巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题
巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题【例1】求y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少

初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。

绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。

绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。

众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。

设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|,

由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|;

同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|,

由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。

一般说来,设f(x)=|x-a|+|x-a|+|x-a|++|x-a n|,

其中a≤a≤…≤a n,那么:

当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1;

且f(a)=(a n-a1)+(a n-1-a2)++(a n/2+1-a n/2)

=(a n+a n-1+ a n/2+1)-(a1+a2++a n/2)

当n为奇数时,f min(x)=f(a(n+1)/2);

且f(a)=(a n-a1)+(a n-1-a2)++【a(n+1)/2+1-a(n+1)/2-1】

=【a n+a n-1+ a(n+1)/2+1】-【a1+a2++ a(n+1)/2-1】

也就是说,偶数个绝对值相加,当x处于最中间的两个点所表示的数之间时,其值为最小,x可能有无数个取值;奇数个绝对值相加,当x等于最中间那个点所表示的数时,其值为最小,x只有一个取值。利用这个原理来解决【例1】的问题将非常容易地得到结论:y=|x-(-3)|+|x-(-2)|+|x-(-1)|+|x-0|+|x-1|+|x-2|+|x-3|,所以x=0时y最小,最小值为12。

下面我们利用这一原理解决更多的问题。

【例2】已知y=|x+1|+2|x-1|+|x-2|,求y的最小值。

【解】y=(2|x+1|+6|x-1|+3|x-2|)=(|x-(-1)|+|x-(-1)|+|x-1|+|x-1|+|x-1|+|x-1|+|x-1|+|x-1|+|x-2|+|x-2|+|x-2|)

∵有11个绝对值相加,11为奇数,∴当x=a5,即x=1时,y最小为:(2|1+1|+3|1-2|)=(4+3)=7/3

【例3】已知|a+3|+|a-5|=8,求a的取值范围。

【解】∵当-3≤a≤5时,|a+3|+|a-5|的最小值为8,∴a的取值范围是

-3≤a≤5

【例4】已知2|a+1|+|a-2|+|b+1|+4|b-5|=9,求a b的值。

【解】∵2|a+1|+|a-2|=|a+1|+|a+1|+|a-2|,当a=-1时,最小值为3;|b+1|+4|b-5|=|b+1|+|b-5|+|b-5|+|b-5|+|b-5|,当b=5时,最小值为6,

∴2|a+1|+|a-2|+|b+1|+4|b-5|≥9,只有当a=-1,b=5时,原式=9,

∴a b=(-1)5=-1

【例5】如图4,一条公路旁有6个村庄,分别为A,B,C,D,E,F,现在政府要在公路边建一个公交站,请问建在哪一段比较合理

【分析】所建公交站应该到各村的距离之和最小,以公路为数轴,设A,B,C,D,E,F在数轴上表示的数分别为:a,a,c,d,e,f,则a≤a≤c≤d≤e≤f,故当所建公交站到各村的距离之和最小时,公交站应该处于C村和D村之间。

绝对值几何意义和绝对值方程

绝对值几何意义和绝对值方程 Ⅰ重点突破 重点针对复习 【重点知识点1】绝对值的几何意义 [针对训练1] (南雅-15)1.阅读材料,回答下列问题: 数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.例如,两个有理数在数轴上对应的点之间的距离可以用这两个数的差的绝对值表示; 在数轴上,有理数3与1对应的两点之间的距离为|3﹣1|=2; 在数轴上,有理数5与﹣2对应的两点之间的距离为|5﹣(﹣2)|=7; 在数轴上,有理数﹣2与3对应的两点之间的距离为|﹣2﹣3|=5; 在数轴上,有理数﹣8与﹣5对应的两点之间的距离为|﹣8﹣(﹣5)|=3;…… 如图1,在数轴上有理数a对应的点为点A,有理数b对应的点为点B,A,B两点之间的距离表示为|a﹣b|或|b﹣a|,记为|AB|=|a﹣b|=|b﹣a|. (1)数轴上有理数﹣10与﹣5对应的两点之间的距离等于;数轴上有理数x与﹣5对应的两点之间的距离用含x的式子表示为;若数轴上有理数x与﹣1对应的两点A,B之间的距离|AB|=2,则x等于; (2)如图2,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为﹣2,动点P表示的数为x. ①若点P在点M,N之间,则|x+2|+|x﹣4|=;若|x+2|+|x﹣4|═10,则x=; ②根据阅读材料及上述各题的解答方法,|x+2|+|x|+|x﹣2|+|x﹣4|的最小值等于.

2.先阅读,后探究相关的问题 【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离. (1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是; (2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为; (3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等; (4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是. 3.结合数轴与绝对值的知识回答下列问题: (1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=. (2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为; (3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是. (4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.

