利用Snubber电路消除开关电源和Class D功放电路中的振铃

利用Snubber电路消除开关电源和Class D功放电路中的振铃
利用Snubber电路消除开关电源和Class D功放电路中的振铃

关键词: 开关电源, Class D功放,振铃

应用笔记6287

利用Snubber电路消除开关电源和Class D功放电路中的振铃

Frank Pan, CPG部门高级应用工程师

摘要:开关电源和Class D功放,因为电路工作在开关状态,大大降低了电路的功率损耗,在当今的电子产品中得到了广泛的应用。由于寄生电感和寄生电容的存在,电路的PWM开关波形在跳变时,常常伴随着振铃现象。这些振铃常常会带来令人烦恼的EMC问题。本文对振铃进行探讨,并采用snubber电路对PWM 开关信号上的振铃进行抑制。

振铃现象

在开关电源和Class D功放电路中,振铃大多是由电路的寄生电感和寄生电容引起的。寄生电感和寄生电容构成LC谐振电路。LC谐振电路常常用两个参数来

描述其谐振特性:振荡频率(),品质因数(Q值)。谐振频率由电感量和电容量决定:。品质因数可以定义为谐振电路在一个周期内储存能量与消耗能

量之比。并联谐振电路的Q值为:,其中R

P是并联谐振电路的等效并联电

阻。串联谐振电路的Q值为:,其中R

S为串联谐振电路的等效串联电阻。

在描述LC电路的阶跃跳变时,常用阻尼系数() 来描述电路特性。阻尼系数跟品质因数的关系是:或。在临界阻尼(=1)时,阶跃信号能

在最短时间内跳变到终值,而不伴随振铃。在欠阻尼(<1)时,阶跃信号在跳变时会伴随振铃。在过阻尼(>1)时,阶跃信号跳变时不伴随振铃,但稳定到终值需要花费比较长的时间。在图一中,蓝,红,绿三条曲线分别为欠阻尼(<1),临界阻尼(=1),过阻尼(>1)时,对应的阶跃波形。

图一不同阻尼系数对应的阶跃信号

(从左至右分别为欠阻尼,临界阻尼,过阻尼时对应的阶跃信号)

我们容易得到并联LC谐振电路的阻尼系数:。在我们不改变电路的寄生电感和寄生电容值时,调整等效并联电阻可以改变谐振电路的阻尼系数,从而控制电路的振铃。

阶跃信号因振铃引起的过冲跟阻尼系数有对应的关系:。OS(%)定义为过冲量的幅度跟信号幅度的比值,以百分比表示。表一列出了不同阻尼系数对应的过冲OS(%)。

图二过冲图示

表一:不同阻尼系数对应的过冲OS(%)

阻尼系数0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 过冲量85.4% 72.9% 62.1% 52.7% 44.4% 37.25% 30.93% 25.4% 20.6% 阻尼系数0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

过冲量16.3% 12.6% 9.5% 6.8% 4.6% 2.8% 1.5% 0.6% 0.15%

振铃的危害

对于振铃,我们直观感受到的是示波器屏幕上的电压的波动。实际带来问题的通常是电路的电流的谐振。在图三所示的电路里面,当PWM开关信号V1在0V 和12V切换时,流过电感L1和电容C1的谐振电流可以达到安培量级,如图四所示。在高频(图三所示电路的谐振频率为232MHz,开关电源和Class D电路里常见的振铃频率在几十兆到几百兆Hz之间),安培量级的电流,通过很小的回路,都可能造成辐射超标,使产品无法通过EMC认证。

注:10米处电场强度计算公式为:,单位为伏特/米。其中f为电流的频率(MHz),A为电流的环路面积(CM2),I s为电流幅度(mA)。

图三LC谐振电路

图四电容C1两端的电压和流过电容C1的谐振电流

避免测量引入的振铃

为了提高电路的效率,开关电源和Class D功放的PWM开关信号的上升/下降时间都比较短,常常在10ns量级。测量这样的快速切换信号,需要考虑到示波器探头,特别是探头的接地线对测量结果的影响。在图五的测量方法中,示波器探头的地线过长,跟探头尖端的探针构成很大的回路。捕获到的信号出现了很大的振铃,如图六所示。

