动态规划的matlab算法

动态规划的matlab算法
动态规划的matlab算法

动态规划的matlab算法,源码来自书上,只作分享用

function

[p_opt,fval]=dynprog(x,DecisFun,ObjFun,TransFun)

k=length(x(1,:));

x_isnan=~isnan(x);

f_vub=inf;

f_opt=nan*ones(size(x));

d_opt=f_opt;

t_vubm=inf*ones(size(x));

tmp1=find(x_isnan(:,k));

tmp2=length(tmp1);

for i=1:tmp2

u=feval(DecisFun,k,x(i,k));

tmp3=length(u);

for j=1:tmp3

tmp=feval(ObjFun,k,x(tmp1(i),k),u(j));

if tmp<=f_vub

f_opt(i,k)=tmp;

d_opt(i,k)=u(j);

t_vub=tmp;

end

end

end

%??Dò????

for ii=k-1:-1:1

tmp10=find(x_isnan(:,ii));

tmp20=length(tmp10);

for i=1:tmp20

u=feval(DecisFun,ii,x(i,ii));

tmp30=length(u);

for j=1:tmp30

tmp00=feval(ObjFun,ii,x(tmp10(i),ii),u(j));

tmp40=feval(TransFun,ii,x(tmp10(i),ii),u(j)); tmp50=x(:,ii+1)-tmp40;

tmp60=find(tmp50==0);

if ~isempty(tmp60)

tmp00=tmp00+f_opt(tmp60(1),ii+1);

if tmp00<=t_vubm(i,ii)

f_opt(i,ii)=tmp00;

d_opt(i,ii)=u(j);

t_vubm(i,ii)=tmp00;

end

end

end

end

end

p_opt=[];

tmpx=[];

tmpd=[];

tmpf=[];

tmp0=find(x_isnan(:,1));

fval=f_opt(tmp0,1);

tmp01=length(tmp0);

for i=1:tmp01

tmpd(i)=d_opt(tmp0(i),1);

tmpx(i)=x(tmp0(i),1);

tmpf(i)=feval(ObjFun,1,tmpx(i),tmpd(i));

p_opt(k*(i-1)+1,[1,2,3,4])=[1,tmpx(i),tmpd(i),tmpf(i)]; for ii=2:k

tmpx(i)=feval(TransFun,ii-1,tmpx(i),tmpd(i));

tmp1=x(:,ii)-tmpx(i);

tmp2=find(tmp1==0);

if ~isempty(tmp2)

tmpd(i)=d_opt(tmp2(1),ii);

end

tmpf(i)=feval(ObjFun,ii,tmpx(i),tmpd(i));

p_opt(k*(i-1)+ii,[1,2,3,4])=[ii,tmpx(i),tmpd(i),tmpf(i) ];

end

end

动态规划-图论

§1动态规划模型 如图所示,给定一个线路网络,两点之间连线上的数字表示 两点间距离,试求一条从A到E的路线,使总距离为最短。Mattlab求解: 首先利用Excel建立两个工作表edge和n分别存储图的上三 角阵和顶点数量。其中edge= 99999 5 2 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 7 99999 99999 99999 99999 99999 99999 99999 99999 6 3 99999 99999 99999 99999 99999 99999 99999 99999 99999 6 99999 99999 99999 99999 99999 99999 99999 99999 3 8 99999 99999 99999 99999 99999 99999 99999 99999 1 99999 99999 99999 99999 99999 99999 99999 99999 99999 3 99999 99999 99999 99999 99999 99999 99999 99999 7 99999 99999 99999 99999 99999 99999 99999 99999 99999 n=9,然后在Matlab调入以上数据。同时将自编的动态规划 软件“dynamic.m”调入当前目录之中,在Matlab命令窗口

输入dynamic,回车后则在窗口显示出路径Path 和距离distance §2 最小生成树 例1 某工厂要架设局域网联通工厂各个部门。已知工厂有7个部门,各个部门间铺设网线的距离如上图所示,计算出铺设网线的最短距离。 Matlab 的算法: 首先,将上图的邻接矩阵存储为G ,顶点数存储为N ;即:G= 99999 50 60 99999 99999 99999 99999 50 99999 99999 65 40 99999 99999 60 99999 99999 52 99999 99999 45 99999 65 52 99999 50 30 42 99999 40 99999 50 99999 70 99999 99999 99999 99999 30 70 99999 99999 99999 99999 45 42 99999 99999 99999 2 5 3 1 4 7 6 50 60 45 65 52 40 50 70 30 42

