同济大学—年数值分析测试题

同济大学—年数值分析测试题
同济大学—年数值分析测试题

同济大学2016— 2017年数值分析测试题一一回忆版

(总体较简单)

1.二次插值多项式拟合函数

1 2 0 0 0

2 5 2 0 0

2?已知矩阵A 0 3 8 4 0用克洛特分解A LU( L为下三角,U为单位

0 0 4 10 4

0 0 0 5 12

上三角)

3.已知:

用最小二乘法拟合形如a&刑寸)的函数

1

4.( 1)指出积分公式f(x)dx f(0.5)的代数精度

1

(2)由(1),将区间四等分,用复合积分公式求解e x2dx

5.用牛顿法求詔的近似值,要求精度|x「X k | 10 4

X1 X2 X3 1

6. 已知线性方程组:X1 2x2 X3 0

x1x26X3 1

(1)写出超松弛(SOR)迭代格式,0.5 ;

(2)取初值x(0)(0,0,0) T,根据上述迭代格式求x⑴;

(3)判断超松弛迭代格式的收敛性,并说明理由。

(以下为编程题)

7. 写程序,要求向量v的最大按摸分量vi,并指出vi在v中的位置

function [vi,itd]=maxanmo (v)

1

8编程,按迭代公式x k 1 x k— (b Ax k)求解方程Ax b,要求满足:

10

|| X k 1 X k || 0.5 10 4

fun ctio n x=ide4(A,b)

9.已知h 0.001,按欧拉方法求解初值问题

dy x

y e

dx ,0 x 10

y(0) 1

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

(完整word版)同济大学线性代数期末试卷全套试卷(1至4套)

《线性代数》期终试卷1 ( 2学时) 本试卷共七大题 一、填空题(本大题共7个小题,满分25分): 1.(4分)设阶实对称矩阵的特征值为, , , 的属于的特征向量是 , 则的属于的两个线性无关的特征向量是 (); 2.(4分)设阶矩阵的特征值为,,,, 其中是的伴随 矩阵, 则的行列式(); 3.(4分)设, , 则 (); 4.(4分)已知维列向量组所生成的向量空间为,则的维数dim(); 5.(3分)二次型经过正交变换可化为 标准型,则();

6.(3分)行列式中的系数是(); 7.(3分) 元非齐次线性方程组的系数矩阵的秩为, 已知是它的个 解向量, 其中, , 则该方程组的通解是 ()。 二、计算行列 式: (满分10分) 三、设, , 求。 (满分10分) 四、取何值时, 线性方程组无解或有解?有解时求出所有解(用向量形式表示)。

(满分15分) 五、设向量组线性无关, 问: 常数满足什么条件时, 向量组 , , 也线性无关。 (满分10分) 六、已知二次型, (1)写出二次型的矩阵表达式; (2)求一个正交变换,把化为标准形, 并写该标准型; (3)是什么类型的二次曲面? (满分15分) 七、证明题(本大题共2个小题,满分15分): 1.(7分)设向量组线性无关, 向量能由线性表示, 向量 不能由线性表示 . 证明: 向量组也线性无关。 2. (8分)设是矩阵, 是矩阵, 证明: 时, 齐次线性方程组 必有非零解。

《线性代数》期终试卷2 ( 2学时) 本试卷共八大题 一、是非题(判别下列命题是否正确,正确的在括号内打√,错误的在括号内打×;每小题2 分,满分20 分): 1. 若阶方阵的秩,则其伴随阵 。() 2.若矩阵和矩阵满足,则 。() 3.实对称阵与对角阵相似:,这里必须是正交 阵。() 4.初等矩阵都是可逆阵,并且其逆阵都是它们本 身。() 5.若阶方阵满足,则对任意维列向量,均有 。()