图五示波器探头上长的地线会影响PWM开关信号的测量结果

图六图五测量方法对应的测试结果

为了降低示波器探头对测量结果的影响,我们在电路板上焊接测量接地探针,并去除示波器探头上的地线,如图七所示。通过这种方法,我们可以大大降低示波器探头地线对测量引入的振铃。图八是使用这种方法捕获到的PWM开关信号的前后沿波形。

图七通过在PCB上焊接接地点改善测量结果

图八图七测量试方法对应的测试结果

开关电源和Class D功放电路中的谐振电路

在开关电源和Class D功放电路中,芯片退耦电容到芯片电源引脚之间的PCB 走线,芯片电源引脚到内部硅片之间的邦定线可以等效成一个寄生电感。在功率MOSFET截止时,功率MOSFET电极之间的电容(Cgs,Cgd,Cds) 可等效成一个寄生电容。如图九所示。这些寄生电感和寄生电容构成了LC谐振电路。图九中的高端MOSFET导通,低端MOSFET截止时,可以等效成图十所示的

LC谐振电路。为了提高电路的效率,当今芯片内部集成的功率MOSFET的

都做得比较小,常常在几十毫欧到几百毫欧之间。这意味着谐振电路的阻尼系数可能很小。造成的结果是在PWM开关切换时,伴随着比较大的振铃。

图九开关电源和D类功放电路里的寄生电感和电容

图十图九中高端MOSFET导通,低端MOSFET截止时的等效电路

利用Snubber抑制振铃

上面对LC谐振电路的振铃做了介绍。下面介绍利用snubber电路对振铃进行抑制。如图十一中虚线框内的电路所示,Snubber电路由一个小阻值的电阻

和一个电容串联构成。其中电阻用来调节LC谐振电路的阻尼系数。电容在振铃频率(即LC谐振频率)处呈现很低的容抗,近似于短路。在PWM开关频率又呈现出较高的容抗。如果没有电容的存在,PWM信号会一直加在电阻两端,电阻会消耗过多的能量。

下面给选取合适的电阻值,让PWM开关信号能快速稳定到终值,而又不

产生振铃(临界阻尼)。我们以图十一的电路为例。其中L1是电路的寄生电感,C1是电路的寄生电容,是电路的等效并联电阻。

图十一snubber电路

整理得到:

用snubber改善振铃实例

下面以一个实例介绍snubber电路元件值的选取。图十二a 是一款降压DC-DC 在PWM开关引脚处测到的波形。在PWM信号开关时,伴随着振铃现象。通过示波器测量到的振铃频率为215.5MHz。我们可以构建第一个方程:

为了得到L1和C1的值,我们需要构建另外一个方程。我们给电容C1并联一个小电容:在PWM引脚临时对地焊接一个56pF的电容。这时,振铃频率变为146.2MHz,如图十二b。据此,我们构建另一个方程:

通过上面两个方程,可以很快计算出C1=47.7pF,L1=11.4nH。

然后,我们根据过冲量来计算等效并联电阻。从图十三读出过冲OS(%)为28%,对应的阻尼系数()值为0.37。,得到

十三阶跃信号过冲

我们得到了电路的L1,C1和的值,带入我们前面得到的公式

,计算得到。可以选取18欧姆的电阻。电容的选择:元件值的选取原则是,在LC谐振频率(振铃频率)处,容抗要远小于的阻值。对PWM开关信号,又要呈现出足够高的容抗。图十四是采用560pF的电容,采用18欧姆电阻时,PWM开关信号的前沿波形。对比图十二a中的波形,振铃得到了很大的改善。

图十四加入snubber电路后的PWM前沿波形

Snubber电路的能量消耗

Snubber电路中能量消耗在电阻上,而能量消耗的多少又取决于电容的容量,跟电阻的值无关。这是因为:PWM信号给电容充

电时,电路给snubber电路提供的能量为,而电容只得到了其中的一半(),另一半被消耗掉。改变的电阻值,只是改变了电容充电的速度和消耗能量的速度,而不改变充电一次所消耗的总能量。