数字图像处理matlab代码

一、编写程序完成不同滤波器的图像频域降噪和边缘增强的算法并进行比较,得出结论。 1、不同滤波器的频域降噪 1.1 理想低通滤波器(ILPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像 title('加噪后的图像'); s=fftshift(fft2(I4)); %将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n1=floor(M/2); %对M/2进行取整 n2=floor(N/2); %对N/2进行取整 d0=40; %初始化d0 for i=1:M for j=1:N d=sqrt((i-n1)^2+(j-n2)^2); %点(i,j)到傅立叶变换中心的距离 if d<=d0 %点(i,j)在通带内的情况 h=1; %通带变换函数 else %点(i,j)在阻带内的情况 h=0; %阻带变换函数 end s(i,j)=h*s(i,j); %ILPF滤波后的频域表示

end end s=ifftshift(s); %对s进行反FFT移动 s=im2uint8(real(ifft2(s))); %对s进行二维反离散的Fourier变换后,取复 数的实部转化为无符号8位整数 subplot(1,3,3); %创建图形图像对象 imshow(s); %显示ILPF滤波后的图像 title('ILPF滤波后的图像(d=40)'); 运行结果: 1.2 二阶巴特沃斯低通滤波器(BLPF) I1=imread('eight.tif'); %读取图像 I2=im2double(I1); I3=imnoise(I2,'gaussian',0.01); I4=imnoise(I3,'salt & pepper',0.01); figure,subplot(1,3,1); imshow(I2) %显示灰度图像 title('原始图像'); %为图像添加标题 subplot(1,3,2); imshow(I4) %加入混合躁声后显示图像 title('加噪后的图像'); s=fftshift(fft2(I4));%将灰度图像的二维不连续Fourier 变换的零频率成分 移到频谱的中心 [M,N]=size(s); %分别返回s的行数到M中,列数到N中n=2; %对n赋初值

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

基于MATLAB的图像处理的基本运算

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 基于MATLAB的图像处理的基本运算 初始条件: 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1)能够对图像亮度和对比度变化调整,并比较结果 (2)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的和旋转操作,并保存,比较几 种插值的效果 (3)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 (4)对图像加入各种噪声,比较效果。 时间安排: 指导教师签名:年月日 系主任(或责任教师)签名:年月日 目录 摘要.......................................................................................................................... 错误!未定义书签。 1 MATLAB简介 ........................................................................................................ 错误!未定义书签。2图像选择及变换................................................................................................... 错误!未定义书签。 2.1 原始图像选择读取....................................................................................... 错误!未定义书签。 2.1.1 原理图的读入与基本变换 .................................................................... 错误!未定义书签。

最短路dijkstra算法Matlab程序

function [c0,c,path0,path]=dijkstra(s,t,C,flag) % Use the Dijkstra's algorithm to find the shortest path from % s to t and can also find the shortest path between s and all % the other points. % Reference: Graph Theory with Applications by J. A. Bondy and % U. S. R. Murty. % Input -- s is the starting point and also is the point s. % -- t is the given terminal point and is the point t. % -- C \in R^{n \times n}is the cost matrix, where % C(i,j)>=0 is the cost from point i to point j. % If there is no direct connection between point i and % j, C(i,j)=inf. % -- flag: if flag=1, the function just reports the % shortest path between s and t; if flag~=1, the % function reports the shortest path between s and t, % and the shortest paths between s and other points. % Output -- c0 is the minimal cost from s to t. % -- path0 denotes the shortest path form s to t. % -- c \in R{1\times n} in which the element i is the % minimal cost from s to point i. % -- path \in R^{n \times n} in which the row i denotes % the shortest path from s to point i. % Copyright by MingHua Xu(徐明华), Changhzou University, 27 Jan. 2014. s=floor(s); t=floor(t); n=size(C,1); if s<1 || t < 1 || s > n || t > n error(' The starting point and the terminal point exceeds the valid range'); end if t==s disp('The starting point and the terminal point are the same points'); end label=ones(1,n)*inf; label(s)=0; S=[s]; Sbar=[1:s-1,s+1:n]; c0=0; path=zeros(n,n); path(:,1)=s; c=ones(1,n)*inf; parent=zeros(1,n); i=1; % number of points in point set S. while i label(S(k))+C(S(k),Sbar(j)) label(Sbar(j))=label(S(k))+C(S(k),Sbar(j)); parent(Sbar(j))=S(k); end end