绝对值的意义及应用

绝对值的意义及应用 绝对值是初中代数中的一个重要概念,应用较为广泛.在解与绝对值有关的问题时,首先必须弄清绝对值的意义和性质。对于数x而言,它的绝对值表示为:|x|. 一. 绝对值的实质: 正实数与零的绝对值是其自身,负实数的绝对值是它的相反数,即 也就是说,|x|表示数轴上坐标为x的点与原点的距离。 总之,任何实数的绝对值是一个非负数,即|x|≥0,请牢牢记住这一点。 二. 绝对值的几何意义: 一个数的绝对值就是数轴上表示这个数的点到原点的距离。 例1. 有理数a、b、c在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A.2a+3b-c B.3b-c C.b+c D.c-b (第二届“希望杯”数学邀请赛初一试题) 解:由图形可知a<0,c>b>0,且|c|>|b|>|a|,则a+b>0,b-c<0. 所以原式=-a+b+a+b-b+c=b+c,故应选(C). 三. 绝对值的性质: 1. 有理数的绝对值是一个非负数,即|x|≥0,绝对值最小的数是零。 2. 任何有理数都有唯一的绝对值,并且任何一个有理数都不大于它的绝对值,即x≤|x|。 3. 已知一个数的绝对值,那么它所对应的是两个互为相反数的数。 4. 若两个数的绝对值相等,则这两个数不一定相等(显然如|6|=|-6|,但6≠-6),只有这两个数同号,且这两个数的绝对值相等时,这两个数才相等。 四. 含绝对值问题的有效处理方法 1. 运用绝对值概念。即根据题设条件或隐含条件,确定绝对值里代数式的正负,再利用绝对值定义去掉绝对值的符号进行运算。

例2. 已知:|x-2|+x-2=0, 求:(1)x+2的最大值;(2)6-x的最小值。 解:∵|x-2|+x-2=0,∴|x-2|=-(x-2) 根据绝对值的概念,一个数的绝对值等于它的相反数时,这个数为负数或零, ∴x-2≤0,即x≤2,这表示x的最大值为2 (1)当x=2时,x+2得最大值2+2=4; (2)当x=2时,6-x得最小值6-2=4 2. 用绝对值为零时的值分段讨论.即对于含绝对值代数式的字母没有条件限制或限制不确切的,就需先求零点,再分区间定性质,最后去掉绝对值符号。 例3. 已知|x-2|+x与x-2+|x|互为相反数,求x的最大值. 解:由题意得(|x-2|+x)+(x-2+|x|)=0,整理得|x-2|+|x|+2x-2=0 令|x-2|=0,得x=2,令|x|=0,得x=0 以0,2为分界点,分为三段讨论: (1)x≥2时,原方程化为x-2+x+2x-2=0,解得x=1,因不在x≥2的范围内,舍去。 (2)0≤x<2时,原方程化为2-x+x+2x-2=0,解得x=0 (3)x<0时,原方程化为2-x-x+2x-2=0,从而得x<0 综合(1)、(2)、(3)知x≤0,所以x的最大值为0 3. 整体参与运算过程.即整体配凑,借用已知条件确定绝对值里代数式的正负,再用绝对值定义去掉绝对值符号进行运算。 例4. 若|a-2|=2-a,求a的取值范围。 解:根据已知条件等式的结构特征,我们把a-2看作一个整体,那么原式变形为|a-2|=-(a-2),又由绝对值概念知a-2≤0,故a的取值范围是a≤2 4. 运用绝对值的几何意义.即通过观察图形确定绝对值里代数式的正负,再用绝对值定义去掉绝对值的符号进行运算. 例5. 求满足关系式|x-3|-|x+1|=4的x的取值范围. 解:原式可化为|x-3|-|x-(-1)|=4 它表示在数轴上点x到点3的距离与到点-1的距离的差为4 由图可知,小于等于-1的范围内的x的所有值都满足这一要求。