放电时,电容储存的能量被消耗。在一个PWM开关周期的

能量消耗为。功率消耗为:,其中为PWM 开关频率,V为snubber两端的电压幅度峰峰值。

有些应用场合对电路的效率有很高的要求,对snubber电路消耗的功率也需要

进行限制。遇到这种情况,可以适当调整snubber电路的元件值,在PWM信号的振铃和功率消耗之间取得平衡。

降低snubber功耗的另外一个有效办法是降低电路的寄生电感:把退耦电容尽

量靠近芯片放置,加粗退耦电容到芯片之间PCB走线的宽度。从前面提到的公

式()可以看出,降低了寄生电感L1,在其他电路参数

不改变的情况下,要保持同样的阻尼系数,需要更小的电阻值。同时,寄生电感

降低后,电路的振铃频率会提高。这都允许我们选用更小容值的电容,从而可以降低snubber电路引入的功率损耗。

总结

我们讨论了开关电源和Class D功放电路里PWM信号的振铃现象,振铃带来的危害,振铃引起的过冲和电路的阻尼系数的对应关系。然后介绍了如何用snubber对振铃进行抑制。最后通过一个实例介绍了snubber电路里元件值的选取。在介绍过程中,引入了一些简单的数学公式。这些数学公式有助于加深我们对概念的理解。

参考文献

?“Radio-Frequency Electronics Circuits and Applications” by Jon B.

Hagen

?“EMC for Product Designers” Forth Edition by Tim Will iams

?“基于运算放大器和模拟集成电路的电路设计(第3版) ” Sergio Franco 著,刘树棠朱茂林荣玫译

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源电磁干扰(EMI)抑制措施总结

摘要:开关电源的电磁干扰对电子设备的性能影响很大,因此,各种标准对抑制电源设备电磁干扰的要求已越来越高。对开关电源中电磁干扰的产生机理做了简要的描述,着重总结了几种近年提出的新的抑制电磁干扰的方法,并对其原理、应用做了简单介绍。 1 引言 随着电子设备的大量应用,电源在这些设备中的地位越来越重要,而开关变换器由于体积小、重量轻、效率高等特点,在电源中占的比重越来越大。开关电源大多工作在高频情况下,在开关器件的开关过程中,寄生元件(如寄生电容、寄生电感等)中能量的高频变化产生了大量的电磁干扰 ( ElectromagneticInterference , EMI )。 EMI 信号占有很宽的频率范围,又有一定的幅度,经过在电路、空间中的传导和辐射,污染了周围的电磁环境,影响了与其它电子设备的电磁兼容 ( ElectromagneticCompatibility )性。随着近年来各国对电子设备的电磁干扰和电磁兼容性能要求的不断提高,对电磁干扰以及新的抑制方法的研究已成为开关电源研究中的热点。 本文对电磁干扰产生、传播的机理进行了简要的介绍,重点总结了几种近年来提出的抑制开关电源电磁干扰产生及传播的新方法。 2 电磁干扰的产生和传播方式 开关电源中的电磁干扰分为传导干扰和辐射干扰两种。通常传导干扰比较好分析,可以将电路理论和数学知识结合起来,对电磁干扰中各种元器件的特性进行研究;但对辐射干扰而言,由于电路中存在不同干扰源的综合作用,又涉及到电磁场理论,分析起来比较困难。下面将对这两种干扰的机理作一简要的介绍。 2.1传导干扰的产生和传播 传导干扰可分为共模( CommonMode CM )干扰和差模( DifferentialMode DM )干扰。由于寄生参数的存在以及开关电源中开关器件的高频开通与关断,使得开关电源在其输入端(即交流电网侧)产生较大的共模干扰和差模干扰。 2.1.1 共模( CM )干扰 变换器工作在高频情况时,由于 dv/dt 很高,激发变压器线圈间、以及开关管与散热片间的寄生电容,从而产生了共模干扰。如图 1 所示,共模干扰电流从具有高 dv/dt 的开关管出发流经接地散热片和地线,再由高频 LISN 网络(由两个 50Ω电阻等效)流回输入线路。