动态计划求解方法的Matlab实现及应用[]

动态规划求解方法的Matlab实现及应用[1].txt我自横刀向天笑,笑完我就去睡觉。你的手机比话费还便宜。路漫漫其修远兮,不如我们打的吧。第 %卷第 ,期信息工程大学学报 S>:+% <>+, !""’年 >月 T>8D3F: >C 53C>DEFB2>3 G3?23@@D23? 032H@DA2BI 6@N+!""’ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !! 动态规划求解方法的 !"#$"%实现及应用 于斌,刘姝丽,韩中庚 <信息工程大学信息工程学院,河南郑州 #’"""!) 摘要:文章对动态规划问题的求解方法进行了分析研究,根据问题的特点、难点和关键点做了 针对性的处理,然后用 !"#$"%做了实现尝试,从而实现了“最佳组队”和“最短路线”等问题的 求解。实践证明所采用方法和程序都是有效的。 关键词:动态规划;基本方程;!"#$"%实现;最佳组队 中图分类号:* !!&+,文献标识码:-文章编号:&%.& $ "%.,

$ "# !"#$"% &’"$(>"#(*+ *, #-’ ./+"0(1 23*43"00(+4 5663*"1-"+7 8#9 566$(1"#(*+ /0 123,450 6789:2,。-< =7>3?9?@3? <53AB2B8B@ >C 53C>DEFB2>3 G3?23@@D23?,53C>DEFB2>3 G3?23@@D23? 032H@DA2BI,=7@3?J7>8 #’"""!,K723F) 5%9#3"1#:1I F3F:IJ23? F3L 23H@AB2?FB23? B7@ LI3FE2M ND>?DFEE23? FNND>FM7,F3 @CC@MB2H@ L2AN>AF: 7FA O@@3 L>3@

一些基于matlab的图像处理简单算法

完成图像的灰度化处理: function W=hdbh(f) %f=imread('house.jpg'); [M N Z]=size(f); g=im2double(f); W=zeros(M,N); for x=1:M for y=1:N W(x,y)=0.299*g(x,y,1)+0.587*g(x,y,2)+0.114*g(x,y,3); end end figure,imshow(W),title('灰度处理后的图像') end 完成图像的亮度调整的模块编写 function y=high() f=imread('house.jpg'); g=im2double(f); g1=g+0.3; imshow(g1) 2.完成图像的平移操作 function y=py() f=imread('house.jpg'); g=im2double(f); N=size(f) M=zeros(N(1),N(2)); for x=1:N(1)-100 for y=1:N(2)-100 M(x,y)=g(x+100,y+100); end end imshow(M) 完成对加噪图像的去噪操作(去噪模板任意,模板n*n大小,n值可调)function h=qz(a) f=imread('Desert.jpg'); %读入图片; g=im2double(f); %进行灰度化处理;

N=size(f); %求出此图片的大小; M1=zeros(N(1),N(2)); %建立一个元素全为0的二维矩阵; for x=1:N(1) for y=1:N(2) M1(x,y)=0.299*g(x,y,1)+0.587*g(x,y,2)+0.114*g(x,y,3); %把彩色图像的所有像素点灰度处理; end %关闭for循环; end %关闭for循环; figure,imshow(M1); %显示处理图像; M=imnoise(M1,'salt & pepper',0.05); figure,imshow(M); b=zeros(N(1),N(2)); for x=fix(a/2)+1:N(1)-fix(a/2) for y=fix(a/2)+1:N(2)-fix(a/2) Sum=0; for i=-fix(a/2):fix(a/2) for j=-fix(a/2):fix(a/2) Sum=Sum+M(x+i,y+j); end end b(x,y)=Sum/(a*a); end end figure,imshow(b); 完成对图像的锐化处理(锐化模板任意,突出图像边缘,保留图像背景区域)function y=ruihua(f,x) g=im2double(f); figure; imshow(g);