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b|

【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

绝对值几何意义应用

仅供参考学习个人收集整理 绝对值几何意义应用 一、几何意义类型:0a?a?a 类型一、0:表示数轴上地点地距离;到原点 ab??b?a bb aa 地距离(或点;类型二、:表示数轴上地点到点到点地距离) )?baa?b??()?ab?(?b?b aa?地距离):表示数轴上地点到点类型三、到点;地距离(点ax?ax :表示数轴上地点地距离;到点类型四、)a?(?x?a?x xa?. 类型五、到点:表示数轴上地点地距离二、例题应用:4?xx?4x ,则、地几何意义是数轴上表示地点与表示地点之间地距离,若例1.(1)=2?x. 3x?1?x?3x ,则(2)地几何意义是数轴上表示地点与表示地点之间地距离,若、?x. 15??qm若3)、如图所示数轴上四个点地位置关系,且它们表示地数分别为m、n、p、q.,(1 n?q?n,pp?m?,15m???m?8np??q?n?1,qp3 ;若,则,n?p?.则 a?b?b?c?a?cc,,ba,,如果在数轴上地对应点为A,(4)、不相等地有理数B,C. 在数轴上地位置关系B,,C 则点A a?b?9,c?d?16且a?b?c?d?25da、cb、、,求均为有理数,拓展:已知 b?a?d?c的值. ??且a?b?c?d?25.25a?b?c?a (9b?)??16?ddc???解析: ?b?9?a,c?d?16?b?a?d?c?9?16??7. 3x??x?32?x?x时,取最大值,最大)(例2.1、①当取最小值;②时,当 值为. 1 / 8 个人收集整理仅供参考学习 x?3?x?2?7x?; 利用绝对值在数轴上地几何意义得(2)、①已知,

绝对值大全(零点分段法、化简、最值)

绝对值大全(零点分段法、化简、最值) 一、去绝对值符号的几种常用方法 解含绝对值不等式的基本思路是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法与一般不等式的解法相同。因此掌握去掉绝对值符号的方法和途径是解题关键。 1利用定义法去掉绝对值符号 根据实数含绝对值的意义,即|x |=(0)(0)x x x x ≥?? -????≤? ; |x |>c (0) 0(0)(0)x c x c c x c x R c <->>?? ?≠=??∈c (c >0)来解,如|ax b +|>c (c >0)可为ax b +>c 或 ax b +<-c ;|ax b +|

绝对值与方程及几何意义解题

绝对值与一元一次方程 一、形如| x +a | = b 方法:去绝对值符号 例1:| 2x – 1 | = 3 例2:4+2|x| = 3 |x|+2 二、绝对值的嵌套方法:由外向内逐层去绝对值符号 例1:| 3x – 4|+1| = 2 例2:x– 2|-1| =3 三、形如:| ax + b | = cx+d绝对值方程 方法:变形为ax + b =±(cx+d)且 cx+d≧0才是原方程的根,否则必须舍去,故解绝对值方程时必须检验。 例1: | 5x + 6 | = 6x+5 例2: | x - 5 |+2x =-5 利用“零点分段“法化简 方法:求零点,分区间,定正负,去符号 例1:化简:| x + 5 |+| 2x - 3 | 例2:|| x -1 |-2|+ |x +1| 练习化简:1、| x + 5 |+| x - 7 | +| x+ 10 | 2、

四、“零点分段法”解方程 “零点分段法”即令各绝对值代数式为零,得若干个绝对值为零的点,这些点把数轴分成几个区间,再在各区间内化简求值即可。 例1:| x + 1 |+| x - 5 | =4 例2:| 2x - 1 |+| x - 2 | =2| x +1 | 练习:解方程 1、3| 2x – 1 | = |-6| 2、││3x-5│+4│=8 3、│4x-3│-2=3x+4 4、│2x-1│+│x-2│=│x+1│

提高题: 1、若关于X的方程││x-2│-1│=a有三个解,求a的值和方程的解 2、设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,?求b 的值. (“华杯赛”邀请赛试题) 3、讨论方程││x+3│-2│=k的解的情况.

绝对值应用(绝对值的几何意义)(北师版)(含答案)

学生做题前请先回答以下问题 问题1:绝对值的几何意义: ①表示在数轴上,x所对应的点与_______的距离. ②表示在数轴上____________________________对应点之间的距离. ③表示____________________________对应点之间的距离. 绝对值应用(绝对值的几何意义)(北师版)一、单选题(共10道,每道10分) 1.已知,则a,b的值分别为( ) A.a=3,b=5 B.a=-3,b=5 C.a=3,b=-5 D.a=-3,b=-5 答案:B 解题思路: 试题难度:三颗星知识点:绝对值的非负性 2.若,则ab=( )

A.0 B.3 C.-3 D.±3 答案:C 解题思路: 试题难度:三颗星知识点:绝对值的非负性 3.若与互为相反数,则a+b=( ) A.-1 B.1 C.5 D.-5 答案:A 解题思路: 试题难度:三颗星知识点:绝对值的非负性 4.若x为有理数,则的最小值为( )

C.3 D.5 答案:A 解题思路: 试题难度:三颗星知识点:绝对值的几何意义 5.若x为有理数,则的最小值为( ) A.1 B.3

答案:D 解题思路: 试题难度:三颗星知识点:绝对值的几何意义 6.若x为有理数,则的最小值为( ) A.1 B.2 C.3 D.4 答案:B 解题思路:

试题难度:三颗星知识点:绝对值的几何意义

7.若x为有理数,则的最小值为( ) A.2 B.3 C.4 D.5 答案:C 解题思路: 试题难度:三颗星知识点:绝对值的几何意义 8.当x=____时,有最_____值,是_____.( ) A.0,小,6 B.0,大,6 C.0,小,0 D.0,大,0 答案:A 解题思路: 试题难度:三颗星知识点:利用绝对值的非负性求最值 9.当x=____时,有最_____值,是_____.( ) A.4,小,3 B.4,大,-3 C.4,小,-3 D.0,大,3 答案:C

(完整版)关于绝对值的几种题型与解题技巧

关于绝对值的几种题型及解题技巧 所谓绝对值就是只有单纯的数值而没有负号。即0≥a 。但是,绝对值里面的数值可以是正数也可以是负数。怎么理解呢?绝对值符号就相当于一扇门,我们在家里面的时候可以穿衣服也可以不穿衣服,但是,出门的时候一定要穿上衣服。 所以,0≥a ,而a 则有两种可能:o a π和0φa 。如:5=a ,则5=a 和5-=a 。合并写成:5±=a 。 于是我们得到这样一个性质: a 很多同学无法理解,为什么0πa 时,开出来的时候一定要添加一个“负号”呢?a -。因为此时0πa ,也就是说a 是一个负数,负数乘以符号就是正号了。如2)2(=--。因此,当判断绝对值里面的数是一个负数的时候,一定要在这个式子的前面添加一个负号。 例如:0πb a -,则)(b a b a --=-。 绝对值的题解始终围绕绝对值的性质来展开的。我就绝对值的几种题型进行详细讲解,希望能对你们有所帮助。 绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性 质; a (a >0) a 0φa 0 0=a a - 0πa

(2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数, 即|a|≥a ,且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=||| |b a (b ≠0); (7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a-b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a-b| 一:比较大小 典型题型: 【1】已知a 、b 为有理数,且0πa ,0πb ,b a φ,则 ( ) A :a b b a --πππ; B :a b a b --πππ; C :a b b a πππ--; D :a a b b πππ-- 这类题型的关键是画出数轴,然后将点按照题目的条件进行标记。

绝对值几何意义知识点、经典例题及练习题带答案

绝对值的几何意义 【考纲说明】 1、 理解绝对值的几何意义,了解绝对值的表示法,会计算有理数的绝对值; 2、 能够利用数形结合思想来理解绝对值的几何意义,根据绝对值的意义及性质进行简单应用。 【趣味链接】 正式篮球比赛所用球队质量有严格的规定,下面是6个篮球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数,检测结果为:-20,+10、+12、-8、-11 请指出那个篮球的质量好一些,并用绝对值的知识进行说明。 【知识梳理】 1、绝对值的定义:在数轴上,一个数所对应的点与原点的距离称为该数的绝对值,记作|a|。 2、绝对值的性质: (1) 绝对值的非负性,可以用下式表示:|a|≥0,这是绝对值非常重要的性质; a (a >0) (2) |a|= 0 (a=0) (代数意义) -a (a <0) (3) 若|a|=a ,则a≥0;若|a|=-a ,则a≤0; (4) 任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即|a|≥a , 且|a|≥-a ; (5) 若|a|=|b|,则a=b 或a=-b ;(几何意义) (6) |ab|=|a|·|b|;|b a |=| |||b a (b≠0);

(7) |a|2=|a 2|=a 2 ; (8) |a+b|≤|a|+|b| |a -b|≥||a|-|b|| |a|+|b|≥|a+b| |a|+|b|≥|a -b| 【经典例题】 【例1】(2011青岛)若ab<|ab|,则下列结论正确的是( ) A.a <0,b <0 B.a >0,b <0 C.a <0,b >0 D.ab <0 【例2】(2011莱芜)下列各组判断中,正确的是( ) A .若|a|=b ,则一定有a=b B.若|a|>|b|,则一定有a >b C. 若|a|>b ,则一定有|a|>|b| D.若|a|=b ,则一定有a 2=(-b) 2 【例3】(2011日照)有理数a 、b 、c 在数轴上的位置如图所示,则式子|a|+|b|+|a+b|+|b-c|化简结果为( ) A .2a+3b-c B .3b-c C .b+c D .c-b 【例4】(2009淮安)如果a a -=||,下列成立的是( ) A .0>a B .0