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

同济大学期末考试试卷A卷

同济大学期末考试试卷( A 卷) 2005 学年——2006 学年第二学期 课程名《物流与供应链管理》 学号姓名成绩 一、简答题(6%×7=42%) 1.简述供应链及供应链管理的含义。 答:供应链是围绕核心企业,通过对信息流、物流、资金流的控制,从采购原材料开始,制成中间产品以及最终产品,最后由销售网络把产品送到消费者手中的将供应商、制造商、分销商、零售商直到最终用户连成一个整体的功能网链结构模式。 供应链管理是指对供应商、制造商、物流者和分销商等各种经济活动,有效开展集成管理,以正确的数量和质量,正确的地点,正确的时间,进行产品制造和分销,提高系统效率,促使系统成本最小化,并提高消费者的满意度和服务水平。 2.简述获取供应链战略匹配的基本步骤。 答:获取供应链战略匹配的3个基本步骤如下: (1)理解顾客。首先,公司必须理解每一个目标顾客群的顾客需要,它能帮助公司确 定预期成本和服务要求。 (2)理解供应链。供应链有很多种类型,每一种都设计用来完成不同的任务。公司必 须明确其供应链设计用来做什么。 (3)获取战略匹配。如果一条供应链运营良好,但与预期顾客需要之间不相匹配,那 么,公司或者重新构建供应链以支持其竞争战略,或者改变其竞争战略,以适应供应链。 3.总体计划的制定应权衡哪些因素?相应的总体计划战略内涵是什么? 答:通常来说,计划者要进行的基本权衡有如下几个:

?生产能力(规定时间、加班时间和转包生产时间) ?库存 ?库存积压或失去的销售额 在三种成本之间权衡,可以得到以下三种总体计划战略: (1)追逐战略——当需求变动时,通过改变机器的生产能力或雇用或解雇劳动力,使 生产率和需求率保持一致。适用于库存成本高而改变生产能力和工人人数的成本低的情形。 (2)工人人数或生产能力的弹性时间战略——将利用率作为杠杆。劳动力和生产能力 不变,通过运用不同的加班量或弹性时间表来达到生产与需求的一致。适用于库存成本很高或改变生产能力的代价较小的情形。 (3)水平战略——将库存作为杠杆。在这种战略中,机器生产能力和劳动力人数保持 着一个稳定的产出率,通过保持相应的库存量来应对需求的变化。这种情形下生产与需求不协调,导致库存水平高、积压产品多,适用于库存成本和积压产品成本相对较低的情形。 4.在某一时期进行商业促销,这个时期的需求量通常会上升。请问上升的需求量是由哪些原因造成的? 答: (1)市场增长——指新老客户对该促销产品的消费的增加; (2)抢占市场分额——指顾客用某公司的促销产品来代替对另一家公司的相同产品 的购买; (3)提前消费——指顾客将未来的消费转到当前进行消费。 5.回购合同是如何有助于生产商提高其自身收益以及整条供应链受益的? 答:回购合同的含义是生产商通过承诺以低于进货的价格买回销售季节结束时所有剩余商品,从而增加零售商进货的数量。 这一措施的作用是,增加零售商每件剩余产品的残价,从而提高零售商的订货量。虽然生产商承担了一些库存积压的费用,但是有可能从中受益,因为从平均来看整条供应链最终会受出更多的产品。

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

数值分析试卷及其答案1

1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知6 5.0102 1 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620*2102 1 ,6,0,10325413.0-?= -=-=?=ε绝对误差限n k k X 2分 2. 已知?? ???=0 01 A 220- ?????440求21,,A A A ∞ (6分) 解: {}, 88,4,1max 1==A 1分 {}, 66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=0 1 A A T 4 2 ???? ? -420?????0 01 2 20 - ???? ?440= ?????0 01 80 ???? ?3200 2分 {}32 32,8,1max )(max ==A A T λ

1分 24322==A 3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (0,1……)产生的序列{}k x 收敛于 2 解: ①迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3 分 ②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-= a a x a x ?? 3分 4. 给定线性方程组,其中:?? ?=13A ?? ?2 2,?? ? ???-=13b 用迭代公式 )()()()1(k k k Ax b x x -+=+α(0,1……)求解,问取什么实数α ,可使 迭代收敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --???--=-=ααααα21231A I B 2分