dijkstra算法的matlab实现

学号: 课程设计 题目Dijkstra算法的MATLAB实现 学院信息工程学院 专业通信工程 班级 姓名 指导教师 2012 年 1 月9 日 课程设计任务书 学生姓名:专业班级:通信 0901班 指导教师:工作单位:信息工程学院 题目: Dijkstra算法的MATLAB实现 初始条件: (1)MATLAB应用软件的基本知识以及基本操作技能 (2)高等数学、线性代数等基础数学中的运算知识 (3)数据结构里面关于Dijkstra算法的基本原理和思想 要求完成的主要任务: 必做题:采用MATLAB选用适当的函数或矩阵进行如下计算 (1)极限的计算、微分的计算、积分的计算、级数的计算、求解代数方程、求解常微分方程; (2)矩阵的最大值、最小值、均值、方差、转置、逆、行列式、特征值的计算、矩阵的相乘、右除、左除、幂运算;

(3)多项式加减乘除运算、多项式求导、求根和求值运算、多项式的部分分式展开、多项式的拟合、插值运算。 选做题:Dijkstra算法的MATLAB实现 时间安排: 第一周,安排任务地点:鉴主17楼实验室 第1-17,周仿真设计地点:鉴主13楼计算机实验室 第18周,完成答辩,提交报告地点:鉴主17楼实验室 指导教师签名:年月日 系主任(或责任教师)签名:年月

目录 摘要................................................................................................................................. I Abstract ......................................................................................................................... II 1 MATLAB的基本运算 .. 0 1.1 基础微积分计算 0 1.1.1 极限的基本运算 0 1.1.2 微分的计算 0 1.1.3 积分的计算 (1) 1.1.4 级数的运算 (1) 1.1.5 求解代数微分方程 (1) 1.1.6 求解常微分方程 (2) 1.2 矩阵的基本运算 (2) 1.2.1 矩阵的最大最小值 (2) 1.2.2 矩阵的均值方差 (3) 1.2.3 矩阵的转置和逆 (3) 1.2.4 矩阵的行列式 (3) 1.2.5 矩阵特征值的计算 (3) 1.2.6 矩阵的相乘 (4) 1.2.7 矩阵的右除和左除 (4) 1.2.8 矩阵的幂运算 (4) 1.3 多项式的基本运算 (4) 1.3.1 多项式的四则运算 (4) 1.3.2 多项式的求导、求根、求值运算 (5) 1.3.3 多项式的部分分式展开 (5) 1.3.4 多项式的拟合 (5) 1.3.5 多项式的插值运算 (6) 2关于Dijkstra的问题描述 (6) 2.1问题的提出 (6) 2.2 Dijkstra算法的算法思想 (7) 2.3 Dijkstra算法的算法原理 (7) 3 Dijkstra算法的设计分析 (8) 3.1 Dijkstra算法部分的设计分析 (8) 3.2 程序主体的设计分析 (9) 4程序源代码与算法思想 (10) 4.1 文件isIn.m的源代码 (10) 4.2 文件default_dat.m的源代码 (11) 4.3 文件input_dat.m的源代码 (11) 4.4 文件menu.m的源代码 (11) 4.5 文件dijkstra.m的源代码 (13) 5 测试报告 (16) 6 心得体会 (17) 7 参考文献 (18)

动态规划 销售人员分配问题(matlab编程)

数学规划课程设计 题目:销售人员费配问题 姓名: 学号: 成绩: 2011年6月

销售人员费配问题 摘要:动态规划程序设计是对解最优化问题的一种途径、一种方法,而不是一种特殊算法,本论文通过对动态规划的基本概念和基本思路,并利用Matlab对动态规划中的销售人员分配问题进行了分析,然后利用Matlab语言进行了程序设计和计算,是复杂问题简单化,避免了繁琐的计算,从而使问题能跟方便地得到解决。 关键词:动态规划销售人员分配问题Matlab语言