初中数学 绝对值的化简和几何意义

模块一 绝对值的基本概念 (1)非负性:||0a ≥(补充:20a ≥). 对应题型:绝对值的化简. 方法:判断“||”里面整体的正负性. 易错点:求一个多项式的相反数. 对应策略:求一个多项式的相反数即求多项式中每个单项式的相反数. ①a b -的相反数是a b -+; ②a b c ++的相反数是a b c ---; ③132a b -+的相反数132a b -+-. (2)双解性:||(0)a b b =≥,则a b =±. (3)绝对值的代数意义:(0)||0(0)(0)a a a a a a >?? ==??-?=? -≤? 变式结论:①若||a a =,则0a ≥; ②若||a a =-,则0a ≤. 模块二 零点分段法(目的:去无范围限定的绝对值题型) 零点:使绝对值为0的未知数值即为零点. 方法: ①寻找所有零点,并在数轴上表示; ②依据零点将数轴进行分段; ③分别根据每段未知数的范围去绝对值. 易错点:分类不明确,不会去绝对值. 化简:|1||2|x x -+-. ①零点为1,2,故将数轴分为3个部分, 即1x <,12x ≤<,2x ≥. ②当1x <时,原式23x =-+; 当12x ≤<时,原式(1)(2)1x x =---=; 当2x ≥时,原式23x =-. 模块三 几何意义 ||x 的几何意义:数轴上表示数x 的点与原点 的距离; ||x a -的几何意义:数轴上表示数x 的点与数a 的点之间的距离; ||||x a x b -+-的几何意义:数轴上表示数x 的点与数a 、b 两点的距离之和. 举例: ①|1|=|(1)|x x +--表示x 到1-的距离. ②|1||2|x x +++表示x 到1-和x 到2-的距离之和. ③|1||2|x x +-+表示x 到1-和x 到2-的距离之差. 基本结论:令123n a a a a ≤≤≤≤…, 123||||||+||n x a x a x a x a -+-+-+-… . 方法:直接套用几何意义画数轴. ①当n 为奇数时,当1 2 n x a +=时取最小值; ②当n 为偶数时,当1 2 2 n n a x a +≤≤时取最小 值. 常见变形: ①|1|2|3|3|4|x x x -+-+-在34x ≤≤时取得最小值. ②()111 113|2|2|3|236x x x x -+-=-+-在2x =时取得最小值. ③|1||2|x x ---既有最小值也有最大值.

绝对值的性质及运用

基本要求:借助数轴理解绝对值的意义,会求实数的绝对值 略高要求:会利用绝对值的知识解决简单的化简问题 【知识点整理】 绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?;a a b b =(0)b ≠; (4)222||||a a a ==; a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a .b 对应数轴上两点间的距离. 【例题精讲】 模块一、绝对值的性质 【例1】到数轴原点的距离是2的点表示的数是( ) A .±2 B .2 C .-2 D .4 【例2】下列说法正确的有( ) ①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相绝对值

绝对值的几何意义--实际应用问题

绝对值的几何意义--实际应用问题 【知识点】 一个数的绝对值越小,距离原点越近 【练习题】 1.四只毛毛虫在数轴上的位置如下,则距离原点最近的是______ 2.一只蚂蚁在数轴上来回爬行,记录的位置分别为:-2、-1、4、-3则距离原点 最远的位置是______ 3.矿井下A、B、C三处的高度分别为-35.2m,-129.1m,-72.6m,最深的是______ (填“A、B、C”) 4.记录1、2、3号3个零件的长度,大于标准值为+,小于标准值为-,记录结 果(单位:mm)分别为+0.10、-0.07、-0.02,则最接近标准值的是______号 5.某班测量身高,超过平均身高记为正数,低于平均身高记为负数,甲、乙两 位同学的记录情况分别为+3,-5。最接近平均身高的是______(填“甲、乙”)6.某商店全年第一、第二、第三、第四季度盈亏情况(盈利为正,亏损为负)

依次是:68万元、-140万元、-95万元、145万元,则亏损最多的是第______季度(填“一、二、三、四”) 7.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记 作负数。从轻重的角度看,最接近标准的工件是() A.-2 B.-3 C.3 D.7 8.某次数学单元测试,1班第1小组4位同学的平均成绩达到80分,组长在登 记成绩时,以80分为基准,超过80分的分数登记为正数,低于80分的分数登记为负数,甲、乙、丙、丁4位同学的分数记录情况为:10、-2、5、-13。 则最接近80分的是______同学。(填“甲、乙、丙、丁”) 9.某公路养护小组若干人各自乘车沿南北方向公路巡视维修,某天早晨他们从 A地出发,约定A地以北为正方向,A地以南为负方向,他们几人当天相对与A地的行驶记录分别如下(单位:千米):+18,+9,-2,-14,+5,-19。 当天距离A地最远的距离是______千米。 10.某市监管部门抽查一商店4个水果罐头的质量,超出标准质量记为正,不足 质量记为负,则最接近标准质量的罐头是() A.-3 B.4 C.2 D.1

