有机小分子太阳能电池材料与器件(陈永胜等 编著)思维导图

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

太阳能电池板原理(DOC)

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。 一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。

制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

太阳能光伏电池新技术一览

太阳能光伏电池新技术一览 不管是何种太阳能电池的研发与创新,提高太阳能电池转换效率、降低太阳能光伏电池生产成本是所有电池生产企业及研发机构关注的核心问题。 现阶段,太阳能光伏电池行业传来不少新型电池成功研发的喜讯,既有工艺技术上的变革、也有制造材料上的创新。真可谓是百花齐放、百舸争流。受中国电池网(https://www.360docs.net/doc/5f10977121.html,)授权,下面给大家总结下新的太阳能光伏电池研发成果,让感兴趣的朋友们能更深入的了解到现今的太阳能光伏电池技术的发展。 1.喷墨打印技术降低铜铟镓硒太阳能光伏电池 传统的太阳能光伏电池生产技术通常非常耗时,并且需要使用昂贵的真空系统和有毒的化学物质。使用气象沉积沉淀化合物,如铜铟镓硒(CIGS),会损失大量昂贵的材料。俄勒冈州立大学的工程师首次研发出一种通过喷墨打印技术制造铜铟镓硒太阳能光伏电池的方法。这个方法可以减少90%原材料损耗,大幅降低了使用昂贵化合物生产太阳能光伏电池的成本。 研究者发明了一种墨,能够将黄铜矿打印在基片上,打印出的成品能量转化效率为5%。虽然,这个转化效率还无法满足商用,但研究者表示他们在接下来的研究中有望将转换率提高到12%。 工程师们正在研究其他更为便宜、可用于喷墨技术的化合物。他们称,如果这些材料能够降低足够的成本,直接在屋面材料上安装太阳能电池将成为可能。 2.单晶多晶混合太阳能光伏电池 中国太阳能电池生产商尚德电力(SuntechPower)研发出新型混合太阳能光伏电池,可以有效降低太阳能光伏发电成本10%到20%。这种电池由70%的单晶硅和30%的多晶硅构成。单晶多晶混合硅片的造价成本只是传统单晶硅硅片的一半。由于硅片只占太阳能总体成本的一部分,所以从整体上来看,有助于降低太阳能发电成本10%-20%。 尚德电力首席技术官StuartWenham表示,将很快实现该产品的规模化生产。 3.全光谱太阳能光伏电池 近日报道,加拿大科学家表示,他们研发出了一款新式的全光谱太阳能光伏电池,其不但可以吸收太阳发出的可见光,也可以吸收不可见光,从理论上讲,转化效率可高达42%,超过现有普通太阳能光伏电池31%的理论转化率。研究发表在最新一期的《自然·光子学》杂志上。 此款基于胶体量子点(CQD)的高效串接太阳能光伏电池由加拿大首席纳米技术科学家、多伦多大学电子与计算机工程系教授泰德·萨金特领导的科研团队研制而成。论文主要作者王希华(音译)表示,该太阳能光伏电池由两个吸光层组成:一层被调制用于捕捉太阳发出的可见光;而另外一层则可以捕捉太阳发出的不可见光。 萨金特希望,在5年内,将这款新的分级重组层太阳能光伏电池整合入建筑材料、手机和汽车零件中。 4.量子阱太阳能光伏电池 在西雅图举行的第37届IEEE光伏专家会议上,MagnoliaSolar的首席技术官RogerE.Welser博士做了有关InGaAs量子阱太阳能光伏电池的报告,MagnoliaSolar刷新了该类太阳能光伏电池的电压记录。 “通过把窄带隙量子阱嵌入宽带隙材料中,量子阱结构太阳能光伏电池吸收光谱更宽,同时吸收高能光子的能量损失更小。”MagnoliaSolar的董事长兼首席执行官AshokK.Sood博士表示,”单结量子阱太阳能光伏电池在非聚光条件下的理论转化效率高达45%。” 5.可挠式非晶硅太阳能光伏电池 日本媒体近日报导,TDK已研发出一款可挠式太阳能电池,藉由光学设计的改良,该款太阳能光伏电池在屋外阳光下的转换率已自现行的4.5%提升至7%的水准,TDK并计画于今(2011)年夏天透过甲府工厂量产该款太阳能光伏电池。据报导,该款太阳能电池为采用薄膜基板的非晶硅(amorphoussilicon)太阳能光伏电池。

