6500/6600/6800/) 再到近其的GeForce (7300/7600/7800/7900/7950) 性能依次由低到高。 版本级别 除了上述标准版本之外,还有些特殊版,特殊版一般会在标准版的型号后面加个后缀,常见的有: ATi: SE (Simplify Edition 简化版) 通常只有64bit内存界面,或者是像素流水线数量减少。 Pro (Professional Edition 专业版) 高频版,一般比标版在管线数量/顶点数量还有频率这些方面都要稍微高一点。 XT (eXTreme 高端版) 是ATi系列中高端的,而nVIDIA用作低端型号。 XT PE (eXTreme Premium Edition XT白金版) 高端的型号。 XL (eXtreme Limited 高端系列中的较低端型号)ATI最新推出的R430中的高频版 XTX (XT eXtreme 高端版) X1000系列发布之后的新的命名规则。 CE (Crossfire Edition 交叉火力版) 交叉火力。 VIVO (VIDEO IN and VIDEO OUT) 指显卡同时具备视频输入与视频捕捉两大功能。 HM (Hyper Memory)可以占用内存的显卡

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

气动系统建模仿真设计

气压控制伺服系统的数学建模及仿真模型建立 关于气动伺服系统的数学建模,主要是通过分析系统的运动规律,运用一些己知的定理和定律,如热力学定律、能量守恒定律、牛顿第二定理等,通过一些合理而必要的假设和简化,推导出系统被控对象的基本状态方程,并将其在某一工作点附近线性化,从而获得的一个近似的数学模型。虽然这些模型不是很准确,但还是能够反映出气动伺服控制系统的受力和运动规律,并且借此可以分析出影响系统特性的主要因素,给系统的进一步分析和控制提供依据和指导。 另外,利用Simulink 工具包可以不受线性系统模型的限制,能够建立更加真实的非线性系统,同时其模型分析工具包括线性化和精简工具。因此,本文在数学模型的基础之上,利用Simulink 对所研究的气压力控制系统尝试建立一个非线性数学模型,并对该模型进行计算机仿真。 由于气动系统的非线性,如气体的压缩性较大,且在气缸的运动过程中容腔中气体的各参数和变量是实时变化的,所以对气动系统的精确建模是比较困难的。所以为了建立系统的模型,我们对控制系统作一些合理的假设,来简化系统的数学模型。假设如下: (1)气动系统中的工作介质—空气为理想气体; (2)忽略气缸与外界和气缸两腔之间的空气泄漏; (3)气动系统中的空气流动状态为等熵绝热过程; (4)气源压力和大气压力恒定; (5)同一容腔中的气体温度和压力处处相等。 1) 比例阀的流量方程 在实际的伺服控制系统中气体的流动过程十分复杂,气动元件研究中使用理想气体等熵通过喷管的流动过程来近似代替。一般计算阀口的流量时采用Sanville 流量公式: k k s d k s d s m P P P P k RT k P q 1212A +??? ? ??-???? ??-= 0.528< s d P P ≤1 )1(212A 1 1 +? ? ? ??+=-k RT k k P q k s m 0≤s d P P ≤0.528

设备性能指标说明.doc

设备性能指标说明 精馏实训装置 一、精馏实训装置配置与功能 (一)精馏实训装置的基本性能与特点: 1、装置集实训、实验、考工、考核、技能比赛等功能于一体。具有工厂情景化、 操作实际化、故障模拟真实化特点。 2、装置采用全不锈钢材料制作,坚固耐用。 3、装置贴近工厂实际,同时满足化工技术类专业高级工、技师培训和鉴定要求。 4、装置能进行装置开车准备、开车、正常操作、停车、设备维护等方面的技能 操作训练、工艺指标控制操作技能训练。 5、装置采用的控制系统,并能进行工控组态;同时也能进行手动操作控制。仪 表精度高、配置合理。 6、装置具有真实设定故障的功能:通过计算机隐蔽发出故障干扰信号,使正常 运行的装置出现真实异常现象,培训学员发现、分析、排除工业生产过程故障的技能。 7、装置运行介质为乙醇-水体系,塔顶含乙醇不低于92%。 (二)精馏实训装置培训功能要点