绝对值的性质及化简

绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号. ②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. ③绝对值具有非负性,取绝对值的结果总是正数或0. ④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5. 求字母a 的绝对值: ①(0)0(0)(0)a a a a a a >??==??-?=?-≤? 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小. 绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0. 例如:若0a b c ++=,则0a =,0b =,0c = 绝对值的其它重要性质: (1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-; (2)若a b =,则a b =或a b =-; (3)ab a b =?; a a b b =(0)b ≠; (4)222||||a a a ==; (5)a b a b a b -≤+≤+, 对于a b a b +≤+,等号当且仅当a 、b 同号或a 、b 中至少有一个0时,等号成立; 对于a b a b -≤+,等号当且仅当a 、b 异号或a 、b 中至少有一个0时,等号成立. 绝对值几何意义 当x a =时,0x a -=,此时a 是x a -的零点值. 零点分段讨论的一般步骤: 找零点、分区间、定符号、去绝对值符号.即先令各绝对值式子为零,求得若干个绝对值为零的点,在数轴上把这些点标出来,这些点把数轴分成若干部分,再在各部分化简求值. a 的几何意义:在数轴上,表示这个数的点离开原点的距离. a b -的几何意义:在数轴上,表示数a 、b 对应数轴上两点间的距离. 例题精讲 绝对值的性质及化简

专题十一:绝对值最值问题

绝对值最值问题 绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离。数a的绝对值记作a 几个绝对值和的最小值问题:奇点偶段(含端点) 1、(1)阅读下面材料: 点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时,不妨设点A在原点, 如图甲,AB=OB=|b|=|a﹣b|; 当A、B两点都不在原点时, 1如图乙,点A、B都在原点的右边, AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|; ②如图丙,点A、B都在原点的左边, AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|; ③如图丁,点A、B在原点的两边 AB=OA+OB=|a|+|b|=a+(﹣b)=|a﹣b|. 综上,数轴上A、B两点之间的距离AB=|a﹣b|. (2)回答下列问题: ①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的 距离是,数轴上表示1和﹣3的两点之间的距离是; ②数轴上表示x和﹣1的两点分别是点A和B,则A、B之间的距离是,如果|AB| =2,那么x=; ③当代数式|x+2|+|x﹣5|取最小值时,相应的x的取值范围是. ④当代数式|x﹣1|+|x+2|+|x﹣5|取最小值时,相应的x的值是. ⑤当代数式|x﹣5|﹣|x+2|取最大值时,相应的x的取值范围是.

2、在数轴上,点A,B分别表示数a,b,则线段AB的长表示为|a﹣b|,例如:在数轴上,点A表示5.点B表示2,则线段AB的长表示为|5﹣2|=3:回答下列问题: (1)数轴上表示1和﹣3的两点之间的距离是: (2)若AB=8,|b|=3|a|,求a,b的值. (3)若数轴上的任意一点P表示的数是x,且|x﹣a|+|x﹣b|的最小值为4,若a=3,求b 的值.

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题

巧用绝对值的“几何意义”求多个绝对值之和的最小值问题 【例1】求 y=|x+3|+|x+2|+|x+1|+|x|+|x-1|+|x-2|+|x-3|的最小值,并指出y为最小值时,x的值为多少 初一引进绝对值的概念,但多数学生对绝对值的问题只是浅尝辄止。绝对值有两个方面的意义,一个是代数意义,另一个几何意义,但一般教学往往侧重于代数意义而忽略了其几何意义。 绝对值的代数意义:|a|=a, (a≥0);|a|=-a, (a<0)。 绝对值的几何意义:|a|是数轴上表示数a的点到原点的距离。 众所周知,如果数轴上有两点A,B,它们表示的数分别为a, b(a≤b),则A,B之间的距离:|AB|=|a-b|(如图1)。 设点X在数轴上表示的点为x,则|x-a|+|x-b|表示点X到点A和点B的距离之和:|XA|+|XB|, 由图2可以看出,如果X在A,B两点之间,那么|XA|+|XB|可以取到最小值|AB|,即:当a≤x≤b时,|x-a|+|x-b|取最小值|a-b|; 同样,设点C在数轴上表示的点为c,(a≤b≤c),则|x-a|+|x-b|+|x-c|表示点X到点A、点B和点C的距离之和:|XA|+|XB|+|XC|, 由图3可以看出,如果X落在B点,那么|XA|+|XB|+|XC|可以取到最小值|AC|,即:当x=b时,|x-a|+|x-b|+|x-c|取最小值|a-c|。 一般说来,设f(x)=|x-a?|+|x-a?|+|x-a?|+???+|x-a n|, 其中a?≤a?≤…≤a n,那么: 当n为偶数时,f min(x)=f(a),其中a n/2≤a≤a n/2+1; 且f(a)=(a n-a1)+(a n-1-a2)+???+(a n/2+1-a n/2) =(a n+a n-1+??? a n/2+1)-(a1+a2+???+a n/2) 当n为奇数时,f min(x)=f(a(n+1)/2); 且f(a)=(a n-a1)+(a n-1-a2)+???+【a(n+1)/2+1-a(n+1)/2-1】 =【a n+a n-1+??? a(n+1)/2+1】-【a1+a2+???+ a(n+1)/2-1】

