第三讲-器件模型参数的优化提取详解

元器件模型参数的优化提取微电子学院贾新章

(2013. 11 )

PSpice中的模型和模型参数库

一、概述:为元器件建立模型参数的步骤

二、采用Model Editor分组提取模型参数

三、基于器件物理原理计算部分模型参数

四、建立适用于高级分析的元器件模型参数描述

五、元器件模型参数的综合优化提取。

六、为元器件模型描述建立元器件符号

七、将新建模型设置为PSpice仿真可以调用的库文件

一、概述:为元器件建立模型参数的步骤

第一步:优化提取模型参数

1、采用Model Editor分组提取模型参数;

2、基于器件物理原理,计算部分模型参数;

3、为元器件建立适用于高级分析的模型参数描述;

4、采用PSpice/Optimizer进行一次综合优化提取。

(采用前面结果作为优化提取模型参数的最佳初值)第二步:建立供Capture绘制电路图调用的元器件符号

第三步:将新建模型设置为PSpice仿真可以调用的库文件。下面将分别介绍每一部分的操作方法。

PSpice中的模型和模型参数库

一、概述:为元器件建立模型参数的步骤

二、采用Model Editor分组提取模型参数

三、基于器件物理原理计算部分模型参数

四、建立适用于高级分析的元器件模型参数描述

五、元器件模型参数的综合优化提取。

六、为元器件模型描述建立元器件符号

七、将新建模型设置为PSpice仿真可以调用的库文件

二、采用Model Editor分组提取模型参数

Model Editor模块可以对其支持的几种元器件,依据元器件的各种端特性数据,分组优化提取相应当模型参数数据。

(1) 调用MODEL EDITOR模块;

(2) 选择执行Model/New命令,从对话框中设置模型类型。

既要通过参数优化改进模型-又要防止对参数优化过度拟合

既要通过参数优化改进模型,又要防止对参数优化过度拟合 A参数高原与参数孤岛 参数优化中一个重要的原则就是要争取参数高原而不是参数孤岛。所谓参数高原,是指存在着一个较宽的参数范围,模型在这个参数范围内都能取得较好的效果,一般会以高原的中心形成近似正态分布状。而所谓参数孤岛,是指只有在参数值处于某个很小的范围内时,模型才有较好表现,而当参数偏离该值时,模型的表现便会显著变差。 假设某交易模型内有两个参数,分别为参数1和参数2,当对两个参数进行遍历测试后,得到一张三维的绩效图。好的参数分布应当是参数高原示意图,即使当参数的设置有所偏移,模型的获利绩效依然能够得到保证。这样的参数因稳定性强,可以使得模型在未来实战中遇到各类行情时,具有较强的因应能力。但如果遍历参数后的绩效结果如参数孤岛示意图,当参数发生小的偏移时,模型的获利绩效就发生较大变动,那么这样的参数因适应性能差,往往难以应对实际交易中变化多端的市场环境。 一般来说,如果附近参数系统的性能远差于最优参数的性能,那么这个最优参数有可能是一个过度拟和的结果,在数学上可以认为是奇点解,而不是所要寻找的极大值解。从数学角度来说,奇点是不稳定的,在未来的不确定行情中,一旦市场特征发生变化,最优参数可

能会变为最差参数。 过度拟合与选取的样本有关系,如果选取的样本不能代表市场总体特征,只是为了使测试结果达到正的期望值而去调整参数,这种做法无疑是自欺欺人,所得到的参数值是过度拟合的无效参数值。例如,通过分析参数过度拟合,交易模型分别在数值35和63出现了收益率突增现象,如果模型中的相应指标选用35和63做参数,则模型的收益看上去很完美,但实际上却是典型的参数孤岛效应。 过度拟合与参数优化的主要矛盾在于,模型参数优化得到的最优参数只是建立在已经发生过的历史数据样本上,而未来的行情是动态变化的,与历史行情相比既有相似性,也有变异性。模型设计者可以找到模型在历史上表现最好的参数,但是这个参数在未来模型实际应用中未必表现最好,更有甚者历史上表现最好的模型参数,在未来模型实战中可能是表现很糟糕的参数,甚至带来大幅亏损。比如,筛选出了一个能抓住历史上一波大行情的一个参数,但设置这样参数值的模型,并不意味着模型在未来实战中也能有如此好的表现,这个历史上较佳的参数值可能在未来模型的应用中没有起到任何帮助。 此外,参数高原与参数孤岛往往还与交易次数存在较大关系。如果模型的交易次数较少,往往能找到一个合适的参数点,使得模型在这几次交易中都盈利,这种参数优化后的模型获利体现出较强的偶然性。如果模型的交易次数较多,模型获利的偶然性就会下降,更多地体现出获利的必然性和规律性,也就会存在一个参数高原。而这种参

快递员配送路线优化模型(完整资料).doc

【最新整理,下载后即可编辑】 快递员配送路线优化模型 摘要 如今,随着网上购物的流行,快递物流行业在面临机遇的同时也需要不断迎接新的挑战。如何能够提高物流公司的配送效率并降低配送过程中的成本,已成为急需我们解决的一个问题。下面,本文将针对某公司的一名配送员在配送货物过程中遇到的三个问题进行讨论及解答。 对于问题一,由于快递员的平均速度及在各配送点停留的时间已知,故可将最短时间转换为最短路程。在此首先通过Floyd 求最短路的算法,利用Matlab程序将仓库点和所有配送点间两两的最短距离求解出来,将出发点与配送点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈,即最佳配送方案。 对于问题二,依旧可以将时间问题转化为距离问题。利用问题一中所建立的模型,加入一个新的时间限制条件,即可求解出满足条件的最佳路线。 对于问题三,送货员因为快件载重和体积的限制,至少需要三次才能将快件送达。所以需要对100件快件分区,即将50个配送点分成三组。利用距离矩阵寻找两两之间的最短距离是50个配送点中最大的三组最短距离的三个点,以此三点为基点按照准则划分配送点。