开关电源的干扰及其抑制

开关电源的干扰及其抑制 开关电源产生EMI的原因较多,其中由基本整流器产生的电流高次谐波干扰和功率转换电路产生的尖峰电压干扰是主要原因. 基本整流器:基本整流器的整流过程是产生EMI最常见的原因.这是因为工频交流正弦波通过整流后不再是单一频率的电流,而变成一直流分量和一系列频率不同的谐波分量,谐波(特别是高次谐波)会沿着输电线路产生传导干扰和辐射干扰,使前端电流发生畸变,一方面使接在其前端电源线上的电流波形发生畸变,另一方面通过电源线产生射频干扰. 功率转换电路:功率转换电路是开关稳压电源的核心,它产生的尖峰电压是一种有较大幅度的窄脉冲,其频带较宽且谐波比较丰富. 产生这种脉冲干扰的主要原因是: ①开关管:开关管及其散热器与外壳和电源内部的引线间存在分布电容.当开关管流过大的脉冲电流时,大体上形成了矩形波,该波形含有许多高频成份.由于开关电源使用的元件参数如开关功率管的存储时间,输出级的大电流,开关整流二极管的反向恢复时间,会造成回路瞬间短路,产生很大短路电流.开关管的负载是高频变压器或储能电感,在开关管导通的瞬间,变压器初级出现很大的涌流,造成尖峰噪声. ②高频变压器:开关电源中的变压器,用作隔离和变压.但由于漏感地原因,会产生电磁感应噪声;同时,在高频状况下变压器层间的分布电容会将一次侧高次谐波噪声传递给次级,变压器对外壳的分布电容形成另一条高频通路,而使变压器周围产生的电磁场更容易在其他引线上耦合形成噪声. ③整流二极管:二次侧整流二极管用作高频整流时,要考虑反向恢复时间的因数.往往正向电流蓄积的电荷在加上反向电压时不能立即消除(因载流子的存在,还有电流流过).一旦这个反向电流恢复时的斜率过大,流过线圈的电感就产生了尖峰电压,在变压器漏感和其他分布参数的影响下将产生较强的高频干扰,其频率可达几十兆赫. ④电容、电感器和导线:开关电源由于工作在较高频率,会使低频的元器件特性发生变化,由此产生噪声. 开关电源外部干扰:开关电源外部干扰可以以“共模”或“差模”方式存在.干扰类型可以从持续期很短的尖峰干扰到完全失电之间进行变化.其中也包括电压变化、频率变化、波形失真、持续噪声或杂波以及瞬变等,在电源干扰的几种干扰类型中,能够通过电源进行传输并造成设备的破坏或影响其工作的主要是电快速瞬变脉冲群和浪涌冲击波,而静电放电等干扰只要电源设备本身不产生停振、输出电压跌落等现象,就不会造成因电源引起的对用电设备的影响. 开关电源干扰耦合途径:开关电源干扰耦合途径有两种方式:一种是传导耦合方式,另一种是辐射耦合方式. 1.传导耦合:传导耦合是骚扰源与敏感设备之间的主要耦合途径之一.传导耦合必须在骚扰源与敏感设备之间存在有完整的电路连接,电磁骚扰沿着这一连接电路从骚扰源传输电磁骚扰至敏感设备,产生电磁干扰.按其耦合方式可分为电路性耦合、电容性耦合和电感性耦合.在开关电源中,这三种耦合方式同时存在,互相联系.

如何判断电压反馈与电流反馈(1)

如何判断电压反馈与电流反馈? 若反馈量与输出电压成正比则为电压反馈;若反馈量与输出电流成正比则为电流反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若输入回路中仍然 存在反馈量,即,则为电流反馈;若输入回路中已不存在反馈,即则为电压反馈。 判断电压反馈和电流反馈更直观的方法是根据负载电阻与反馈网络的连接方式来区分电 压反馈与电流反馈。将负载电阻与反馈网络看作双端网络(在反馈放大电路中其中一端通常为公共接地端),若负载电阻与反馈网络并联,则反馈量对输出电压采样,为电压反馈。否则,反馈量无法直接对输出电压进行采样,则只能对输出电流进行采样,即为电流反馈。 电压负反馈可以稳定输出电压;而电流负反馈则可以稳定输出电流。区分电压反馈与电流反馈只有在负载电阻RL变动时才有意义。如果RL固定不变,因输出电压与输出电流成正比,所以,在稳定输出电压的同时也必然稳定输出电流,反之亦然,二者效果相同。但是当负载电阻 RL改变时,二者的效果则完全不同,电压负反馈在稳定输出电压时,输出电流将更不稳定; 而电流负反馈在稳定输出电流时,输出电压将更不稳定。 图6 电压反馈与电流反馈的判断 如图5(a),反馈电压,反馈量与输出电压成正比,故为电压反馈。

图6(a),反馈电压,反馈量与输出电流成正比,故为电流反馈。 图6 (b),反馈电流,反馈量与输出电流成正比,故为电流反馈。也可用负载短路法来判断,如图5(a)中,将RL短路时(此时,),如图7(a)所示。由于输 入回路中不存在反馈(),所以图5(a)电路为电压反馈。将图6(a) 中RL短路时(此 时,,如图7(b)所示,输入回路中仍然存在反馈量(),说明反馈对输出电流取样,所以图6(a)电路应为电流反馈。 图7 负载短路法判断电压反馈与电流反馈