数值分析试题A卷10.1

中国石油大学(北京)2009--2010学年第一学期 研究生期末考试试题A (闭卷考试) 课程名称:数值分析 注:计算题取小数点后四位 一、填空题(共30分,每空3分) 1、 已知x =是由准确数a 经四舍五入得到的近似值,则x 的绝对误差 界为_______________。 2、数值微分公式()() '()i i i f x h f x f x h +-≈ 的截断误差为 。 3、已知向量T x =,求Householder 变换阵H ,使(2,0)T Hx =-。 H = 。 4、利用三点高斯求积公式 1 1 ()0.5556(0.7746)0.8889(0)0.5556(0.7746)f x dx f f f -≈-++? 导出求积分 4 0()f x dx ?的三点高斯求积公式 。 5、4 2 ()523,[0.1,0.2,0.3,0.4,0.5]_____.f x x x f =+-= 若则 6、以n + 1个互异节点x k ( k =0,1,…,n ),(n >1)为插值节点的 Lagrange 插值基函数为l k (x)( k =0,1,…,n ),则 (0)(1)__________.n k k k l x =+=∑ 7、已知3()P x 是用极小化插值法得到的cos x 在[0,4]上的三次插值多项式,则3()P x 的 截断误差上界为3()cos ()R x x P x =-≤_________.

8、已知向量(3,2,5)T x =-,求Gauss 变换阵L ,使(3,0,0)T Lx =。L =_________. 9、设3 2 ()(7)f x x =-, 给出求方程()0f x =根的二阶收敛的迭代格式_________。 10、下面M 文件是用来求解什么数学问题的________________________. function [x,k]=dd (x0) for k=1:1000 x=cos (x0); if abs(x-x0)<, break end x0=x; end 二、(15分)已知矛盾方程组Ax=b ,其中11120,1211A b ???? ????==???????????? , (1)用施密特正交化方法求矩阵A 的正交分解,即A=QR 。 (2)用此正交分解求矛盾方程组Ax=b 的最小二乘解。 三、(10分)已知求解线性方程组Ax=b 的分量迭代格式 1 (1) (1) ()1 +1 /, 121,,i n k k k i i ij j ij j ii j j i x b a x a x a i n n -++===-- =-∑∑(),, (1)试导出其矩阵迭代格式及迭代矩阵; (2)若11a A a ?? = ??? ,推导上述迭代格式收敛的充分必要条件。 四、(15分)(1)证明对任何初值0x R ∈,由迭代公式11 1sin ,0,1,2, (2) k k x x k +=+ = 所产生的序列{}0k k x ∞ =都收敛于方程1 1sin 2 x x =+ 的根。 (2)迭代公式11 21sin ,0,1,2, (2) k k k x x x k +=-- =是否收敛。 五、(15分)用最小二乘法确定一条经过原点(0,0)的二次曲线,使之拟合下列数据

数值分析习题集及答案Word版

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?

数值分析期末试题

数值分析期末试题 一、填空题(20102=?分) (1)设??? ? ? ??? ??---=28 3 012 251A ,则=∞ A ______13_______。 (2)对于方程组?? ?=-=-3 4101522121x x x x ,Jacobi 迭代法的迭代矩阵是=J B ?? ? ? ??05.25.20。 (3)3*x 的相对误差约是*x 的相对误差的 3 1倍。 (4)求方程)(x f x =根的牛顿迭代公式是) ('1)(1n n n n n x f x f x x x +-- =+。 (5)设1)(3 -+=x x x f ,则差商=]3,2,1,0[f 1 。 (6)设n n ?矩阵G 的特征值是n λλλ,,,21 ,则矩阵G 的谱半径=)(G ρi n i λ≤≤1max 。 (7)已知?? ? ? ??=1021 A ,则条件数=∞ )(A Cond 9 (8)为了提高数值计算精度,当正数x 充分大时,应将)1ln(2 -- x x 改写为 )1ln(2 ++ -x x 。 (9)n 个求积节点的插值型求积公式的代数精确度至少为1-n 次。 (10)拟合三点))(,(11x f x ,))(,(22x f x ,))(,(33x f x 的水平直线是)(3 1 3 1 ∑== i i x f y 。 二、(10分)证明:方程组? ?? ??=-+=++=+-1 211 2321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛性。 证明:Jacobi 迭代法的迭代矩阵为 ???? ? ?????---=05 .05 .01015.05.00J B J B 的特征多项式为