关键字:Floyd算法距离矩阵哈密尔顿圈二边逐次修正法矩阵翻转 问题重述 某公司现有一配送员,,从配送仓库出发,要将100件快件送到其负责的50个配送点。现在各配送点及仓库坐标已知,货物信息、配送员所承载重物的最大体积和重量、配送员行驶的平均速度已知。 问题一:配送员将前30号快件送到并返回,设计最佳的配送方案,使得路程最短。 问题二:该派送员从上午8:00开始配送,要求前30号快件在指定时间前送到,设计最佳的配送方案。 问题三:不考虑所有快件送达的时间限制,现将100件快件全部送到并返回。设计最佳的配送方案。配送员受快件重量和体积的限制,需中途返回取快件,不考虑休息时间。 符号说明 D:n个矩阵 n V:各个顶点的集合 E:各边的集合 e:每一条边 ij w:边的权 ()e G:加权无向图 , v v:定点 i j

各种常用电子元件符号及其名称【全】

各种常用电子元件符号 二极管变容二极管 表示符号:D 表示符号:D 双向触发二极管稳压二极管 表示符号:D 表示符号:ZD,D 稳压二极管桥式整流二极管表示符号:ZD,D 表示符号:D

肖特基二极管隧道二极管 隧道二极管光敏二极管或光电接收二极管 发光二极管双色发光二极管 表示符号:LED 表示符号:LED 光敏三极管或光电接收三极管单结晶体管(双基极二极管)表示符号:Q,VT 表示符号:Q,VT

复合三极管NPN型三极管 表示符号:Q,VT 表示符号:Q,VT PNP型三极管PNP型三极管 表示符号:Q,VT 表示符号:Q,VT NPN型三极管带阻尼二极管NPN型三极管表示符号:Q,VT 表示符号:Q,VT 带阻尼二极管及电阻NPN型三极管 表示符号:Q,VT 表示符号:Q,VT

带阻尼二极管IGBT 场效应管 表示符号:Q,VT 电子元器件符号图形 接面型场效应管P-JFET 接面型场效应管N-JFET 场效应管增强型P-MOS 场效应管增强型N-MOS 场效应管耗尽型P-MOS 场效应管耗尽型N-MOS

电阻电阻器或固定电阻表示符号:R 电阻电阻器或固定电阻表示符号:R 电位器可调电阻 表示符号:VR,RP,W 表示符号:VR,RP,W 电位器可调电阻 表示符号:VR,RP,W 表示符号:VR,RP,W 三脚消磁电阻二脚消磁电阻 表示符号:RT 表示符号:RT 压敏电阻表示符号:RZ,VAR 热敏电阻表示符号:RT

光敏电阻电容(有极性电容)CDS 表示符号: 电容(有极性电容)可调电容 表示符号:C 表示符号:C 电容(无极性电容)四端光电光电耦合器 表示符号:C 表示符号:IC,N 六端光电光电耦合器 表示符号:IC,N 电子元器件符号图形