绝对值几何意义应用

绝对值几何意义应用

绝对值几何意义应用 一、几何意义类型: 类型一、0-=a a :表示数轴上的点a 到原点0的距离; 类型二、 a b b a -=-:表示数轴上的点a 到点b 的距离(或 点b 到点a 的距离); 类型三、)(b a b a --=+)(a b --=:表示数轴上的点a 到点b -的距离(点b 到点a -的距离); 类型四、a x -:表示数轴上的点x 到点a 的距离; 类型五、)(a x a x --=+:表示数轴上的点x 到点a -的距离. 二、例题应用: 例1.(1)、4-x 的几何意义是数轴上表示x 的点与表示 的点之间的距离,若4-x =2,则 = x . (2)、3+x 的几何意义是数轴上表示x 的点与表示 的点之间的距离,若13=+x ,则 = x . (3)、如图所示数轴上四个点的位置关系,且它们表示的数分别为m 、n 、p 、q.若15=-q m , 8 10=-=-m p n q ,,则=-p n ;若15=-q m , ,,q n n p m p -= -=-3 1 8 则=-p n .

的几何意义得; ③已知4 + -x x,利用绝对值在数轴上 + 3= 2 的几何意义得; 拓展:若8 1 +a a,则整数a的个数是 - + 2= 2 7 4 . ④当x满足条件时,利用绝对值在数轴上的几何意义2 3+ -x x取得最小值, + 这个最小值是. 由上题③图可知,5 +x + x,故而当 - 3 2≥≤ -x时,最小值是5. 3 2≤ ⑤若a -2 + 3时,探究a为何值,方程有 x= x +

解?无实数解? 档案:5≥a ;a <5. 特别要注意的是:当x 在32≤≤-x 这个范围内任取一个数时,都有523=++-x x . 例题拓展:①若23++-x x >a 恒成立,则a 满足什么条件?答案:a <5. ②若23++-x x a 恒成立,则a 满足什么条件?答案:a <5-. 由上图当x ≤2-时, 2 3+--x x 5=;当x ≥3时, 23+--x x 5 -=;当2-<x <3, 5 -<23+--x x <5,所以5-≤23+--x x ≤5.则a <5-. ④若23+--x x 5. 拓展应用:已知()()()36131221=++-++--++z z y y x x ,求z y x 32++