(三)精馏实训装置配置表

传热实训装置 (一)传热实训装置的基本性能与特点: 1.装置集实训、实验、考工、考核、技能比赛等功能于一体。具有工厂情景化、 操作实际化、故障模拟真实化特点。 2.装置采用全不锈钢材料制作,坚固耐用。 3、装置贴近工厂实际,同时满足化工技术类专业高级工、技师培训和鉴定要求。 4、装置能进行装置开车准备、开车、正常操作、停车、设备维护等方面的技能 操作训练、工艺指标控制操作技能训练。 5、装置能进行装置开车准备、开车、正常操作、停车、设备维护等方面的技能操作训练、

工艺指标控制操作技能训练。 6、装置采用的控制系统,并能进行工控组态;同时也能进行手动操作控制。仪表精度高、 配置合理。 7、装置具有真实设定故障的功能:通过计算机隐蔽发出故障干扰信号,使正常运行的装置 出现真实异常现象,培训学员发现、分析、排除工业生产过程故障的技能。 8、装置运行介质为蒸汽-空气体系。 (二)传热实训装置实现的培训功能

设备性能参数及装配标准培训文件

哈飞设备性能参数及装配标准哈尔滨哈飞工业有限责任公司

目录 第一章预精轧机区设备 (3) 第二章 3#飞剪、2#卡断剪、碎断剪、侧活套 (4) 第三章精轧机组 (6) 第四章增速箱 (11) 第五章夹送辊 (11) 第六章吐丝机及其相关设备 (13) 第七章机组装配与试车 (15) 第八章精轧机组的分解与重装 (22) 第九章设备日常维护 (59) 第十章设备大修 (61)

第十一章易损件和备件清单 (76) 前言 无扭精轧机组是高速线材车间的重要设备,机组中使用了高精度、高转速的圆柱斜齿轮、锥齿轮、油膜轴承和滚动轴承,各零件的加工精度、动平衡精度以及安装精度的要求都专门高,因此,了解精轧机组及其相关设备的性能、结构、安装、使用与日常维护等是保证轧机正常运转的重要环节。 第一章预精轧机区设备 1.1悬臂式预精轧机组 位置:位于13V轧机出口处。轧机号为:14H、15V、16H、17V。 作用:通过4机架无扭无张力连续轧制,将坯料轧制成满足精轧机组要求的的尺寸及精度。 结构:机组由4架?285轧机组成,平立交替布置,机架间设有立式活套。轧机为悬臂辊环式结构,其特点如下: ①轧机为轧辊箱插入式机构。机架由轧辊箱和齿轮箱组成, 轧辊箱插入齿轮箱即构成轧机机架。 ②轧辊箱箱体带有一法兰面板用来与齿轮箱连接,箱体内装

有偏心套机构用来调整辊缝。偏心套内装有摩根系列油膜轴承与轧辊轴,在悬臂的轧辊轴端用锥套固定辊环。水平机架与立式机架共用一种轧辊箱,能够互换。 ③水平机架的齿轮箱内由输入轴和同步轴共两根带有齿轮的 传动轴组成,机架可由一标准减速器调整速比。 ④立式机架的齿轮箱内的传动系统比水平机架多了一对螺旋 伞齿轮,用来改变传动方向和调整速比,其余部分与水平机架相同;平立轧机齿轮均采纳SKF滚动轴承。 ⑤辊缝的调节是旋转一根带左、右丝扣和螺母的丝杆,使两 组偏心套相对旋转,两轧辊轴的间距随偏心套的偏心相对轧线对称移动而改变辊缝,并保持原有轧线及导卫的位置不变。 ⑥辊环通过锥套连接在悬臂的轧辊轴上,用专用的换辊工具 更换辊环。 ⑦立式轧机采纳地面传动形式。 要紧技术参数: 4架?285悬臂辊环式预精轧机: 辊环尺寸:?285/255×95(70) mm 辊环材质:碳化钨 轧制钢种:碳钢、优质碳素钢、低合金钢、合金钢、焊 条钢、轴承钢、冷镦钢 轧件断面:第15H架入口:?27~33mm(±0.40mm) 第18V架出口:?17~?23mm 轧制速度:第18V架出口:max18.5m/s 传动方式:直流(交流)电机单独传动

相关文档
最新文档