InP基HBT GP大信号模型直流参数提取的研究

第32卷 第2期 2009年4月 电子器件 Ch in es e Jo u rnal Of Electro n Devi ces Vol.32 No.2Apr.2009 Research of DC Parameter Extraction on InP Based HBT GP Large S ignal Model * H U Ding ,H UA N G Yong qing * ,W U Qiang ,L I Yi qun,H UA N G H ui,R EN X iao min (K ey L aborator y of Op tical Communication and L ig ht wa ve T ech nologies,M inistry of Ed ucation, Beij ing Univ ersity of Posts and T elecommunic ations ,Beij ing 100876,China) Abstract:Co nsidering the special physical theo ry and structure,w e used GP larg e sig nal m odel fo r InP based H BT (GP model w as used for BJT prev iously ).By constructing error functio n,w e ex tracted 13SPICE DC parameter in this model w ith analytic m ethod and designed the Parameter extraction measure m ent dev ices,finally the InP/InGaAs H BT of 2 m 19 m emitter size w as modeled based on the above results.By comparison betw een simulated r esults of the ex tracted model and measured data,the mo del has a go od agreem ent w ith DC character istics of fabricated H BT. Key words:H BT ;GP lar ge sig nal model;parameter extraction;DC characteristics EEACC :2560J InP 基HBT GP 大信号模型直流参数提取的研究* 胡 钉,黄永清* ,吴 强,李轶群,黄 辉,任晓敏 (北京邮电大学光通信与光波技术教育部重点实验室,北京100876) 收稿日期:2008 09 10 基金项目:国家 973!项目资助(2003CB314900);教育部 新世纪人才支持计划!资助项目(NCET 05 0111);高等学校学科创 新引智计划资助(B07005);教育部 长江学者和创新团队发展计划资助(IR T 0609);国家 863!计划项目资助(2006AA 03Z416);国家 863!计划项目资助(2007A A 03Z418)作者简介:胡 钉(1984 ),北京邮电大学通信光电子实验室硕士研究生,主要从事光通信器件方面的研究; 黄永清,女,教授,博士生导师,从事光纤通信和半导体光电子器件方面研究 ?G ummel Poo n,一种应用范围很广的晶体管模型,也是晶体管的工业模型 摘 要:基于HBT 特殊的物理机理及结构,将适用于BJT 的G P 大信号模型用于I nP 基HBT 的研究中。通过构建误差函 数,采取解析法提取了该模型中的13项SPI CE 直流参数,并设计了参数提取实验装置,最后将研究结果用于发射极为2 m 19 m 的InP/InG aA s H BT 建模中。通过对比模型仿真和器件实测的数据可以看出,本文采用的HBT G P 模型准确度高,可以较好地表征实际H BT 器件的直流特性。 关键词:H BT ;G P 大信号模型;参数提取;直流特性中图分类号:TN32 文献标识码:A 文章编号:1005 9490(2009)02 0285 06 异质结双极晶体管(H etero junction Bipolar Transisto r,H BT)作为一种结构独特的晶体管从上世纪七十年代出现以来,由于其所具有的高频特性以及良好的电流注入比等优越性,发展十分迅猛。随着材料生长技术和器件制作工艺水平的不断完善与发展,H BT 的性能也不断地得以提高。在卫星通信、移动通信、光纤通信、国防电子系统等通信领域H BT 器件已经得到了非常广泛的应用[1]。 与传统BJT 相比,异质结所特有的物理和电特性给H BT 器件模型的准确建模带来了相当的困 难,因此H BT 模型的准确建立已经成为学术界和工业界研究的热点。尽管H BT 可归于新的器件类型,但其基本工作原理和一般的BJT 相比并没有本 质区别[2],因此利用传统的BJT 大信号模型(如GP 模型?)来表征H BT 的电学特性,利用解析法对其模型参数进行提取是目前较为实用的一种方案。 本文基于H BT 特殊的物理机理及结构,将适用于BJT 的GP 大信号模型用于InP 基H BT 的研究中。通过构建误差函数,采取解析法提取了该模型中的13项SPICE 直流参数,并设计了参数提取

1-切削参数优化模型的建立

切削参数优化模型的建立 1.1 优化变量确定 在数控切削加工中,切削速度c v 、进给量f 和切削深度sp a 称为切削用量三 要素[11]。这三要素是主要的优化变量,但由于切削深度对刀具耐磨度的影响较切削速度和进给量要小,而且在车削加工时,切削深度可根据工件余量和具体的加工要求来确定,本文视为已知量,不进行优化。因此,优化变量主要为切削速度v c 和进给量f 。 1.2 优化目标函数 本文主要从高效(加工时间短)、低碳(碳排放少)两大方面对加工过程进行优化,优化目标为时间和碳排放。 1.2.1 切削加工过程时间函数 一个工序加工过程的加工工时包括切削时间、换刀时间、工序辅助时间。最短加工工时的切削用量可实现最高的生产效率(高效)。加工过程时间函数的数学模型可表示为[13] ot t T m t ct t m t P T +?+= (1) sp V sp V m fa d L nfa L c 01000v t π?=?= (2) 泰勒广义刀具的耐用度计算公式为[14] z sp T a C T y c x f v = (3) 式中,m t 是工序切削时间,ct t 是换刀一次所用时间,ot t 是除换刀外其他辅助时间,T 是刀具寿命,W L 是加工长度,Δ是加工余量,n 是主轴转速,0d 是工件直径,c v 是切削速度,f 是进给量,sp a 是切削深度,T C 是与切削条件有关的常数,x,y,z 是刀具寿命系数,则加工过程时间函数为 ot T z sp y x c w ct sp c w P t C a f v L d t fa v L T +?+?=---10001000d 11100ππ (4) 1.2.2 切削加工过程碳排放函数 切削加工过程的碳排放主要包括加工过程消耗原材料引起的碳排放m C 、消耗电能引起的碳排放e C 、加工过程中所用辅助物料(如刀具使用产生的碳排放t C 和切削液使用产生的碳排放C C )以及由加工过程产生切屑的后期处理引起的碳排放S C ,如图1所示,

运输优化模型参考

运输 问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i 个客户

浅析电力系统模型参数辨识

浅析电力系统模型参数辨识 (贵哥提供) 一、现状分析 随着我国电力事业的迅猛发展, 超高压输电线路和大容量机组的相继投入, 对电力系统稳定计算、以及其安全性、经济性和电能质量提出了更高的要求。现代控制理论、计算机技术、现代应用数学等新理论、新方法在电力系统的应用,正在促使电力工业这一传统产业迅速走向高科技化。 我国大区域电网的互联使网络结构更复杂,对电力系统安全稳定分析提出了更高的要求,在线、实时、精确的辨识电力系统模型参数变得更加紧迫。由于电力系统模型的基础性、重要性,国外早在上世纪三十年代就开始了这方面的分析研究,[1,2]国内外的电力工作者在模型参数辨识方面做了大量的研究工作。[3]随后IEEE相继公布了有关四大参数的数学模型。1990年全国电网会议上的调查确定了模型参数的地位,促进了模型参数辨识的进一步发展,并提出了研究发电机、励磁、调速系统、负荷等元件的动态特性和理论模型,以及元件在极端运行环境下的动态特性和参数辨识的要求。但传统的测量手段,限制了在线实时辨识方法的实现。 同步相量测量技术的出现和WAMS系统的研究与应用,使实现在线实时的电力系统模型参数辨识成为可能。同步相量是以标准时间信号GPS作为同步的基准,通过对采样数据计算而得的相量。相量测量装置是进行同步相量测量和输出以及动态记录的装置。PMU的核心特征包括基于标准时钟信号的同步相量测量、失去标准时钟信号的授时能力、PMU与主站之间能够实时通信并遵循有关通信协议。 自1988年Virginia Tech研制出首个PMU装置以来,[4]PMU技术取得了长足发展,并在国内外得到了广泛应用。截至2006年底,在我国范围内,已有300多台P MU装置投入运行,并且可预计,在不久的将来PMU装置会遍布电力系统的各个主要电厂和变电站。这为基于PMU的各种应用提供了良好的条件。 二、系统辨识的概念 系统模型是实际系统本质的简化描述。[5]模型可分为物理模型和数学模型两大类。物理模型是根据相似原理构成的一种物理模拟,通过模型试验来研究系统的