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

导电高分子材料在太阳能电池方面的应用

导电高分子材料在太阳能电池方面的应用 高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料。除一般的结构材料外,一些高分子材料还具有光电磁等性能。下面,本文将对导电高分子材料在太阳能电池方面的应用作一下介绍。 太阳能是取之不尽用之不竭的清洁能源,将太阳能转换成电能的太阳电池成为各国科学界研究的热点和产业界开发的重点。聚合物薄膜太阳能电池较已经发展的较为成熟并且商品化了的硅电池、薄膜无机电池以及染料敏化电池,有着成本低、重量轻、制作工艺简单、可制备成柔性器件等突出优点,另外聚合物材料种类繁多,可设计性强,有希望通过结构和材料的改性来提高太阳电池的性能。因此,这类太阳电池具有重要发展和应用前景。 聚合物材料在太阳能电池上的应用包括作为给体材料,受体材料,空穴传输层材料已经柔性电极,在此,我们只对其作为给体材料做简单介绍。 在太阳能电池中有几个非常重要的表征参数:PCE(光电转换效率)、Voc(开路电压)、Jsc(短路电流)、FF(填充因子)。而这些参数与聚合物的吸收光谱、电荷载流子密度、电子能级、溶解性以及聚集和形貌有着密切关系。首先,我们希望共轭聚合物材料在可见-近 红外区应该具有宽而强的吸收,从而有利于Jsc的提高;另外,我们需要给体材料有高的空穴迁移率,受体材料有高的电子迁移率,并且

尽量保证空穴电子传输平衡;因为给体和受体的LUMO能级差必须满足一定条件才能实现激子分离,而且受体的LUMO和给体的HOMO 能级差值决定电池的Voc,所以在保证较窄的带隙和激子的有效电荷分离的前提下,适当降低给体的HOMO能级或提高受体的LUMO能级可以提高聚合物太阳能电池的Voc,从而提高电池的能量转换效率。因为这种电池的活性层是由给/受体的混合溶液涂膜制备的,因此给体和受体材料都需要有好的溶解性和成膜性。最后,给体和受体的适度聚集可以增强材料对材料对太阳光的吸收和提高载流子传输性能,但过度聚集会影响给/受体的互穿网络结构的形成,从而影响激子解离,所以我们希望给体和受体光伏材料具有适度的聚集和优化的互穿网络结构的性能。下面将基于以上几点对以下具体的聚合物材料做介绍。 一、p-型共轭聚合物作为给体光伏材料 1、聚噻吩衍生物 聚噻吩在导电聚合物和共轭聚合物光电子材料方面都占有重要 地位。在掺杂导电聚合物方面,聚噻吩与聚吡咯和聚苯胺一起是研究得最多的导电聚合物材料。尤其值得指出的是,得到商品化应用的透明导电聚合物PEDOT:PSS(被广泛应用于聚合物发光二极管和聚合物太阳电池的阳极修饰层、透明防静电涂层和导电聚合物的固体电容器中)就是一种聚噻吩衍生物。高导电的PEDOT:PSS也被用作柔性透明导电电极材料。 2002年,Alivisatos等在研究共轭聚合物、CdSe半导体纳米棒杂

太阳能电池的工作原理、工作效率、制造太阳能的材料及大致构造

引言太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染;4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCV D)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和

太阳能电池材料的研究现状及未来发展

太阳能电池材料的研究现状及未来发展 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽E:应在1.1eV-13W之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产. 1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后10多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量己经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为 今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1.不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等儿大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1晶体硅太阳电池 晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的. 2硅基薄膜太阳电池 多晶硅(ploy-Si)薄膜和非晶硅(a-Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对 厚,材料的需求量大大减少,沉积温度低(约200'C),阳光的吸收系数高,活性层只有1m 可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长