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

开关电源EMI形成原因及常用抑制方法

开关电源EMI形成原因及常用抑制方法 近年来,开关电源以其效率高、体积小、输出稳定性好的优点而迅速发展起来。但是,由于开关电源工作过程中的高频率、高di/dt和高dv/dt使得电磁干扰问题非常突出。国内已经以新的3C认证取代了CCIB和CCEE认证,使得对开关电源在电磁兼容方面的要求更加详细和严格。如今,如何降低甚至消除开关电源的EMI问题已经成为全球开关电源设计师以及电磁兼容(EMC)设计师非常关注的问题。本文讨论了开关电源电磁干扰形成的原因以及常用的EMI抑制方法。 1开关电源的干扰源分析 开关电源产生电磁干扰最根本的原因,就是其在工作过程中产生的高di/dt和高 dv/dt,它们产生的浪涌电流和尖峰电压形成了干扰源。工频整流滤波使用的大电容充电放电、开关管高频工作时的电压切换、输出整流二极管的反向恢复电流都是这类干扰源。开关电源中的电压电流波形大多为接近矩形的周期波,比如开关管的驱动波形、MOSFET漏源波形等。对于矩形波,周期的倒数决定了波形的基波频率;两倍脉冲边缘上升时间或下降时间的倒数决定了这些边缘引起的频率分量的频率值,典型的值在MHz范围,而它的谐波频率就更高了。这些高频信号都对开关电源基本信号,尤其是控制电路的信号造成干扰。 开关电源的电磁噪声从噪声源来说可以分为两大类。一类是外部噪声,例如,通过电网传输过来的共模和差模噪声、外部电磁辐射对开关电源控制电路的干扰等。另一类是开关电源自身产生的电磁噪声,如开关管和整流管的电流尖峰产生的谐波及电磁辐射干扰。 如图1所示,电网中含有的共模和差模噪声对开关电源产生干扰,开关电源在受到电磁干扰的同时也对电网其他设备以及负载产生电磁干扰(如图中的返回噪声、输出噪声和辐射干扰)。进行开关电源EMI/EMC设计时一方面要防止开关电源对电网和附近的电子设备产生干扰,另一方面要加强开关电源本身对电磁骚扰环境的适应能力。下面具体分析开关电源噪声产生的原因和途径。 图1开关电源噪声类型图 1.1电源线引入的电磁噪声 电源线噪声是电网中各种用电设备产生的电磁骚扰沿着电源线传播所造成的。电源线噪声分为两大类:共模干扰、差模干扰。共模干扰(Common-modeInterference)定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰(Differential-

开关电源电路组成及各部分详解

一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电

源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ②R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

刍议如何控制开关电源电磁干扰

刍议如何控制开关电源电磁干扰 摘要:通信开关电源是通信系统中的一种主要的干扰源之一,由于它本身工作特点使得电磁干扰问题相当突出,从通信电源电磁干扰的机理着手,分别论述了有源滤波技术、pcb设计技术、扩频调制技术等来抑制电磁干扰,改善了开关电源电磁兼容的性能,为工程设计人员提供了理论参考。 关键词:开关电源;电磁干扰;抑制措施 abstract: communication switching power supply is the major source of interference in a communication system, due to its own features make the issue of electromagnetic interference are quite prominent, and the mechanism of electromagnetic interference from the communication power to proceed, discusses active filtering technology, pcb design technology, spread spectrum modulation techniques such as electromagnetic interference suppression, improved the performance of the switching power supply electromagnetic compatibility, provide a theoretical reference for the engineering staff.keywords: switching power supply; electromagnetic interference; suppression measures 中图分类号:o552.4+24文献标识码:a 1 通信开关电源的干扰 通信开关电源要稳定工作就要有很强的抗电磁干扰能力,对于