一、问题重述 某企业甲、乙、丙三个销售市场,其市场的利润与销售人员的分配有关,现有6个销售人员, 二、问题分析 首先我们对设备的分配规定一个顺序,即先考虑分配给甲市场,其次乙市场,最后丙市场,但分配时必须保证企业的总收益最大。 将问题按分配过程分为三个阶段,根据动态规划逆序算法,可设: 1、阶段数k=1,2,3(即甲、乙、丙三个市场的编号分别为1,2,3); 2、状态变量x k 表示分配给第k 个市场至第3个市场的人员数(即第k 阶段初尚未分配的人员数); 3、决策变量u k 表示分配给第k 市场的人员数; 4、状态转移方程:x k+1=x k -u k ; 5、g k (u k )表示u k 个销售人员分配到第k 个市场所得的收益值,它由下表可查得; 6、f k (x k )表示将x k 个销售人员分配到第k 个市场所得到的最大收益值,因而可得出递推方程: f k (x k )= 6 ,...,1,0max =k u [ g k (u k )+ f k+1(x k -u k )],k=1,2,3 f 4(x 4)=0 三、问题求解 1)k=3时,市场丙的分配方案和总收益. 最大收益:f 3(x 3)=6 ,...,1,0max 3=u [g 3(x 3)]

数字图像去噪典型算法及matlab实现

图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊,可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 代码 I=imread('C:\Documents and Settings\Administrator\桌面\1.gif');%读取图像 J=imnoise(I,'gaussian',0,0.005);%加入均值为0,方差为0.005的高斯噪声 subplot(2,3,1);imshow(I); title('原始图像'); subplot(2,3,2); imshow(J); title('加入高斯噪声之后的图像'); %采用MATLAB中的函数filter2对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; %模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5

dijkstra算法原理及MATLAB代码

Dijkstra算法是寻找最短路径的一种搜索算法,由荷兰科学家提出。 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v 到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2)算法步骤: a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点, 即:U={其余顶点},若v与U中顶点u有边,则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k 的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经 过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 算法描述:通过为每个节点保留目前为止所找到的从s到e的最短路径。为了记录最佳路径轨迹,记录路径上每个节点的前趋,通过回溯法找出最短路径轨迹。

过程如下: 在网上搜索一些版本的Matlab实现方法,感觉都有些毛病。经过修改,得到比较好的效果。[cpp]view plain copy 1.function [ distance path] = Dijk( W,st,e ) 2.%DIJK Summary of this function goes here 3.% W 权值矩阵 st 搜索的起点 e 搜索的终点 4.n=length(W);%节点数 5. D = W(st,:); 6.visit= ones(1:n); visit(st)=0; 7.parent = zeros(1,n);%记录每个节点的上一个节点 8. 9.path =[]; 10. 11.for i=1:n-1

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

MATLAB中GUI在图像处理应用中的设计(包括各种算法)

用MATLAB 进行图像处理算法的界面设计

目录 1.设计目的 (3) 2.题目分析 (3) 3.总体设计 (3) 4.具体设计 (5) 5.结果分析 (34) 6.心得体会 (34) 7.附录代码 (36)

1、设计目的:综合运用MATLAB工具箱实现图像处理的GUI程序设计,利用MATLAB图像处理工具箱,设计和实现自己的Photoshop 。 2、题目分析 利用matlab的GUI程序设计一个简单实用的图像处理程序。该程序应具备图像处理的常用功能,以满足用户的使用。现设计程序有以下基本功能: 1)图像的读取和保存。 2)设计图形用户界面,让用户能够对图像进行任意的亮度和对比度变化调整,显示和对比变换前后的图像。 3)设计图形用户界面,让用户能够用鼠标选取图像感兴趣区域,显示和保存该选择区域。 4)编写程序通过最近邻插值和双线性插值等算法将用户所选取的图像区域进行放大和缩小整数倍的操作,并保存,比较几种插值的效果。 5)图像直方图统计和直方图均衡,要求显示直方图统计,比较直方图均衡后的效果。 6)能对图像加入各种噪声,并通过几种滤波算法实现去噪并显示结果。 7)额外功能。 3、总体设计

图一 软件的总体设计界面布局如上图所示,主要分为2个部分:显示区域与操作区域。显示区域:显示载入原图,以及通过处理后的图像。 操作区域:通过功能键实现对图像的各种处理。 在截图中可见,左部为一系列功能按键如“还原”、“撤销”、“截图”等等;界面正中部分为图片显示部分,界面中下方为系列功能切换选择组。 设计完成后运行的软件界面如下: 图二 与图一先比,运行后的界面更为简洁。 利用“编辑”菜单可调出相应的功能键。例如:

Dijkstra算法

最短路径—Dijkstra算法 Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。 问题描述:在无向图G=(V,E) 中,假设每条边E[i] 的长度为w[i],找到由顶点V0 到其余各点的最短路径。(单源最短路径) 2.算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S 中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。 2)算法步骤: a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边, 则正常有权值,若u不是v的出边邻接点,则权值为∞。 b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短, 则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。 d.重复步骤b和c直到所有顶点都包含在S中。 GPSR路由协议:(车载自组织网络中自适应路由协议研究_李诗雨) 2>基于地理位置的路由 随着科技的发展,现在的车辆通常都会具有全球定位系统,利用这个系统, 车辆可以随时随地查找出自己的地理坐标。于是越来越多的学者开始利用这些定 位系统来制定新的路由,如Greedy Perimeter Stateless Routing(GPSR)}ZO}。GPSR 是影响最广和应用范围最大的一个路由协议。它脱离了传统路由协议需要维护一 个全局静态路由,需要时刻去查看该路由的有效性的方式,而开始将更多的注意 力放到车辆四周的临近车辆,只依赖它们进行短距离的路由计算。在GPSR协议 中[[21],网络节点都可以通过GPS等方法获取自身的地理位置,源节点在发送数据 时会在报文里加入目的节点的GPS坐标,在后面每一跳节点都会查找自己的邻居 车辆,在其中找到一个距离目的节点在地理位置上最近的节点作为下一跳节点。

基于Matlab的动态规划程序实现

动态规划方法的Matlab 实现与应用 动态规划(Dynamic Programming)是求解决策过程最优化的有效数学方法,它是根据“最优决策的任何截断仍是最优的”这最优性原理,通过将多阶段决策过程转化为一系列单段决策问题,然后从最后一段状态开始逆向递推到初始状态为止的一套最优化求解方法。 1.动态规划基本组成 (1) 阶段 整个问题的解决可分为若干个阶段依次进行,描述阶段的变量称为阶段变量,记为k (2) 状态 状态表示每个阶段开始所处的自然状况或客观条件,它描述了研究问题过程的状况。各阶段状态通常用状态变量描述,用k x 表示第k 阶段状态变量,n 个阶段决策过程有n+ 1个状态。 (3) 决策 从一确定的状态作出各种选择从而演变到下一阶段某一状态,这种选择手段称为决策。描述决策的变量称为决策变量,决策变量限制的取值范围称为允许决策集合。用()k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数。用()k k D x Dk(xk)表示k x 的允许决策的集合。 (4) 策略 每个阶段的决策按顺序组成的集合称为策略。由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记为{}11(),(),,()k k k k n n u x u x u x ++ 。可供选择的策略的范围称为允许策略集合,允许策略集合中达到最优效果的策略称为最优策略。从初始状态* 11()x x =出发,过程按照最优策略和状态转移方程演变所经历的状态序列{ } **** 121,,,,n n x x x x + 称为最优轨线。 (5) 状态转移方程 如果第k 个阶段状态变量为k x ,作出的决策为k u ,那么第k+ 1阶段的状态变量1k x +也被完全确定。用状态转移方程表示这种演变规律,记为1(,)k k k x T x u +=。 (6) 指标函数 指标函数是系统执行某一策略所产生结果的数量表示,是衡量策略优劣的数量指标,它定义在全过程和所有后部子过程上,用()k k f x 表示。过程在某阶段j 的阶段指标函数是衡量该阶段决策优劣数量指标,取决于状态j x 和决策j u ,用(,)j j j v x u 表示。 2.动态规划基本方程 (){} 11()min ,,(),()k k k k k k k k k k f x g v x u f x u D x ++=∈???? Matlab 实现 (dynprog.m 文件) function [p_opt,fval]=dynprog (x,DecisFun,SubObjFun,TransFun,ObjFun) % x 是状态变量,一列代表一个阶段的所有状态; % M-函数DecisFun(k,x) 由阶段k 的状态变量x 求出相应的允许决策变量; % M-函数SubObjFun(k,x,u) 是阶段指标函数, % M-函数ObjFun(v,f) 是第k 阶段至最后阶段的总指标函数 % M-函数TransFun(k,x,u) 是状态转移函数, 其中x 是阶段k 的某状态变量, u 是相应的决策变量; %输出 p_opt 由4列构成,p_opt=[序号组;最优策略组;最优轨线组;指标函数值组]; %输出 fval 是一个列向量,各元素分别表示p_opt 各最优策略组对应始端状态x 的最优函数值。