最新北师大版七年级数学上册第四单元基本平面图形知识点

第四章:基本平面图形 知识梳理 一、线段、射线、直线 1、线段、射线、直线的定义 (1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。 (2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。 (3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。 : 联系:射线是直线的一部分。线段是射线的一部分,也是直线的一部分。 2、点和直线的位置关系有两种: ①点在直线上,或者说直线经过这个点。 ②点在直线外,或者说直线不经过这个点。 3、直线的性质 (1)直线公理:经过两个点有且只有一条直线。简称两点确定一条直线。 (2)过一点的直线有无数条。 (3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 (4)直线上有无穷多个点。 (5)两条不同的直线至多有一个公共点。 4、线段的比较 (1)叠合比较法(用圆规截取线段);(2)度量比较法(用刻度尺度量)。 5、线段的性质 (1)线段公理:两点之间的所有连线中,线段最短。 (2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 (3)线段的中点到两端点的距离相等。 (4)线段的大小关系和它们的长度的大小关系是一致的。 6、线段的中点:如果线段上有一点,把线段分成相等的两条线段,这个点叫这条线段的中点。 若C 是线段AB 的中点,则:AC=BC= 2 1 AB 或AB=2AC=2BC 。 二、角 1、角的概念: (1)角可以看成是由两条有共同端点的射线组成的图形。两条射线叫角的边,共同的端点叫角的顶点。 (2)角还可以看成是一条射线绕着它的端点旋转所成的图形。 2、角的表示方法: 角用“∠”符号表示,角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B ,∠C 等。 C

能源产业中的高分子之聚合物太阳能电池

能源产业中的高分子之聚合物太阳能电池 刘大柯 摘要由于环境污染和能源危机日益加重,太阳能在能源产业中异军突起,成为能源领域的新星。太阳能是一种理想的新能源,清洁、干净、无污染,其储量巨大,取之不尽,用之不竭,充满了诱人的前景。将太阳能转换为电能是解决环境污染和能源危机的重要途径之一,因此各类太阳能电池的研发和推广在世界各国备受关注。在目前商品化的太阳能电池市场中,尽管无机晶体硅太阳能电池占据主导地位,但聚合物太阳能电池因其独特的优势已成为太阳能电池研发的重要方向之一。柔性聚合物太阳能电池具有质轻、制作工艺简单、成本低等特点,现已成为近年太阳能利用方面研究的热点。有机太阳能电池是实现将太阳能直接转变为电能的最有前景的器件之一。文章综述了聚合物太阳能电池的基本原理,器件构型,电池材料及制备工艺,最后对柔性光伏器件的应用前景和商业化趋势进行了展望。 关键词能源聚合物太阳能电池工作原理给体受体 0.引言 新世纪以来,随着我国国民经济的快速发展,能源消费总量也在急速增长2011年我国能源消费总量已达34.8×108t标准煤[1],与美国相当。。庞大的能源消费总量给我国的“能源安全供应体系”和“环境保护工作”带来了沉重的压力。一方面,由于自有能源不能满足消费需求,我国有大量能源需要从国外进口,据海关总署统计,2011年我国石油和煤炭的进口量分别达到2.53×108t和1.82×108t[2],能源供应的整体“对外依存度”较高。另一方面,在我国能源消费结构中,近90%是传统化石能源[3]。这些化石能源在燃烧利用过程中向大气层及自然环境排放大量的温室气体、有毒有害物质和粉尘,严重影响了人们的生命安全和健康。当前,探索和开发其他新兴能源利用方式,解决日益严重的能源短缺和环境污染等问题,成为我国社会各界共同关注的话题。 在诸多新兴能源利用方式中,太阳能光伏发电被认为是最有前途的方式之一。然而目前占主导地位的光伏技术主要基于无机硅材料,其高昂的材料制备成本以及高能耗的加工工艺限制了它的广泛应用,并且其生产过程中的产生的大量副产物四氯化硅对于环境污染极大。聚合物太阳能电池制造成本低廉、材料质量轻、加工性能好,可以利用先进的卷对卷以及喷涂打印技术进行大规模生产,并具有柔性,可以加工成为半透明器件,易于携带,生产过程中能耗低,环境污染少[4],因此其具有更加广阔的应用前景。