程序化参数优化问题

如何解决在程序化交易中参数优化的问题程序化交易的书籍在市面上层出不穷,大多数打算进行程序化交易的朋友都会去阅读一两本或者更多。我敢肯定通过阅读大家会发现,这些书里面每一本都会提到交易模型的参数优化的问题。这是由于现代的计算机处理技术发展的同时也带来了一些困惑,程序化交易可以说是建立在计算机和通讯技术的基础之上的一种交易手段,如果没有这些基础设施,那么程序化交易也就不能存在。正是有了可以高速运行的CPU才使我们可以对参数进行优化。光凭技术手段并不足以解决所有交易的问题,这就是为什么说交易是一门艺术之所在,而我们使用机械的交易方法是为了尽可能的避免人为的判断和情绪对交易的不良影响,在我们没有形成自己的一套交易体系之前通过机械的方法来进行交易无疑可以少走很多弯路,把时间和金钱留给我们用来积累更多的经验,让我们首先确保在市场中生存,再去追求如何使交易变成艺术。因此作为一个力求以科学和规律的方法解决交易的问题的人,我试图通过本文来解决大家在程序化交易中参数优化这个矛盾的问题。 什么是参数优化 在这里首先我们介绍一下什么是参数优化,以便一些刚刚接触程序化交易的朋友阅读本文,已经了解这方面知识的朋友可以掠过本段。 对于一些模型来说会有一些参数,这些参数设置的主要含义可能是为模型提供一个周期,举个例子来说象n日均线上穿N日均线(n为短周期均线参数,N为长周期均线参数,一般短周期的移动平均要比长周期的变化要快,所以我们通过这两个不同周期的均线来制定交易计划),n和N参数的意义就是指定周期,一般来说参数的意义都与时间有关系(周期),但也有其他的用途。参数优化实际上就是利用计算机的处理能

路径成本优化模型

第 3 章港口集卡路径成本优化模型 3.1 港口集卡作业模式分析 3.1.1面向“作业路”的传统集卡作业模式 目前,我国大部分港口采用龙门吊装卸工艺,其中岸桥、集卡、龙门吊是完成集装箱装卸的主要机械设备,岸桥负责对到港的船舶进行装卸作业,龙门吊对堆场的集装箱进行进出场作业,集卡衔接码头前沿岸桥和后方堆场龙门吊的之间工作,是港口集装箱进口、出口、转堆作业过程中的重要运输设备,其主要在岸桥与堆场之间及堆场各箱区之间作水平运输。这些集装箱装卸设备只有相互协调、相互配合才能够保证集装箱装卸作业的顺利进行,否则会出现装卸设备等待现象和拥堵现象,降低设备资源的利用率和港口的物流能力。 但大部分港口目前仍采用传统的集卡作业模式,即面向“作业路” 的集卡作业模式。该模式可描述为:港口工作人员根据装卸集装箱的业务量配置岸桥,且按照一定的比例为每台岸桥分配一定数量的集卡,从而形成由几辆集卡所组成的一组固定集卡为某一台特定的岸桥服务。在整个集装箱的装卸作业过程中,集卡在预先设定的固定路线上行驶,岸桥、集卡和龙门吊形成固定作业线路运载集装箱。在集装箱的进口作业中,首先由岸桥将船舶上需进口的集装箱放到等待卸船的空集卡上,然后装载进口集装箱的集卡沿固定路线行驶,并到指定的堆场箱区卸下集装箱,最后空车行驶到岸桥下等待下一个卸船作业。同样在装船作业中,首先龙门吊将堆场箱区内的出口集装箱放在空集卡上,然后由集卡运输出口集装箱行驶到岸桥下等待装船作业,装船结束后集卡再空载行驶到堆场箱区进行下一个装船作业[56, 70]。 一般面向“作业路”的集卡作业模式会根据岸桥的配置数量安排需要服务的集卡数量,通常一台岸桥需要配置5~6 辆集卡,则所需集卡的总数量为装船和卸船岸桥总数的5 倍或6 倍[82]。这种面向“作业路”的传统集卡作业模式下司机操作简单、便于管理、沿固定作业路线不易出错,但是随着信息技术的进步、港口物流业的发展,这一模式逐渐暴露出缺点,阻碍港口物流效率的提高。其存在的弊端表现在以下几个方面:首先,如果某条作业路上集卡对岸桥的配置量是个已知的固定值,若集卡配置量少可能会导致岸桥等待集卡的现象,降低码头前沿的作业效率;相反,若集卡配置量过多又会产生资源的浪费、资源利用率低下;此作业路下可能会出现集卡排队等待的现象,而此时其它作业路可能集卡缺少,造成整个港口集卡资源的不合理利用,影响港口的整体运作效率。其次,在面向“作业路”的作业模式下,集卡为某一特定的岸桥服务,当集卡