同济大学期末考试试题

数学分析(上)期末试题 得分_________ 姓名_________ 1. 计算(每小题6分,共36分) 学号_________ (1)?++∞→x x t t dt 1)1(lim (2) dx xe x ? --1 1| | (3) 121lim ++∞→+++p p p p n n n (4) 00,01)(2 ='=--+=?x y t y x dt e y e x y y 求满足设 (5) h x f h x f x f h 2) ()3(lim ,1)(000 0--='→则 (6) ?dx x x 2 cos cos ln 2 写出下列命题的分析表述(8分) (1) f '(x )在x 0的极限不是A . (2) {a n }是基本数列. 3 (8分)指出下列命题之间的关系: (1) f (x )在点0x 局部有界;(2) f (x )在点0x 极限存在; (3) f (x )在点0x 可导;(4) f (x )在点0x 连续;(5) f (x )在点0x 有定义. 4. (8分)讨论函数???? ???<=>--=? cos 10, 20 ,1) 1(2sin )(20 22 x tdt x x x e e x f x x x 的连续性, 若有间断点, 是哪种间断点? 给出函数的连续区间. 5. (12分)设x 1>0, x n +1=ln(1+x n )(n=1,2,???), 证明 ).(2~)(;0lim )(∞→=∞→n n x ii x i n n n 6. (8分)设函数f (x ), g (x )在闭区间[a , b ]上连续, 证明存在ξ∈(a , b ),

数值分析期末试题

一、(8分)用列主元素消去法解下列方程组: ??? ??=++-=+--=+-11 2123454 321321321x x x x x x x x x 二、(10分)依据下列数据构造插值多项式:y(0)=1,y(1)= —2,y '(0)=1, y '(1)=—4 三、(12分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式并利用复化的梯形公式、复化的辛普生公式计算下列积分: ? 9 1dx x n=4 四、(10分)证明对任意参数t ,下列龙格-库塔方法是二阶的。 五、(14分)用牛顿法构造求c 公式,并利用牛顿法求115。保留有效数字五位。 六、(10分)方程组AX=B 其中A=????????? ?10101a a a a 试就AX=B 建立雅可比迭代法和高斯-赛德尔迭代法,并讨论a 取何值时 迭代收斂。 七、(10分)试确定常数A,B,C,a,使得数值积分公式?-++-≈2 2 ) (}0{)()(a Cf Bf a Af dx x f 有尽可能多的 代数精确度。并求该公式的代数精确度。 八、{6分} 证明: A ≤ 其中A 为矩阵,V 为向量. 第二套 一、(8分)用列主元素消去法解下列方程组: ??? ??=++=+-=+3 2221 43321 32132x x x x x x x x 二、(12分)依据下列数据构造插值多项式:y(0)=y '(0)=0, y(1)=y '(1)= 1,y(2)=1 三、(14分)分别用梯形公式和辛普生公式构造 复化的梯形公式、复化的辛普生公式,并利用复化的梯形公式、 复化的辛普生公式及其下表计算下列积分: ?2 /0 sin πxdx ????? ? ? -+-+=++==++=+1 3121231)1(,)1(() ,(),()(2 hk t y h t x f k thk y th x f k y x f k k k h y y n n n n n n n n

2012数值分析试卷答案

昆明理工大学2012级硕士研究生试卷 科目: 数值分析 考试时间: 出题教师: 集体 考生姓名: 专业: 学号: 考试要求:考试时间150分钟;填空题答案依顺序依次写在答题纸上,填在试卷卷面上的不予计分;可带计算器。 一、 填空题(每空2分,共40分) 1.设*0.231x =是真值0.228x =的近似值,则*x 有 位有效数字,*x 的相对误差限 为 。 2.设 133)(47+++=x x x x f ,则=]2,,2,2[710 f ,=]2,,2,2[810 f 。 3. 过点)0,2(),0,1(-和)3,1(的二次拉格朗日插值函数为 )(2x L = , 并计 算=)0(2L 。 4.设 32()3245f x x x x =+-+在[]1,1-上的最佳二次逼近多项式为 , 最佳二次平方逼近多项式为 。 5.高斯求积公式 )()()(1101 0x f A x f A dx x f x +≈? 的系数0A = , 1A = ,节点0x = , 1x = 。 6.方程组 b Ax =,,U L D A --=建立迭代公式f Bx x k k +=+)()1(,写出雅可比迭代法和 高斯-赛德尔迭代法的迭代矩阵, =Jacobi B ,=-Seidel Gauss B 。 7.0 0100A ??? =? ???,其条件数2()Cond A = 。 8.设?? ? ???=2113A ,计算矩阵A 的范数,1||||A = , 2||||A = 。