柔性薄膜太阳能电池的研究进展

硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY 柔性薄膜太阳能电池的研究进展 李荣荣1,赵晋津1,司华燕1,边志坚2 马辉东2,丁占来1,3 (1.石家庄铁道大学材料科学与工程学院, 石家庄050043;2.晶龙实业集团有限公司,河北邢台055550; 3.石家庄铁道大学交通工程材料重点实验室,石家庄050043 ) 摘要:本文综述了柔性薄膜太阳能电池的研究现状、发展趋势及其应用前景,分别就柔性衬底材料、硅系薄膜太阳能电池、铜铟镓硒(CIGS)薄膜太阳能电池、铜锌锡硫(CZTS)、染料敏化太阳能电池(DSSCs)、有机太阳能电池和新型纳米材料太阳能电池进行了介绍。卷对卷以及喷墨印刷法等非真空大面积制备柔性薄膜太阳能电池的工艺,为低成本生产此类太阳能电池打开了希望之门,最后对其发展遇到的挑战进行了展望。 关键词:柔性薄膜;太阳能电池;卷对卷印刷;喷墨印刷;柔性衬底 中图分类号:TB34文献标识码:A 文章编号: 网络出版时间:网络出版地址: Development of flexible thin film solar cells LI Rongrong1, ZHAO Jinjin1, SI Huayan1, BIAN Zhijian2, MA Huidong2, DING Zhanlai1,3 (1 School of Materials Science and Engineering, Shijiazhuang Tiedao University, ShiJiaZhuang 050043,China; 2 Jinglong Industry and Commerce Group Co.Ltd. , XingTai 055550, China 3 The Key Laboratory of Transportation Engineering Materials, Shijiazhuang Tiedao University, ShiJiaZhuang 050043, China ) Abstract: Recent development and application of the flexible thin film solar cells were reviewed. The flexible substrate materials, silicon thin film photovoltaics, copper–indium–gallium–selenium(CIGS) chalcogenides thin film solar cells, Cu2ZnSnS4 (CZTS)-based thin film solar cells, dye sensitized solar cells, polymer solar cells and nanomaterial solar cells were introduced, respectively. The roll-to-roll process and the ink-jet printing technology to product the flexible thin film solar cell in non-vacuum route could be promising for a large scale production of these solar cells at low costs. In addition, future studies and challenges of the production of flexible thin film solar cells are also prospected. Key words: flexible thin film; solar cell; roll to roll process; ink-jet printing; flexible substrate 能源与环境问题是人类社会发展必须面对的问题,煤炭、石油、天然气等化石能源在地球上的储量是有限度的,迟早有耗尽的时候。而太阳能是取之不竭用之不尽的。基于半导体光伏效应原理的太阳能电池是太阳能利用的有效方式之一。目前,以玻璃硬性材料为衬底的单晶硅与多晶硅太阳能电池占生产量的绝大多数,但是其本身制造过程的高能耗与高真空条件使其发电成本较高,而且其容易破碎、不可弯曲等特点限制了某些应用场合,光 收稿日期:修订日期: 基金项目:河北省高校重点学科建设项目资助(HBJG2013-4) 第一作者:李荣荣(1988—),女,硕士研究生。 通信作者:丁占来(1964—),男,硕士,教授。 电转化效率也有待进一步提高[1]。薄膜太阳能电池属于新一代太阳能电池,按照衬底的种类可分为硬衬底和柔性衬底两大类。所谓柔性衬底薄膜太阳能电池是指在柔性材料(如不锈钢、聚酯膜等)上制作的薄膜太阳能电池,与晶体硅片太阳能电池和硬衬底(如玻璃)薄膜太阳能电池相比,柔性薄膜太阳能电池具有可弯曲、不易破碎、质量轻、应用广泛等特点,新的无机和有机太阳能材料的研究,新型太阳能电池结构的探索,卷对卷(roll-to-roll)的 Received date:Revised date:. First author:LI Rongrong(1988–), fe male,Master candidate. E-mail:rr20081988@https://www.360docs.net/doc/5f10977121.html, Correspondent author:DING Zhanlai(1964–),male,Master,Professor. E-mail: zl ding@https://www.360docs.net/doc/5f10977121.html, 印刷生产工艺以及喷墨印刷(Ink-Jet Printing)为柔