电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择 转速负反馈自动调速系统,其调速指标是很好的,但是它需要一个测速发电机,增加了设备投资,维修较麻烦,有时安装也困难。从A-G-M开环系统中可以看出,当负载电流增加时,由于发电机端电压的下降以及发电机、电动机换向绕组压降及电动机电枢压降的增加,使电动机反电动势及转速下降,可用发电机端电压作为负反馈以维持发电机电压近似不变;可用负载电流作为正反馈以补偿换向绕组及电动机电枢绕组压降。这样既可得到近似转速负反馈的性能。 下图为电压负反馈调速系统电路图。 图2.5.1电压负反馈系统电路图 Figure 2.5 .1 negative feedback system voltage circuit 发电机电枢两端并联电阻RV,从中引出反馈电压UV,此即为信号引出点。Rv的选择应使流进其电流而引起发电机内部压降可略而不计。UV与给定电压Us是反向的,因而构成了电压负反馈环节。由于是电压反馈,故应选择高阻控制绕组作为CI。图中Rsa是给定回路附加电阻。 式中, 为给定电位器分压比;

为电压负反馈系数; 上图中各环节的电压平衡方程式为 式中,分别为发电机及电动机电枢绕组及换向绕组电阻; 为主回路换向绕组的电阻和。 根据框图,写出电压负反馈调速系统静特性方程: 式中,KV为电压负反馈闭环系统开环放大倍数

图2.5.2具有电压负反馈及电流正反馈系统电路图 Figure 2.5 .2 a negative feedback voltage and current positive feedback system circuit 从图2.5(b)可得静特性方程式

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

DCDC开关电源管理芯片的设计

DC-DC开关电源管理芯片的设计 引言 电源是一切电子设备的心脏部分,其质量的好坏直接影响电子设备的可靠性。而开关电源更为如此,越来越受到人们的重视。目前的计算机设备和各种高效便携式电子产品发展趋于小型化,其功耗都比较大,要求与之配套的电池供电系统体积更小、重量更轻、效率更高,必须采用高效率的DC/ DC开关稳压电源。 目前电力电子与电路的发展主要方向是模块化、集成化。具有各种控制功能的专用芯片,近几年发展很迅速集成化、模块化使电源产品体积小、可靠性高,给应用带来极大方便。 从另一方面说在开关电源DC-DC变换器中,由于输入电压或输出端负载可能出现波动,应保持平均直流输出电压应能够控制在所要求的幅值偏差范围内,需要复杂的控制技术,于是各种 PWM控制结构的研究就成为研究的热点。在这样的前提下,设计开发开关电源DC-DC控制芯片,无论是从经济,还是科学研究上都是是很有价值的。 1. 开关电源控制电路原理分析 DC-DC变换器就是利用一个或多个开关器件的切换,把某一等级直流输入电压变换成另—等级直流输出电压。在给定直流输入电压下,通过调节电路开关器件的导通时间来控制平均输出电压控制方法之一就是采用某一固定频率进行开关切换,并通过调整导通区间长度来控制平均输出电压,这种方法也称为脉宽调制[PWM]法。 PWM从控制方式上可以分为两类,即电压型控制(voltage mode control)和电流型控制(current mode control)。电压型控制方式的基本原理就是通过误差放大器输出信号与一固定的锯齿波进行比较,产生控制用的PWM信号。从控制理论的角度来讲,电压型控制方式是一种单环控制系统。电压控制型变换器是一个二阶系统,它有两个状态变量:输出滤波电容的电压和输出滤波电感的电流。二阶系统是一个有条件稳定系统,只有对控制电路进行精心的设计和计算后,在满足一定的条件下,闭环系统方能稳定的工作。图1即为电压型控制的原理框图。 图1 电压型控制的原理框图 电流型控制是指将误差放大器输出信号与采样到的电感峰值电流进行比较.从而对输出脉冲的占空比进行控制,使输出的电感峰值电流随误差电压变化而变化。电流控制型是一个一阶系统,而一阶系统是无条件的稳定系统。是在传统的PWM电压控制的基础上,增加电流负反馈环节,使其成为一个双环控制系统,让电感电流不在是一个独立的变量,从而使开关变换器的二阶模型变成了一个一阶系统。信号。从图2中可以看出,与单一闭环的电压控制模式相比,电流模式控制是双闭环控制系统,外环由输出电压反馈电路形成,内环由互感器采样输出电感电流形成。在该双环控制中,由电压外环控制电流内环,即内环电流在每一开关周期内上升,直至达到电压外环设定的误差电压阂值。电流内环是瞬时快速进行逐个脉冲比较工作的,并且监测输出电