模型计算步骤

计算步骤步骤目标 建模或计算条件控制条件及处理1.符合原结构传力模式2.符合原结构边界条件3.符合采用程序的假定条件1.振型组合数→有效质量参与系数>0.9吗?→否,则增加2.最大地震力作用方向角→θ0-θm >150?→是,输入θ0=θm ,附加方向角θ0=03.结构自振周期,输入值与计算值相差>10%?→是,按计算值改输入值4.查看三维振型图,确定裙房参与计算范围→修正计算简图5.短肢剪力墙承担的抗倾覆力矩<40%?→是,改为一般剪力墙结构;短肢剪力墙承担的抗倾 覆力矩>50%?→是,规范不许,修改设计 6.框剪结构框架承担的抗倾覆力矩>50%?→是,框架抗震等级按框架结构确定;若为多层结构,可定义为框架结构,抗震墙可作为次要抗侧力构件,其抗震等级可降低一级。 1.周期比控制:T 扭/T 1≤0.9(0.85)?→否,修改结构布置,强化外围削弱中间 2.层位移比控制:最大/平均≤1.2?→否,按双向地震重算 3.侧向刚度比控制:要求见规范;不满足时程序自动定义为薄弱层 4.层受剪承载力控制:Q i /Q i+1<[0.65(0.75)]?→否,修改结构布置;0.65(0.75)≤Q i /Q i+1<0.8?→否,强制指定为薄弱层(注:括号中数据为B级高层),(《高规》4.4.3条) 5.整体稳定控制:刚重比≥[10(框架),1.4(其它)] 6.最小地震剪力控制:剪重比≥0.2αmax?→否,增加振型数或增大地震剪力系数 7.层位移角控制:弹性Δu ei /h i ≤[1/550(框架),1/800(框剪),1/1000(其它)];弹塑性Δ u pi /h i ≤[1/50(框架),1/100(框剪),1/120(其它)]1.构件构造最小断面控制和截面抗剪承载力验算 2.构件斜截面承载力验算(剪压比控制) 3.构件正截面承载力验算 4.构件最大配筋率控制 5.纯弯和偏心构件受压区高度限制 6.竖向构件轴压比控制 7.剪力墙的局部稳定控制 8.梁柱节点核心区抗剪承载力验算 1.钢筋最大最小直径限制 2.钢筋最大最小间距要求 3.最小配筋配箍要求 4.重要部位的加强和明显不合理部分局部调整2.计算一(一次或多次)整体参数 的正确确 定 1.地震方向角θ0=0;2.单向地震+平扭耦联;3.不考虑偶然偏心;4.不强制全楼刚性楼板;5.按总刚分析;6.短肢墙多时定义为短肢剪力墙结构;1.按计算一、二确定的模型和参数;2.取消全楼强制刚性板;3.按总刚分析;4.对特殊构件人工指定。构件优化设计(构件超筋超限控制)4.计算三(一次或多次)5.绘制施工图结构构造抗震构造措施几何及荷 载模型 1.建模整体建模判定整体结构的合理性(平面和竖向规则性控制) 1.地震方向角θ0=0,θ m ; 2.单(双)向地震+平扭耦 联; 3.(不)考虑偶然偏心; 4.强制全楼刚性楼板; 5.按侧刚分析; 6.按计算一的结果确定结 构类型和抗震等级3.计算二(一次或多次)

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小时, 汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组;给出这 种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线的 影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 四、模型建立

在这一节里,我们将提出若干个模型及其特点分析,不涉及对题目的求解。 最简树结构模型 在这个模型中我们依靠利用最短树的特殊结构所给出的准则,进行局部寻优,在一个不大的图里,我们较易得到较优解。 (a)分片 准则1利用最短树的长度可大致的估算出路程长,在具体操作中,各片中 的最短路程长度不宜相差太大。 准则 2 尽可能将最短树连成一个回路,这可保证局部上路程是较短的。 (b)片内调整 a2 a3 a4 a5 a6假设a3 a4有路相连 细准1对于右图的最短树结构,最好的走法是a 若a3 a4 进去重复走的话,它与上述的走法路程差w(a3, a2)+w(a2 ,a5)+w(a4, a5)—w(a3, a4)。由两点间最小原则上式是大于0的优劣可见 细准2若有如图所示结构,一般思想是:将中间树枝上的点串到两旁树枝,以便连成回路。 五、模型求解 问题一该问题完全可以用均衡模型表述 用算法模型 1 经过局部优化手工多次比较我们能够给出的最佳结果为第一组路径为 0—P—28—27—26—N—24—23—22-17—16—1—15—1—18—K—21—20—25— M--0 长191.1 经5 镇6 村 第二组路径为 0—2—5—6—L—19—J—11--G—13—14—H—12—F—10—F—9—E—8—E—7—6—5—2—0 长216.5 经6 镇11 村第三组路径为O—2—3—D—4—D—3—C—B—1—A—34—35—33—31—32—30—Q—29 —R 长192.3 经6 镇11 村总长S=599.9 公里 由算法2 给出的为 1组0—P—29—R—31—33—A—34—35—32—30—Q—28—27—26—N—24—33—22—23—N—2 6—P—0 5 乡13 村长215.2 公里 2组0—M—25—21—K—17—16—I—15—I—18—K—21—25—20—L—19—J—11—G—13—14 —O 5 乡11 村长256.2 公里 3组 O—2—5—6—7—E—9--F—12--H--—12—F—10—F—9—E-8—4—0—7—6—M—5-2—3—L —13—1—0 8 乡11 村长256.3 公里 总长727.7 公里