太阳能电池介绍

太阳能电池简介 一、太阳能电池及发电原理 太阳能电池是利用太阳光和材料相互作用直接产生电能的器件。能产生光伏效应的材料有许多种,如:硅系材料(单晶硅、多晶硅、非晶硅),化合物半导体(砷化镓、硒铟铜)等,它们的发电原理基本相同。 发电原理:太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p 区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 二、太阳能电池材料发展历程 太阳能电池材料的发展历程可以分为以下三个阶段。 第一代太阳能电池:包括单晶硅太阳电池和多晶硅太阳电池,从1954年单晶硅太阳电池发明开始到现在,硅材料仍然是目前太阳能电池的主要材料,约占整个太阳能电池产量的90%。 第二化太阳能电池:是基于薄膜材料的太阳能电池,薄膜技术所需的材料较晶体硅太阳电池少得多,且易于实现大面积电池的生产,是一种有效降低成本的方法,薄膜电池主要有非晶硅薄膜电池、多晶硅薄膜电池、碲化镉及铜铟硒薄膜电池。 第三代太阳能电池:具有薄膜化、转换效率高、原料

丰富且无毒的特性。目前还在进行概念和简单的试验研究,已经提出的第三代太阳能电池主要有叠层太阳电池、多带隙太阳电池和热载流太阳电池等。 三、太阳能电池主要分类 目前太阳能电池主要包括晶体硅电池和薄膜电池两种,它们各自的特点决定了它们在不同应用中拥有不可替代的地位。晶硅电池依旧是太阳能电池的主流,主要应用于太阳能屋顶电站、商业电站和高土地成本的城市电站,是目前技术最成熟、应用最广泛的太阳能光伏产品,占据世界光伏市场80%以上的份额,未来10年晶体硅太阳能电池所占份额尽管会因薄膜太阳能电池的发展等原因而下降,但其主导地位仍不会根本改变;薄膜电池虽然生产材料价格低廉,但一条先进的25MW生产线制造设备动辄花费近10亿元人民币,几乎20倍于同等规模晶硅电池制造设备的投资,这在一定程度上限制了薄膜电池生产的扩大。如果能够解决转换效率不高、制备薄膜电池所用设备价格昂贵等问题,薄膜电池会有巨大的发展空间。 1、单晶硅太阳能电池 是以高纯的单晶硅棒为原料的太阳能电池,是当前开发得最快的一种太阳能电池。它的构造和生产工艺已定型,产品已广泛用于空间和地面。制造工艺:将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过抛磨、清洗等工序,制成