开关电源反馈设计

第六章 开关电源反馈设计 除了磁元件设计以外,反馈网络设计也是开关电源了解最少、且非常麻烦的工作。它涉及到模拟电子技术、控制理论、测量和计算技术等相关问题。 开关电源环路设计的目标是要在输入电压和负载变动范围内,达到要求的输出(电压或电流)精度,同时在任何情况下应稳定工作。当负载或输入电压突变时,快速响应和较小的过冲。同时能够抑制低频脉动分量和开关纹波等等。 为了较好地了解反馈设计方法,首先复习模拟电路中频率特性、负反馈和运算放大器基本知识,然后以正激变换器为例,讨论反馈补偿设计基本方法。并介绍如何通过使用惠普网络分析仪HP3562A 测试开环响应,再根据测试特性设计校正网络和验证设计结果。最后对仿真作相应介绍。 6.1 频率响应 在电子电路中,不可避免存在电抗(电感和电容)元件,对于不同的频率,它们的阻抗随着频率变化而变化。经过它们的电信号不仅发生幅值的变化,而且还发生相位改变。我们把电路对不同频率正弦信号的输出与输入关系称为频率响应。 6.1.1 频率响应基本概念 电路的输出与输入比称为传递函数或增益。传递函数与频率的关系-即频率响应可以用下式表示 )()(f f G G ?∠= 其中G (f )表示为传递函数的模(幅值)与频率的关系,称为幅频响应;而∠?(f )表示输出信号与输入信号的相位差与频率的关系,称为相频响应。 典型的对数幅频响应如图6.1所示,图6.1(a)为幅频特性,它是画在以对数频率f 为横坐标的单对数坐标上,纵轴增益用20log G (f )表示。图6.1(b)为相频特性,同样以对数频率f 为横坐标的单对数坐标上,纵轴表示相角?。两者一起称为波特图。 在幅频特性上,有一个增益基本不变的频率区间,而当频率高于某一频率或低于某一频率,增益都会下降。当高频增高时,当达到增益比恒定部分低3dB 时的频率我们称为上限频率,或上限截止频率f H ,大于截止频率的区域称为高频区;在低频降低时,当达到增益比恒定部分低3dB 时的频率我们称为下限频率,或下限截止频率f L ,低于下限截止频率的区域称为低频区;在高 频截止频率与低频截止频率之间称为中频区。在这个区域内增益基本不变。同时定义 L H f f BW -= (6-1) 为系统的带宽。 6.1.2 基本电路的频率响应 1. 高频响应 在高频区,影响系统(电路)的高频响应的电路如图6.2所示。以图6.2a 为例,输出电压与输入电压之比随频率增高而下降,同时相位随之滞后。利用复变量s 得到 R s C sC R sC s U s U s G i o +=+== 11 /1/1)()()( (6-2) 对于实际频率,s =j ω=j 2πf ,并令 BW f H 103 103 (b) 图6.1 波特图

电压串联反馈原理

放大电路负反馈的原理特点 一、提高放大倍数的稳定性 引入负反馈以后,放大电路放大倍数稳定性的提高通常用相对变化量来衡量。 因为: 所以求导得: 即: 二、减小非线性失真和抑制噪声 由于电路中存在非线性器件,会导致输出波形产生一定的非线性失真。如果在放大电路中引入负反馈后,其非线性失真就可以减小。 需要指出的是:负反馈只能减小放大电路自身产生的非线性失真,而对输入信号的非线性失真,负反馈是无能为力的。 放大电路的噪声是由放大电路中各元器件内部载流子不规则的热运动引起的。而干扰来自于外界因素的影响,如高压电网、雷电等的影响。负反馈的引入可以减小噪声和干扰,但输出端的信号也将按同样规律减小,结果输出端的信号与噪声的比值(称为信噪比)并没有提高。 三、负反馈对输入电阻的影响 由于负反馈可以提高放大倍数的稳定性,所以引入负反馈后,在低频区和高频区放大倍数的下降程度将减小,从而使通频带展宽。 引入负反馈后,可使通频带展宽约(1+AF)倍。 四、负反馈对输入电阻的影响 (a)串联反馈(b)并联反馈