常用电子元件符号及用途解析

常用电子元件符号及用途 1、常用电子元件介绍(电源部份 电阻器、电解电容、陶瓷电容、整流二极管、三极管、发光二极管、保险管2、分类讲述 2.1 电阻器2.1.1表示符号: 2.1.2单位:Ω(欧姆 2.1.3产品分类:色环电阻、水泥电阻、贴片电阻、大功率绕线式电阻等等2.1.4阻值判断方法: 除色环电阻外,其它均可参照供应商印字或资料可判断出阻值及公差; 色环电阻阻值判断方法: 棕红橙黄绿兰紫灰白黑 1 2 3 4 5 6 7 8 9 0 色环公差值表示法: 四色环:金±5% 银±10%(最后一位 五色环:棕±1% 红±2% 绿色±0.5% 兰色±0.25% 紫色±0.1%(最后一位 例:4色环 红红黄金

2 2 4(0的个数 ±5% 即:220000=220K±5% 例:5色环 黄紫绿棕棕 4 7 5 0的个数±1% 即:4750±1% 说明:4色环第一、二位为有效数值,第三位为0的个数,第4位为公差(金:±5% 银±10% 5色环第一、二、三位为有效数值,第四位为0的个数,第5位为公差(棕±1% 红±2% 绿色±0.5% 兰色±0.25% 紫色±0.1% 2.1.5用途:串联分流,并联分压 2.2 电解电容 2.2.1 表示符号 2.2.2 单位:F(法 uF(微法nF(呐法pF(皮法1F=106uF 1 uF=103 nF=106 pF 2.2.3 产品分类 按结构:固定电容,可变电容,微调电容 按介质:气体介质、液体介质、无机固体介质、有机固体介质 按极性:有极性、无极性 容量及耐压判别方法:直接识别本身标示

2.2.4 用途:隔直流通交流,常用于耦合,滤波去耦等等. 2.3陶瓷电容 2.2.1表示符号 2.2.2单位:同电解电容一样 2.2.3 产品分类:按容量及耐压不同而分类,由薄瓷片两面镀金属膜组成,其作用和电解电容相近2.4 整流二极管 2.4.1 表示符号 2.4.2 单位:以电流的电压来衡量,如多少伏电压,多少安培电流. 2.4.3 产品分类:按电流大小及耐压高低分类. 2.4.4 用途:交流电压转变为直流电压. 2.5 三极管 2.5.1表示符符号 (NPN型 (PNP型 2.5.2单位: 以电流的电压放大倍数(HFE来衡量 2.5.3产品分类

实验7~8:MOSFET模型参数提取

MOSFET模型参数的提取 计算机辅助电路分析(CAA)在LSI和VLSI设计中已成为必不可少的手段。为了优化电路,提高性能,希望CAA的结果尽量与实际电路相接近。因此,程序采用的模型要精确。SPICE-II是目前国内外最为流行的电路分析程序,它的MOSFET模型虽然尚不完善,但已有分级的MOS 1到3三种具一定精度且较实用的模型。确定模型后,提取模型参数十分重要,它和器件工艺及尺寸密切相关。尽管多数模型是以器件物理为依据的,但按其物理意义给出的模型参数往往不能精确的反映器件的电学性能。因此,必须从实验数据中提取模型参数。提取过程也就是理论模型与实际器件特性之间用参数来加以拟合的过程。可见,实测与优化程序结合使用应该是提取模型参数最为有效的方法。 MOS FET模型参数提取也是综合性较强的实验,其目的和要求是: 1、熟悉SPICE-II程序中MOS模型及其模型参数; 2、掌握实验提取MOS模型参数的方法; 3、学习使用优化程序提取模型参数的方法。 一、实验原理 1、SPICE-II程序MOS FET模型及其参数提取 程序含三种MOS模型,总共模型参数42个(表1)。由标记LEVEL指明选用级别。一级模型即常用的平方律特性描述的Shichman-Hodges模型,考虑了衬垫调制效率和沟道长度调制效应。二级模型考虑了短沟、窄沟对阈电压的影响,迁移率随表面电场的变化,载流子极限速度引起的电流饱和和调制以及弱反型电流等二级效应,给出了完整的漏电流表达式。三级模型是半经验模型,采用一些经验参数来描述类似于MOS2的二级效应。 MOS管沟道长度较短时,需用二级模型。理论上,小于8um时,应有短沟等效应。实际上5um以下才需要二级模型。当短至2um以下,二级效应复杂到难以解析表达时,启用三级模型。MOS模型参数的提取一般需要计算机辅助才能进行。有两种实用方法,一是利用管子各工作区的特点,分段线性拟合提取;二是直接拟合输出特性的优化提取。其中,直流参数的优化提取尚有不足之处:优化所获仅是拟合所需的特定参数,物理意义不确,难以反馈指导工艺和结构的设计;只适合当前模型,模型稍做改动,要重新提