七年级数学上册第四章基本平面图形

第四章基本平面图形 第一节线段、射线和直线 【学习目标】 1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系. 2.通过直线、射线、线段概念的教学,培养几何想象能力和观察能力,用运动的观点看待几何图形.3.培养对几何图形的兴趣,提高学习几何的积极性. 【学习重难点】重点:直线、射线、线段的概念. 难点:对直线的“无限延伸”性的理解. 【学习方法】小组合作学习 【学习过程】 模块一预习反馈 一、学习准备 1.请同学们阅读教材,并完成随堂练习和习题 2.(1)绷紧的琴弦、人行横道线都可以近似地看做。线段有端点。 (2)将线段向一个方向无限延长就形成了。射线有端点。 (3)将线段向两个方向无限延长就形成了。直线端点。 3.线段射线和直线的比较 概念图形表示方法向几个方向延伸端点数可否度量 线段 射线 直线 4.点与直线的位置关系 点在直线上,即直线点;点在直线外,即直线点。 5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。 二、教材精读 6.探究:(1)经过一个已知点A画直线,可以画多少条? 解: (2)经过两个已知点A、B画直线,可以画多少条? 解: (3)如果你想将一根细木条固定在墙上,至少需要几枚钉子? 解: 归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”) 实践练习:如图,已知点A、B、C是直线m上的三点,请回答 A B C m (1)射线AB与射线AC是同一条射线吗? (2)射线BA与射线BC是同一条射线吗? (3)射线AB与射线BA是同一条射线吗? (4)图中共有几条直线?几条射线?几条线段? 分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸 解: 三、教材拓展 7.已知平面内有A,B,C,D四点,过其中的两点画一条直线,一共能画几条? 分析:因题中没有说明A,B,C,D四点是否有三点或四点在同一直线上,所以应分为三种情况讨论 解: 实践练习:如图,图中有多少条线段?

新型纳米晶太阳能电池介绍

新型纳米晶太阳能电池介绍 南京大学已开发出的新型可见光响应型复合氧化物半导体制备光电极来开发新型可见光响应型太阳电池,在不使用有机染料条件下其太阳光转换率己达到1.0%;从根本上解决了染料敏化太阳电池寿命低且不稳定的弱点。本课题组最新研究结果表明,由多种新型可见光响应型复合氧化物半导体制备的光电极配以少量的染料来敏化电极可获得更高的电流(Jsc)和电压(V oc)而不会影响新型可见光响应型太阳电池的寿命。这是世界上第一次可见光响应型太阳电池的研究。 我们的研究目标是开发新型,高效,低成本的可见光响应型太阳能电池。优化构成新型太阳能电池的各个要素的性能,找出最佳值。最后利用锂离子电池良好的充放电特性将新型可见光响应型太阳能电池产生的电能储存起来。三年后的开发目标为转换效率11%,十年后转换效率提高至15%。力争实现整体生产计划成本4-5元/Wp的目标。最终实现成本3元/Wp 以下的目标。进一步完善新一代太阳能发电技术及储能系统研究的理论和试验体系,为我国提供无尽的能源储备,为我国高技术产业提供具有自主知识产权的高效率、低价格的光转换器件等一系列新产品以及相关的新材料和新技术。 染料敏化太阳电池由染料敏化剂、宽带隙半导体、氧化还原电解质和对电极四个部分构成。目前染料敏化太阳电池的最高能量转化效率为11%,由钌联吡啶配合物、二氧化钛、I-/I3-电对和铂对电极获得。染料敏化太阳电池的效率已经达到了传统的硅半导体电池的水平,与后者相比,前者的制作工艺简单,成本低廉,应用前景更加光明。在硅电池中,半导体硅承担三个重要功能,即吸收光线,承受电子与空穴分离所需的电场,电子的传输。因为同时高效执行这三项任务,半导体材料的纯度必须非常高,这就是基于硅的太阳电池成本昂贵,不能与传统发电方法进行商业竞争的主要原因。相反,染料敏化太阳电池的四个组成部分分别执行不同的功能,对各个部分可以从效率和成本两个方面分别进行优化,降低成本和提高效率的空间很大。 染料敏化太阳电池是由瑞士化学家Michael Gr?tzel首先提出的,他们研究小组可以获得大于10%的效率。我们是除了Gr?tzel研究组以外第一个获得效率大于或者等于10%的研究团体,具有丰富的电池制作和效率优化技术。在染料敏化太阳电池中,由于TiO2本身不能吸收可见光领域的能量(Eg<3.2eV),完全依赖有机染料(光敏染料)来提高吸收太阳光中的可见光。然而有机染料易老化耐热性差,因此带给染料敏化太阳电池寿命低且不稳定等弱点。另外染料的使用使电子跃迁过程复杂,加上和宽带半导体有能级匹配上的困难,降低了光电转化效率,又由于染料的大量使用加大了电池的成本,严重阻碍了其实际的应用。在这种现状下,我们从可见光响应型光电极入手,利用可见光响应型光电极来直接进行光电转化。在世界上首次进行了新型可见光响应型太阳电池的研究,首次成功合成了在可见光领域有活性的氧化物半导体光催化剂,从根本上解决了可见光响应型光电极材料。这一成果已于2001年末在科学界最有影响的杂志Nature上发表(附件),海外媒体对此作了广泛的报道(见附件)。 本课题组用已开发出的这些新型可见光响应型复合氧化物半导体制备光电极来开发新型可见光响应型太阳电池,在不使用有机染料条件下其太阳光转换率己达到1.0%;从根本上解决了染料敏化太阳电池寿命低且不稳定的弱点。本课题组最新研究结果表明,由多种新型可见光响应型复合氧化物半导体制备的光电极配以少量的染料来敏化电极可获得更高的电流(Jsc)和电压(V oc)而不会影响新型可见光响应型太阳电池的寿命。