9.求方程 ()x f x =根的牛顿迭代格式是 。 10.对矩阵??? ? ? ??=513252321A 作LU 分解,其L=________________, U= __________________。 二、计算题(每题10分,共50分) 1. 求一个次数不高于4次的多项式P (x ), 使它满足:1)1(,0)0(,0)0('===p p p ,1)1(,'=p ,1)2(=p 并写出其余项表达式(要求有推导过程)。 2. 若用复合梯形公式计算积分 dx e x ? 1 ,问区间[0, 1]应分成多少等分才能使截断误差不超过 5102 1 -?? 若改用复合辛普森公式,要达到同样的精度区间[0, 1]应该分成多少等份? 由下表数据,用复合辛普森公式计算该积分的近似值。 3. 线性方程组b Ax =,其中???? ??????=18.04.08.014.04.04.01A ,T b ]3,2,1[=,(1)建立雅可比迭代法和 高斯-赛德尔迭代法的分量形式。(2)问雅可比迭代法和高斯-赛德尔迭代法都收敛吗 ? 4. 已知如下实验数据4,,1,0),,( =i y x i i , 用最小二乘法求形如x a a y 10+=的经验公式,并 计算最小二乘法的误差。 5. 用改进的欧拉公式(预估-校正方法),解初值问题0)0(,10022=+=y y x dx ,取步长,1.0=h 计算到2.0=x (保留到小数点后四位) 。 三、证明题(共10分) 1. 如果 A 是对称正定矩阵,则A 可唯一地写成T LL A =,其中L 是具有正对角元的下三角 阵。

数值分析整理版试题及复习资料

例1、 已知函数表 求()f x 的Lagrange 二次插值多项式和Newton 二次插值多项式。 解: (1) 插值基函数分别为 ()()()()()()()()()() 1200102121()1211126 x x x x x x l x x x x x x x ----= ==-------- ()()()()()()()() ()()021******* ()1211122x x x x x x l x x x x x x x --+-= ==-+---+- ()()()()()()()()()()0122021111 ()1121213 x x x x x x l x x x x x x x --+-= ==-+--+- 故所求二次拉格朗日插值多项式为 () ()()()()()()()()()()2 20 2()11131201241162314 121123537623k k k L x y l x x x x x x x x x x x x x ==?? =-? --+?-+-+?+-????=---++-=+-∑ (2)一阶均差、二阶均差分别为

[]()()[]()()[][][]010********* 011201202303 ,11204 ,412 3 4,,5 2,,126 f x f x f x x x x f x f x f x x x x f x x f x x f x x x x x ---===-----= = =----=== --- 故所求Newton 二次插值多项式为 ()()[]()[]()() ()()()20010012012,,,35 311126537623P x f x f x x x x f x x x x x x x x x x x x =+-+--=-+ +++-=+- 例2、 设2 ()32f x x x =++,[0,1]x ∈,试求()f x 在[0, 1]上关于()1x ρ=,{} span 1,x Φ=的最佳平方逼近多项式。 解: 若{}span 1,x Φ=,则0()1x ?=,1()x x ?=,且()1x ρ=,这样,有 ()()()()()()()()1 1 200110 1 1 2011000 1 210 1 ,11, ,3 1 23 ,,, ,3226 9,324 dx x dx xdx f x x dx f x x x dx ??????????==== ====++= =++= ????? 所以,法方程为 011231261192 34a a ??????????=?????????? ?????????? ,经过消元得012311 62110123a a ??? ???????=???????????????????? 再回代解该方程,得到14a =,011 6a =

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

同济大学版高等数学期末考试试卷

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题 分,共 ?分) .下列各组函数中,是相同的函数的是( ) (?)()()2ln 2ln f x x g x x == 和 ( )()||f x x = 和 ( )g x = ( )()f x x = 和 ( )2 g x = ( )()|| x f x x = 和 ()g x = .函数( )() 20ln 10 x f x x a x ≠=+?? =? 在0x =处连续,则a = ( ) (?) ( ) 1 4 ( ) ( ) .曲线ln y x x =的平行于直线10x y -+=的切线方程为( ) (?)1y x =- ( )(1)y x =-+ ( )()()ln 11y x x =-- ( ) y x = .设函数()||f x x =,则函数在点0x =处( ) (?)连续且可导 ( )连续且可微 ( )连续不可导 ( )不连续不可微 .点0x =是函数4 y x =的( ) (?)驻点但非极值点 ( )拐点 ( )驻点且是拐点 ( )驻点且是极值点