多孔介质条件多孔介质模型可以应用于很多问题,如通过充满介质的流动

多孔介质条件 多孔介质模型可以应用于很多问题,如通过充满介质的流动、通过过滤纸、穿孔圆盘、流量分配器以及管道堆的流动。当你使用这一模型时,你就定义了一个具有多孔介质的单元区域,而且流动的压力损失由多孔介质的动量方程中所输入的内容来决定。通过介质的热传导问题也可以得到描述,它服从介质和流体流动之间的热平衡假设,具体内容可以参考多孔介质中能量方程的处理一节。 多孔介质的一维化简模型,被称为多孔跳跃,可用于模拟具有已知速度/压降特征的薄膜。多孔跳跃模型应用于表面区域而不是单元区域,并且在尽可能的情况下被使用(而不是完全的多孔介质模型),这是因为它具有更好的鲁棒性,并具有更好的收敛性。详细内容请参阅多孔跳跃边界条件。 1、多孔介质模型的限制 如下面各节所述,多孔介质模型结合模型区域所具有的阻力的经验公式被定义为“多孔”。事实上多孔介质不过是在动量方程中具有了附加的动量损失而已。因此,下面模型的限制就可以很容易的理解了。 ● 流体通过介质时不会加速,因为事实上出现的体积的阻塞并没有在模型中出现。这对于过渡流是有很大的影响的,因为它意味着FLUENT 不会正确的描述通过介质的过渡时间。 ● 多孔介质对于湍流的影响只是近似的。详细内容可以参阅湍流多孔介质的处理一节。 2、多孔介质的动量方程 多孔介质的动量方程具有附加的动量源项。源项由两部分组成,一部分是粘性损失项 (Darcy),另一个是内部损失项: ∑∑==+=31312 1j j j j ij j ij i v v C v D S ρμ 其中S_i 是i 向(x, y, or z)动量源项,D 和C 是规定的矩阵。在多孔介质单元中,动量损失对于压力梯度有贡献,压降和流体速度(或速度方阵)成比例。 对于简单的均匀多孔介质: j j i i v v C v S ραμ2 12+= 其中a 是渗透性,C2是内部阻力因子,简单的指定D 和C 分别为对角阵1/a 和C2,其它项为零。 FLUENT 还允许模拟的源项为速度的幂率: ()i C C j i v v C v C S 10011-== 其中C_0和C_1为自定义经验系数。 注意:在幂律模型中,压降是各向同性的,C_0的单位为国际标准单位。

动态路径优化算法及相关技术

》本文对在GIS(地理信息系统)环境下求解动态路径优化算法及相关技术 进行了研究。最短路径问题是网络分析中的基本的问题,它作为许多领域中选择 最优值的一个基本却又是一个十分重要的问题。特别是在交通诱导系统中占有重 要地位。本文分析了GIS环境下动态路径优化算法的特点,对GIS环境下城市 路网的最优路径选择问题的关键技术进行了研究和验证。 》考虑现实世界中随着城市路网规模的日益增大和复杂程度不断增加的情况,充分利用GIS 的特点,探讨了通过限制搜索区域求解最短路径的策略,大大减少了搜索的时间。 》另一方面,计算机技术的进步,地理信息系统(GIS)得到了飞速的发展。地理信息系统是采集、存储、管理、检索、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统。它是一种能把图形管理系统和数据管理系统有机地结合起来的信息技术,既管理对象的位置又管理对象的其它属性,而且位置和其它属性是自动关联的。它最基本的功能是将分散收集到的各种空间、非空间信息输入到计算机中,建立起有相互联系的数据库。当外界情况发生变化时,只要更改局部的数据,就可维持数据库的有效性和现实性[3][4],GIS为动态路径优化问题的研究提供了良好的环境。目前GIS带动的产业急剧膨胀,已经应用到各个方面。网络分析作为地理信息系统最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用[5]。文献[6][7]说明了GIS 在城市道路网中的应用情况。而路网分析中基本问题之一是动态路径优化问题。所谓动态路径,不仅仅指一般地理意义上的距离最短,还可以应用到其他的参数,如时间、费用、流量等。相应的,动态路径问题就成为最快路径问题、最低费用问题等。 》GIS因为其强大的数据分析功能、空间分析功能,已被广泛应用于各种系统中与空间信息有密切关系的各个方面.各种在实际中的系统如电力系统,光缆系统涉及到最佳、最短抢修等问题都可以折合到交通网络中来进行分析,故而交通网络中最短路径算法就可以广泛的应用于其它很多的最佳、最短抢修或者报警系统中去[5]。最短路径问题是GIS网络分析功能的应用。最短路径问题可分为单源最短路径问题及所有节点间最短路径问题,其中单源最短路径更具有普遍意义[9]。 》2.1地理信息系统的概念 地理信息系统(Geographical Information System,简称GIS)是一种将空间位置信息和属性数据结合在一起的系统,是一种为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统(1998年,美国国家地理信息与分析中心定义)[4]。这里的空间定位数据是指采用不同方式的遥感和非遥感手段所获得的数据,它有多种数据类型,包括地图、遥感、统计数据等,它们的共同特点都有确定的空间位置。地理信息系统的处理对象是空间实体,其处理过程正是依据空间实体的空间位置和空间关系进行的[25]。地理信息系统的外在表现为计算机软硬件系统,其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。当具有一定地理学知识的用户使用地理空间分析非空间分析等处理工具输入输出GIS数据库信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据。用户可以按照应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能上进行模拟,信息流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。地理学家可以在地理信息系统支持下提取地理系统各个不同侧面、不同层次的空间和时间特征,也可以快速地模拟自然过程演变成思维过程的结果,取得地理预测或“实验”的结果,选择优化方案,用于管理与决策[26]。 一个完整的GIS主要有四个部分构成,即计算机硬件系统、计算机软件系统、地理数据(或空间数据)和系统管理操作人员。其核心部分是计算机系统(硬件和软件),地理数据反映