基于MATLAB的图像恢复算法研究

中北大学 课程设计说明书 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 基于MATLAB的图像恢复算法研究 指导教师:职称: 年月日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:学号: 学生姓名:学号: 学生姓名:学号: 课程设计题目:信息处理综合实践: 于MATLAB的图像恢复算法研究起迄日期: 课程设计地点:电子信息科学与技术专业实验室 指导教师: 系主任: 下达任务书日期: 年月日

目录 摘要: (6) 1.图像复原的概念 (6) 1.1图像复原的定义 (6) 1.2 图象恢复与图象增强的异同 (6) 1.3 图象退化的原因 (6) 1.4 维纳滤波的研究历史 (6) 1.5图象退化举例 (7) 2.退化模型 (8) 2.1图象退化模型概述 (8) 2.2连续函数退化模型 (8) 2.3离散函数退化模型 (8) 3.图象复原技术 (9) 3.1无约束恢复 (9) 3.2逆滤波 (9) 3.3 维纳(Wiener)滤波器基本原理 (10) 3.4维纳滤波复原法 (11) 3.5图像复原例图 (12) 4.图像复原的MATLAB实现实例 (13) 5.结束语 (14) 参考文献: (14) 附录: (14) (1).维纳滤波复原源代码: (14) (2).规则化滤波复原程序源代码: (15) (3).Lucy-Richardson复原滤波源代码: (15) (4).盲目去卷积复原源代码: (15)

摘要: 图像复原是图象处理的一个重要课题。图像复原也称图象恢复,是图象 处理中的一大类技术。它的主要目的是改善给定的图像质量。当给定了一幅 退化了的或者受到噪声污染了的图像后,利用退化现象的某种先验知识来重 建或恢复原有图像是复原处理的基本过程。可能的退化有光学系统中的衍 射,传感器非线性畸变,光学系统的像差,摄影胶片的非线性,大气湍流的 扰动效应,图像运动造成的模糊及几何畸变等等。噪声干扰可以由电子成像 系统传感器、信号传输过程或者胶片颗粒性造成。各种退化图像的复原都 可归结为一种过程,具体地说就是把退化模型化,并且采用相反的过程进行 处理,以便恢复出原图像。文章介绍了图象退化的原因,几种常用的图像滤 波复原技术,以及用MATLAB实现图像复原的方法。 1.图像复原的概念 1.1图像复原的定义 图像复原也称图象恢复,是图象处理中的一大类技术。所谓图像复原,是指去除或减轻在获取数字图像过程中发生的图像质量下降(退化)这些退化包括由光学系统、运动等等造成图像的模糊,以及源自电路和光度学因素的噪声。图像复原的目标是对退化的图像进行处理,使它趋向于复原成没有退化的理想图像。成像过程的每一个环节(透镜,感光片,数字化等等)都会引起退化。在进行图像复原时,既可以用连续数学,也可以用离散数学进行处理。其次,处理既可在空间域,也可在频域进行。 1.2 图象恢复与图象增强的异同 相同点:改进输入图像的视觉质量。 不同点:图象增强目的是取得较好的视觉结果(不考虑退化原因);图象恢复根据相应的退化模型和知识重建或恢复原始的图像(考虑退化原因)。 1.3 图象退化的原因 图象退化指由场景得到的图像没能完全地反映场景的真实内容,产生了失真等问题。其原因是多方面的。如: 透镜象差/色差 聚焦不准(失焦,限制了图像锐度) 模糊(限制频谱宽度) 噪声(是一个统计过程) 抖动(机械、电子) 1.4 维纳滤波的研究历史 维纳是著名的数学家,后来被誉为信息理论家。维纳的著作不仅是一个很好的创见,而且具有结合工程的实际意义,是线性滤波理论研究的一个重要的开端. 在第二次世界大战中,由于雷达的发明以及防空炮火控制的任务,把大量有修养的数学家和物理学家都动员到信息科学这个研究领域中来了,这个时候人们活跃于这个领域,并有许多重大的科学创造。数学家维纳对于滤波理论的研究成果,就是这时候重大的科学创见之一。

相关文档
最新文档