.曲线1 || y x = 的渐近线情况是( ) (?)只有水平渐近线 ( )只有垂直渐近线 ( )既有水平渐近线又有垂直渐近线 ( )既无水平渐近线又无垂直渐近线 . 211 f dx x x ??' ???? 的结果是( ) (?)1f C x ?? -+ ??? ( )1f C x ?? --+ ??? ( )1f C x ?? + ??? ( )1f C x ?? -+ ??? . x x dx e e -+?的结果是( ) (?)arctan x e C + ( )arctan x e C -+ ( )x x e e C --+ ( ) ln()x x e e C -++ .下列定积分为零的是( ) (?)424arctan 1x dx x π π-+? ( )44 arcsin x x dx ππ-? ( )112x x e e dx --+? ( )()1 2 1 sin x x x dx -+? ?.设()f x 为连续函数,则 ()1 2f x dx '?等于( ) (?)()()20f f - ( )()()11102f f -????( )()()1 202f f -????( )()()10f f - 二.填空题(每题 分,共 ?分) .设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = .已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '= .21 x y x =-的垂直渐近线有条 . ()21ln dx x x = +?

2019年数值分析第二学期期末考试试题与答案A

卷)期末考试试卷(A2007学年第二学期考试科目:数值分析分钟考试时间:120 年级专业学号姓 名 题号一2二三0四总分 分)分,共10一、判断题(每小题210001?n)( 1. 用计算机求时,应按照从小到大的顺序相加。1000n1n?219992001?为了减少误差2. ,应将表达式进行计算。(改写为)19992001?) ( 3. 用数值微分公式中求导数值时,步长越小计算就越精确。) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。(系数矩阵及其演变方式有用迭代法解线性方程组时,5. 迭代能否收敛与初始向量的选择、) (关,与常数项无关。 分)二、填空题(每空2分,共36_________. ________,相对误差限为已知数a的有效数为0.01,则它的绝对误差限为1. 0?110??????????xA?Ax,0?21,x??5A?_____. 则设______,_____,2. ????21?????1?130????53f(x)?2x?4x?5x,f[?1,1,0]?f[?3,?2,?1,1,2,3]? 3. 已知则, . 331?)?Af(0)?Af(f(x)dx?Af(?)的代数精度尽量高,应使4. 为使求积公式321331?A?A?A?,此时公式具有,,次的代数精度。312 ?nA)(A的关系是 5. A阶方阵的谱半径与它的任意一种范数. (k?1)(k)BAX??N(k?XMX?0,1,2,)产时,使迭代公式用迭代法解线性方程组6. ??)k(X . 生的向量序列收敛的充分必要条件是

AX?BAL和上三角矩7. 使用消元法解线性方程组系数矩阵时,可以分解为下三角矩阵1 4?2??BAX?.A?LUU?A,则阵若采用高斯消元法解的乘积,即,其中??21??L?U?AX?B,则,______________;若使用克劳特消元法解_______________u?lu BAX?的大小关系为_____(选填:则____;若使用平方根方法解>与,,111111<,=,不一定)。 ??x?yy?8. 以步长为1的二阶泰勒级数法求解初值问题的数值解,其迭代公式为 ?y(0)?1?___________________________. 三、计算题(第1~3、6小题每题8分,第4、5小题每题7分,共46分) 32?x01??3x?xf(x)?2)(1, 1.在区间为初值用牛顿迭代法求方程内的根,要求以0证明用牛顿法解此方程是收敛的;(1),xx,计算结果(2)给出用牛顿法解此方程的迭代公式,并求出这个根(只需计算21位)。取到小数点后4 2 2.给定线性方程组 x?0.4x?0.4x?1?312?0.4x?x?0.8x?2?321?0.4x?0.8x?x?3?312(1)分别写出用Jacobi和 Gauss-Seidel迭代法求解上述方程组的迭代公式; (2)试分析以上两种迭代方法的敛散性。

相关文档
最新文档