基于遗传算法的参数优化估算模型

基于遗传算法的参数优化估算模型 【摘要】支持向量机中参数的设置是模型是否精确和稳定的关键。固定的参数设置往往不能满足优化模型的要求,同时使得学习算法过于死板,不能体现出来算法的智能化优点,因此利用遗传算法(Genetic Algorithm,简称GA)对估算模型的参数进行优化,使得估算模型灵活、智能,更加符合实际工程建模的需求。 【关键词】遗传算法;参数优化;估算模型 1.引言 随着支持向量机估算模型在工程应用的不断深入。研究发现,支持向量机算法(包括LS-SVM算法)存在着一些本身不可避免的缺陷,最为突出的是参数的选取和优化问题,以往在参数选取方面,一般依靠专家系统或者设定初始值盲目搜寻等等,在实际应用必然会影响模型的精准度,造成一定影响。如何选取合理的参数成为支持向量机算法应用过程中应用中关注的问题,同时也是目前应用研究的重点。而常用的交叉验证试算的方法,不仅耗时,且搜索目的不清,使得资源浪费,耗时耗力。不能有效的对参数进行优化。 针对参选取的问题,本文使用GA算法对模型中的参数设置进行优化。 2.遗传算法 2.1 遗传算法的实施过程 遗传算法的实施过程中包括了编码、产生群体、计算适应度、复制、交换、变异等操作。图1详细的描述了遗传算法的流程。 其中,变量GEN是当前进化代数;N是群体规模;M是算法执行的最大次数。 遗传算法在参数寻优过程中,基于生物遗传学的基本原理,模拟自然界生物种群的“物竞天则,适者生存”的自然规律。把自变量看作生物体,把它转化成由基因构成的染色体(个体),把寻优的目标函数定义为适应度,未知函数视为生存环境,通过基因操作(如复制、交换和变异等),最终求出全局最优解。 2.2 GA算法的基本步骤 遗传算法操作的实施过程就是对群体的个体按照自然进化原则(适应度评估)施加一定的操作,从而实现模型中数据的优胜劣汰,使得进化过程趋于完美。从优化搜索角度出发,遗传算法可使问题的解,一代一代地进行优化,并逼近最优解。 通常采用的遗传算法的工作流程和结果形式有Goldberg提出的,常用的GA 算法基本步骤如下: ①选择编码策略,把参数集合X和域转换为位串结构空间S。常用的编码方法有二进制编码和浮点数编码。 ②定义合适的适应度函数,保证适应度函数非负。 ③确定遗传策略,包括选择群体大小,选择、交叉、变异方法,以及确定交叉概率、变异概率等其它参数。 ④随机初始化生成群体N,常用的群体规模:N=20~200。 ⑤计算群体中个体位串解码后的适应值。 ⑥按照遗传策略,运用选择、交叉和变异算子作用于群体,形成下一代群体。 ⑦判断群体性能是否满足某一个指标,或者以完成预订迭代次数,若满足则

路径优化的算法

摘要 供货小车的路径优化是企业降低成本,提高经济效益的有效手段,供货小车路径优化问题可以看成是一类车辆路径优化问题。 本文对供货小车路径优化问题进行研究,提出了一种解决带单行道约束的车辆路径优化问题的方法。首先,建立了供货小车路径优化问题的数学模型,介绍了图论中最短路径的算法—Floyd算法,并考虑单行道的约束,利用该算法求得任意两点间最短距离以及到达路径,从而将问题转化为TSP问题,利用遗传算法得到带单行道约束下的优化送货路线,并且以柳州市某区域道路为实验,然后仿真,结果表明该方法能得到较好的优化效果。最后对基本遗传算法采用优先策略进行改进,再对同一个供货小车路径网进行实验仿真,分析仿真结果,表明改进遗传算法比基本遗传算法能比较快地得到令人满意的优化效果。 关键字:路径优化遗传算法 Floyd算法

Abstract The Path Optimization of Goods Supply Car is the effective way to reduce business costs and enhance economic efficiency.The problem of the Path Optimization of Goods Supply Car can be seen as Vehicle routing proble. This paper presents a solution to Vehicle routing proble with Single direction road by Researching the Way of Path Optimization of Goods Supply Car. First, This paper Establish the mathematics model of Vehicle routing proble and introduced the shortest path algorithm-Floyd algorithm, then taking the Single direction road into account at the same time. Seeking the shortest distance between any two points and landing path by this algorithm,then turn this problem in to TSP. Solving this problem can get the Optimize delivery routes which with Single direction road by GA,then take some district in the state City of LiuZhou road as an example start experiment.The Imitate the true result showed that this method can be better optimize results. Finally improving the basic GA with a priority strategy,then proceed to imitate the true experiment to the same Path diagram. The result expresses the improvement the heredity calculate way ratio the basic heredity calculate way can get quickly give satisfaction of excellent turn the result. Keyword: Path Optimization genetic algorithm Floyd algorithm

相关文档
最新文档