图1 求输入电阻 1、串联负反馈使输入电阻提高 引入串联负反馈后,输入电阻可以提高(1+AF)倍。即: 式中:ri为开环输入电阻 rif为闭环输入电阻 2、并连负反馈使输入电阻减小引入并联负反馈后,输入电阻减小为开环输入电阻的 1/(1+AF )倍。 即: 五、负反馈对输出电阻的影响 1、电压负反馈使输出电阻减小 放大电路引入电压负反馈后,输出电压的稳定性提高了,即电路具有恒压特性。 引入电压负反馈后,输出电阻rof减小到原来的1/(1+AF)倍。 2、电流负反馈使输出电阻增大 放大电路引入电流负反馈后,输出电流的稳定性提高了,即电路具有恒流特性。 引入电流负反馈后,使输出电阻rof增大到原来的(1+AF)倍。 3、负反馈选取的原则 (1)要稳定静态工作点,应引入直流负反馈。 (2)要改善交流性能,应引入交流负反馈。 (3)要稳定输出电压,应引入电压负反馈; 要稳定输出电流,应引入电流负反馈。 (4)要提高输入电阻,应引入串联负反馈; 要减小输入电阻,应引入并联负反馈。 六、深度负反馈的特点 1、串联负反馈的估算条件 反馈深度(1+AF)>>1的负反馈,称为深度负反馈。通常,只要是多级负反馈放大电路,都可以认为是深度负反馈.此时有: 因为:, 所以:xi≈xf 估算条件:

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

形成开关电源电磁干扰的三要素及解决方案

形成开关电源电磁干扰的三要素及解决方案 深圳市森树强电子科技有限公司 形成开关电源电磁干扰的三要素是干扰源、传播途径和受扰设备 首先应该抑制开关电源干扰源,直接消除干扰原因; 其次是消除干扰源和受扰设备之间的耦合和辐射,切断电磁干扰的传播途径; 第三是提高受扰设备的抗扰能力,减低其对噪声的敏感度。 目前抑制干扰的几种措施基本上都是用切断电磁干扰源和受扰设备之间的耦合通道,它们确是行之有效的办法。常用的方法是屏蔽、接地和滤波。 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底 板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之 间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的 分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两 层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网 传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完 全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为 一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的 作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可 以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应, 所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点 与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏 蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。 在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导 电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近 接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。

利用Snuer电路消除开关电源和ClassD功放电路中的振铃

?>?设计支持?>?技术文档?>?应用笔记?>?供电电路?> APP 6287 关键词:?开关电源, Class D功放,振铃 应用笔记6287 利用Snubber电路消除开关电源和Class D功放电路中的振铃 Frank Pan, CPG部门高级应用工程师 摘要:开关电源和Class D功放,因为电路工作在开关状态,大大降低了电路的功率损耗,在当今的电子产品中得到了广泛的应用。由于寄生电感和寄生电容的存在,电路的PWM开关波形在跳变时,常常伴随着振铃现象。这些振铃常常会带来令人烦恼的EMC问题。本文对振铃进行探讨,并采用snubber电路对PWM 开关信号上的振铃进行抑制。? 振铃现象 在开关电源和Class D功放电路中,振铃大多是由电路的寄生电感和寄生电容引起的。寄生电感和寄生电容构成LC谐振电路。LC谐振电路常常用两个参数来 描述其谐振特性:振荡频率(),品质因数(Q值)。谐振频率由电感量和电容量决定:。品质因数可以定义为谐振电路在一个周期内储存能量与消耗能量之比。并联谐振电路的Q值为:,其中R P是并联谐振电路的等效并联电 阻。串联谐振电路的Q值为:,其中R S为串联谐振电路的等效串联电阻。 在描述LC电路的阶跃跳变时,常用阻尼系数() 来描述电路特性。阻尼系数跟品质因数的关系是:或。在临界阻尼(=1)时,阶跃信号能在最短时间内跳变到终值,而不伴随振铃。在欠阻尼(<1)时,阶跃信号在跳变时会伴随振铃。在过阻尼(>1)时,阶跃信号跳变时不伴随振铃,但稳定到

终值需要花费比较长的时间。在图一中,蓝,红,绿三条曲线分别为欠阻尼(<1),临界阻尼(=1),过阻尼(>1)时,对应的阶跃波形。 图一不同阻尼系数对应的阶跃信号 (从左至右分别为欠阻尼,临界阻尼,过阻尼时对应的阶跃信号) 我们容易得到并联LC谐振电路的阻尼系数:。在我们不改变电路的寄生电感和寄生电容值时,调整等效并联电阻可以改变谐振电路的阻尼系数,从而控制电路的振铃。 阶跃信号因振铃引起的过冲跟阻尼系数有对应的关系:。OS(%)定义为过冲量的幅度跟信号幅度的比值,以百分比表示。表一列出了不同阻尼系数对应的过冲OS(%)。

相关文档
最新文档