思维导图在地理学科教学中的应用研究(结题报告)

思维导图在地理学科教学中的应用 研究(结题报告) 《思维导图在地理学科教学中的应用研究》结题报告负责人:李巍巍摘要:高中学生面对无限的知识和有限的时间,知识学的越多,笔记记得越多,思维反而更加混乱。在这个知识和信息时代,让学生具备学习的愿望、兴趣和方法,比记住一些知识更为重要。本课题通过自主学习、合作探究、成果展示等不同的学习手段和方法,注重培养学生的逻辑思维能力,寻找知识之间的联系,建构知识体系和网络,并将其转化为思维导图。在提高学生自主学习能力的同时,学会将思维导图的方式尽可能多的应用于生活和学习的各方面,从而提高学习和生活的效率。关键词:思维导图联想创造地理学习一、问题的提出背景:思维导图是20世纪70年

代初,英国学者东尼·博赞在研究人类学习的本质过程中,发现协同运用人类学习过程中的各种思维技巧,能够提高思维的效率,同时他又受到达芬奇所做的有关笔记的启发,不断研究脑科学,心理学,神经生理学,语言学,神经语言学,信息论,记忆技巧,理解力和创意思考及一般科学,形成了思维导图的初步设想。此后东尼·博赞将其运用于训练一群被成为“学习障碍者”“阅读能力丧失”的族群,这些平时被称为失败者或曾被放弃的学生能够很快变成好学生,甚至可以使部分同学成为佼佼者。1971年东尼·博赞开始将他的研究成果集结成书,慢慢形成了放射性思考和思维导图的概念。意义:人类从一出生即开始累积这些庞大且复杂的数据库,大脑惊人的储存能力使我们累积了大量的资料。思维导图是一种放射性状的辐射性思维表达方式,是一种将放射性思考具体化的方法,是一种非常有用的图形技术,是打开大脑潜能的万能钥匙,可

以应用于生活的各个方面,将提升思考技巧,大幅增进记忆力,组织力与创造力。高中地理本身是具有原理性、联系性的,可以利用这些符号连接来让学生很快记住高中地理的知识点,每个同学的头脑中就像有很多幅美妙的动画一样,从而减轻学生负担,使得每个学生很容易的掌握高中地理知识。教师在教学过程中借助思维导图这一思维技术,利用思维导图的有关软件,通过对众多知识点的自组合或建构多种方案,培养和训练学生的创新思维,树立全局的观念,提高教学效率以及深化教学方法的改革提供最有力的工具;在教学过程中,通过运用思维导图技术,从而提高教学能力和教学效率。 1 本课题研究旨在通过分析国内外思维导图研究的基础上,依据现代学习理论、教学设计理论和新课程教育教学理念,探索在不同类别的地理教学中运用思维导图,以及运用思维导图对学生认知结构、学习兴趣、学习思维的影响,以期能更

相关文档
最新文档