绝对值的最小值”探究教学

绝对值的最小值”探究教学 发表时间:2018-11-03T15:18:12.423Z 来源:《中国教师》2018年12月刊作者:谭志勇 [导读] 在“绝对值”教学中,很多同学往往只掌握到会求如 “|2x-3|的最小值”这类问题的程度。把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手,本文旨在引导学生利用数轴探究得出“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”的一般方法,激发学生的探索精神和实践能力。 谭志勇乐山市沙湾区太平镇初级中学 614901 【提要】在“绝对值”教学中,很多同学往往只掌握到会求如 “|2x-3|的最小值”这类问题的程度。把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手,本文旨在引导学生利用数轴探究得出“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”的一般方法,激发学生的探索精神和实践能力。 中图分类号:G623.2 文献标识码:A 文章编号:ISSN1672-2051 (2018)12-073-02 “绝对值”是七年级学生进入中学以来学习到的第一个比较抽象的概念,很多同学对这个知识点掌握的不是很好,特别是把若干个绝对值放在一起求和,并求它的最小值的时候很多同学都会无从下手。比如:求|x-1|+|x- 2|+|x-3|的最小值是多少。 我们知道一个数a的绝对值表示的是在数轴上a所对应的点到原点的距离,因此|a|≥0,也就是|a|的最小值是0。部分同学能运用这点解决如:“求|2x-3|的最小值”这样问题已经算是不错的了,但对于学有余力的同学来说仅掌握到这个程度还不够,让学生进一步理解绝对值的几何意义,并运用绝对值的几何意义来解决“求|x-a1|+|x-a2|+|x-a3|+…|x-an|的最小值问题”对发展学生的数学思维有着积极的作用,为此,我引导学生从下面一些步骤由浅入深的逐步探索,最终发现其规律。 一、牢固掌握绝对值的概念 在数轴上,一个数所对应的点到原点的距离叫做这个数的绝对值。 例如: |-2|的绝对值表示的是:在数轴上-2对应的点到原点的距离,所以|-2|= 2 。 因为点到点的距离总是大于等于零的,由此,我们可以概括:|a|≥0。那么什么数的绝对值最小呢?为什么? 二、准确理解绝对值的几何意义 |a|的几何意义:在数轴上数a对应的点到原点的距离。 |a-b|的几何意义:在数轴上a、 b两数所对应的点之间的距离。 例如:数轴上1和4之间的距离可以写成:|1-4| 或|4-1|。反过来|1-4| 或|4-1|表示的都是数轴上1和4之间的距离。 那么:|a+b|几何意义又是什么呢?因为 “|a+b|”可以改写成“|a-(- b)|”,因此|a+b|几何意义是数轴上a和-b对应的两数之间的距离。在此老师一定要强调:a、b两数之间的距离一定要表示成两数之差的绝对值,也就是|a-b|,如:|2+5|的几何意义先要改写差的形式:|2-(-5)|或|5-(-2)|,所以|2+5|的几何意义是:数轴上2、-5对应的两数之间的距离或数轴上5、-2对应的两数之间的距离。 三、利用数轴探索最小值问题 探索1:求|x-1|的最小值是多少? 因为|x-1|表示的是数轴上x到1之间的距离,所以,当 x=1 时,|x-1|有最小值是:0。 在这里,老师一定要让学生实际操作,在数轴上移动数x的位置,体会x到1的距离发生怎样的变化,让学生真正理解当x=1时,|x-1|有最小值是0,这对后面的继续探索很重要。 探索2、求|x-1|+|x-2|的最小值是多少? 在经历了“|x-1|的最小值”探索后,现在我们来看“|x-1|+|x-2|的最小值是多少”这个问题。根据绝对值的几何意义,我们知道|x-1|+|x-2|表示的是数轴上x对应的这个数到1的距离与到2的距离之和,因为在“|x-1|+|x-2|”中,字母x表示的同一个数,所以“求|x-1|+|x-2|的最小值”我们翻译一下就是:在数轴上找一个点,使这个点到1和2的距离之和对小。 如图所示,我们看到1和2把数轴分成了三部分,分别是:1的左边、1和2之间、2的右边。那么x分别在这三段里面,它会不会影响|x-1|+|x-2|的结果呢?有了这样的疑问,激励同学们一起通过画图来探索当x分别在“1的左边、1和2之间、2的右边”三种不同情况时|x-1|+|x-2|的结果。 我们把x到1和2 的距离分别表示成d1,d2,通过画图我们发现: 当x<1时:d1+d2=2 d1+1>1; 当1≤x≤2时:d1+d2=1(分三种情况观察:x在1的位置时,x在1、2之间时,x在2的位置时d1+d2的值有没有变化); 当x>2时:d1+d2=2 d2+1>1. 通过上面的探索,我们得到:当1≤x≤2时:d1+d2=1是最小值。也就是说当1≤x≤2时,|x-1|+|x-2|的最小值是1。 探索3、求|x-1|+|x-2|+|x-3|的最小值是多少? 如图:求|x-1|+|x-2|+|x-3|的最小值,就是要在数轴上找一个点,使它到1、2、3之间的距离之和最短。 这里为了使探索更加便捷,我们可以利用前面探索的结论,求|x-1|+|x-2|+|x-3|的最小值,我们假如没有中间的|x-2|,只考虑“求|x- 1|+|x-3|的最小值”,那么x应该在1和3之间,这样我们就把x的位置从整个数轴缩小到1和3之间。所以“求|x-1|+|x-2|+|x-3|的最小值”其实就是要在1和3之间找到一个点使|x-2|的值最小,那么|x-1|+|x-2|+|x-3|的值就最小,在探索1中我们知道当x=2时,|x-2|的值最小,并且x=2满足在1和3之间,我们把x=2带入原式就可以求出|x-1|+|x-2|+|x-3|的最小值。 通过上面的分析,我们得到:当x=2时,|x-1|+|x-2|+|x-3|的最小值是2。 经过探索1、2、3后,组织同学们总结一下:求一个、两个绝对值的和、三个绝对值的和……最小值问题时我们分别是找到一个点,两个点之间,一个点…… 是不是可以大胆的提出猜想:求奇数个绝对值的和最小值时,找到的是一个点,求偶数个绝对值的和最小值时找到的范围是两个点之间。有了这样的猜想,我们来验证一下:

相关文档
最新文档