第十二章动量矩定理授课时间

第十二章动量矩定理授课时间
第十二章动量矩定理授课时间

§

12-1 质点和质点系的动量矩 1.质点的动量矩 对点O 的动量矩

对 z 轴的动量矩

单位:kg·m2/s

2.质点系的动量矩

对点的动量矩 对轴的动量矩

电教

30分钟

()O M mv r mv

=?r r r r [()]()

O z z M mv M mv =r r r 1

()n O

O i i i L M m v ==∑r r r 1

()

n

z z i i i L M m v ==∑r []O z z

L L =r

O x y z L L i L j L k

=++r r r r

(1) 刚体平移.可将全部质量集中于质心,作为一个质点来计算.

(2) 刚体绕定轴转动

转动惯量

§12-2 动量矩定理

1.质点的动量矩定理,设O 为定点,有

其中,

因此, 称为质点的动量矩定理:质点对某定点的 动量矩对时间的一阶导数,等于作用力对 同一点的矩. 投影式:

2. 质点系的动量矩定理

由于

20分钟

20分钟

10分钟

()

z z C L M mv =r

()

O O C L M mv =r r r i

i i i i z z r v m v m M L ∑=∑=)(2

i i i i i r m r r m ∑=∑=ωω2i i z r m J ∑=ω

z z J L =d d ()()d d O M mv r mv t t =?r r r r d d ()d d r mv r mv t t

=?+?r

r r r d ()d mv F t

=r r

(O 为定点)

d d r v t

=r r 0v mv ?=r r d ()()

d O O M mv M F t =r r r r

d ()()d x x M mv M F t

=r r

d ()()d y y M mv M F t

=r r

d ()()d z z M mv M F t

=r r

()()d ()()()d i e O i i O i O i M m v M F M F t =+r r r r r r

()()d ()()()d i e O i i O i O i M m v M F M F t ∑=∑+∑r r r s r r

()

()0

i O i M F ∑=r r d d d ()()d d d O

O i i O i i L M m v M m v t t t

∑=∑=r

r r r r

§12-3 刚体绕定轴的转动微分方程 主动力: 约束力:

即: 或: 或:

§12-4 刚体对轴的转动惯量

单位:kg ·m2

1. 简单形状物体的转动惯量计算

(1)均质细直杆对一端的转动惯量 (2)均质薄圆环对中心轴的转动惯量 (3)均质圆板对中心轴的转动惯量

电教

30分钟

12,,,n

F F F r r r L L 12

,N N F F r r d

()()()d i z z i z N J M F M F t

ω=∑+∑r r ()z i M F =∑r

d ()d z z i J M F t ω=∑r ()

z z J M F α=∑r 22d ()d z z J M F t

?

=∑r 21

i i n

i z r m J -∑=2

3

1ml J z

=222mR m R R m J i i z =∑=∑=2

2

1mR J O =

授课方式 理论课√ 讨论课□ 习题课□ 实验课□ 上机课□ 技能课□ 其他□

授课题目

§12-5 质点系相对于质心的动量矩定理

§12-6 刚体的平面运动微分方程

目的与要求 掌握质点系相对于质心的动量矩定理,刚体平面运动微分方程的应用。

重点与难点

重点:刚体平面运动微分方程的应用。 难点:刚体平面运动微分方程的应用。

教学基本内容

方法及手段

§12-5 质点系相对于质心的动量矩定理 1.对质心的动量矩

由于 得 有

即:质点系相对质心的动量矩,无论是以相对速度或以绝对速度计算质点系对于质心的动量矩其结果相同.

对任一点O 的动量矩:

2 相对质心的动量矩定理

电教

30分钟

()C C i i

i i i L M m v r m v '==?∑∑r r r r r

C i i C i i ir

L r m v r m v ''=?+?∑∑r r r r r

i C ir

v v v =+r r r ()0

i i C i i C r mv mv v ''?=?=∑∑r r r r C i i ir

L r m v '=?∑r r r ()O C C

i i L r r m v '=+?∑r r r r

C i i i i i

r mv r mv '=?+?∑∑r r r r

,i i C i i i C

m v m v r m v L '=?=∑∑r r r r r O C C C

L r mv L =?+r r r r

()O C C

M mv L =+r r r

()d ()d e C

C i L M F t

=?∑r

r r

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Ox y内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v ? t mab ωω3 cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C,A C = e ;轮子半径为R,对轴心A 的转动惯量为JA ;C 、A、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 ? 轮子角速度R v A =ω? 质心C 的速度)(e R R v C B v A C += =ω? ?轮子的动量(A C mv R e R mv p += =?方向水平向右) ?对B点动量矩ω?=B B J L ? 由于? 2 22)( )( e R m me J e R m J J A C B ++-=++= 故[ ] R v e R m me J L A A B 2 2)( ++-=? (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量( )(e v m mv p A C ω+==?方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-13 如图所示,有一轮子,轴的直径为50 m m,无初速地沿倾角?=20θ的轨道滚下,设只滚不滑,5秒内轮心滚动的距离为s = 3 m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图(a)所示,根据刚体平面运动微分方程有 ? F mg ma C -=θsin ? (1) J Cα = Fr ? ?(2) 因轮子只滚不滑,所以有 a C =αr (3)

012 第十二章 动量矩定理

第12章 动量矩定理 通过上一章的学习我们知道动量是表征物体机械运动的物理量。但是在某些情况下,一个物体的动量不足以反映它的运动特征。例如,开普勒在研究行星运动时发现,行星在轨道上各点的速度不同,因而动量也不同,但它的动量的大小与它到太阳中心的距离之乘积—称为行星对太阳中心的动量矩,总是保持为常量,可见,在这里,行星对太阳中心的动量矩比行星的动量更能反映行星运动的特征。 在另一些情况下,物体的动量则完全不能表征它的运动。例如,设刚体绕着通过质心C 的z 轴转动。因为不论刚体转动快慢如何,质 心速度C v 总是等于零,所以刚体的动量也总是零。但是,刚体上各质点的动量大小与其到z 轴的距离的乘积之和—即刚体对z 轴的动量矩却不等于零。可见,在这里,不能用动量而必须用动量矩来表征刚体的运动。 §12-1 质点动量矩定理 例2.人造地球卫星本来在位于离地面600km h =的圆形轨道上,如图所示,为使其进入410km r =的另一圆形轨道,须开动火箭,使卫星在A 点的速度于很短时间内增加0.646km/s ,然后令其沿椭圆轨道自由飞行到达远地点B ,再进入新的圆形轨道。问:(1)卫星在椭圆轨道的远地点B 处时的速度是多少?(2)为使卫星沿新的圆形轨道运行,当它到达远地点B 时,应如何调整其速度?大气阻力及其它星球的影响不计。地球半径6370km R =。 图12-5 解:首先求出卫星在第一个圆形轨道上的速度,可由质点动力学方程求出。卫星运行时只受地球引力的作用,即 2 2 () R F mg R x =+ 式中x 是卫星与地面的距离。当卫星沿第一圆形轨道运动时,有

22 2 ()()v R m mg R h R h =++ 即 2 2 () gR v R h =+ (b ) 将6370km R =,600km h =,9.8m/s g =代入上式,得卫星在第一个圆形轨道上运动的速度 17.553km/s v = 所以卫星在椭圆轨道上的A 点的速度为 7.5530.6468.199km/s A v =+= 卫星在椭圆轨道上运动时,仍然只受地球引力作用,而该引力始终指向地心O ,对地以O 的矩等于零,所以卫星对地心O 的动量矩应保持为常量。设卫星在远地点B 的速度为B v ,则有 A A B B r v r v = 所以 4 63706008.199 5.715km/s 10A B A B r v v r += ?=?= 设卫星沿新的圆形轨道运行时所需的速度为2v ,则 22 2 2 4 9.86370 6.306km/s 10gR v r ?=== 由此可见,为使卫星沿着第二个圆形轨道运行,当它沿椭圆轨道到达B 点时,应再开动火箭,使其速度增加一个值 20.591km/s B B v v v ?=-= 顺便指出,在(b )式中令0h →,就得到7.9km/s v =,这就是为使卫星在离地面不远处作圆周运动所需的速度,称为第一宇宙速度。 §12-2 质点系动量矩定理 例1.质量为1m 、半径为R 的均质圆轮绕定轴O 转动,如图所示。轮上缠绕细绳,绳端悬挂质量为2m 的物块,试求物块的加速度。均质圆 轮对于O 轴的转动惯量为211 2 O J m R =。

动量定理和定量矩定理

第十二章 动量定理和动量矩定理 本章研究的两个定理 动量定理——力系主矢量的运动效应反映; 动量矩定理——力系主矩的运动效应反映。 一.质点系质量的几何性质 1. 质心 质点系的质量中心,其位置有下式确定: m r m r i i c ∑= ∑= i m m 其投影式为 m x m x i i c ∑= , m y m y i i c ∑= , m z m z i i c ∑= 2. 刚体对轴的转动惯量 定义:∑= 2i i Z r m I 为刚体对z 轴的转动惯量或)(2 2i i i Z y x m I +=∑ 影响Z I 的因素?? ? ??是常量与刚体是固连在一起时若轴的位置有关与转轴量的分布有关与刚体的质量多少和质z I z z 单位:2kgm 物理意义:描述刚体绕z 轴时惯性大小的度量。 Z I 的计算方法: (1) 积分法 例12.1已知:设均质细长杆为l ,质量为m 。求其对于过质心且与杆的轴线垂直的轴z 的转动惯量。 解:建立如图12.2所示坐标,取微段dx 其质量为dx l m dm = ,则此杆对轴z 的转动惯

量为:12 2 2220 ml dx x l m I l z ==? 例12.2已知:如图12.3所示设均质细圆环的半径为R ,质量为m ,求其对于垂直于圆 环平面且过中心O 的轴的转动惯量。 解:将圆环沿圆周分为许多微段,设每段的质量为i m ,由于这些微段到中心轴的距离都等于半径R ,所以圆环对于中心轴z 的转动惯量为: 222mR m R R m I i i z ===∑∑ 例12.3已知:如图12.4所示,设均质薄圆板的半径为R ,质量为m ,求对于垂直于板面且过中心O 的轴z 的转动惯量。 解:将圆板分成无数同心的细圆环,任一圆环的半径为r ,宽度为dr ,质量为 rdr R m dm ππ22= ,由上题知,此圆环对轴z 的转动惯量为dr r R m dm r 32 2 2=,于是,整个圆板对于轴z 的转动惯量为: 23 02 212mR dr r R m I R z ==? (2) 回转半径(惯性半径) 设刚体对轴z 的转动惯量为Z I ,质量为m ,则由式m I z z =ρ定义的长度,称为刚 体对轴z 的回转半径。 例如:均质杆(图12.2) 122ml I z = l l 289.012 2 ==ρ 均质圆环(图12.3) 2 mR I z = R =ρ

12第十二章 动量矩定理

1 质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 ( ) 2 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。 ( ) 3 刚体对某轴的回转半径等于其质心到该轴的距离。( ) 4 如果作用于质点系上的所有外力对固定点O 的主矩不为零,那么,质点系的动量矩一定不守恒。( ) 5 如果质点系所受的力对某点(或轴)的矩恒为零,则质点系对该点(或轴)的动量矩不变。( ) 6 图中所示已知两个均质圆柱,半径均为R ,质量分别为2m 和3m ,重物的质量为1m 。重物向下运动的速度为V ,圆柱C 在斜面上只滚不滑,圆柱O 与绳子之间无引对滑动,则系统 对O 轴的动量矩为vR m R m vR m H o 12 232 ++=ω。( ) 7 图中已知均质圆轮的半径为R ,质量为m ,在水平面上作纯滚动,质心速度为C v ,则轮子对速度瞬心I 的动量矩为R mv H c I =。( ) 1 已知刚体质心C 到相互平行的z z 、'轴的距离分别为b a 、,刚体的质量为m ,对z 轴的转动惯量为z J ,则' z J 的计算公式为__________________。

A .2)(b a m z z ++='J J ; B .)(2 2b a m z z -+=' J J ; C.)(2 2b a m z z --=' J J 。 2 两匀质圆盘A 、B ,质量相等,半径相同,放在光滑水平面上,分别受到F 和' F 的作用,由静止开始运动,若' F F =,则任一瞬间两圆盘的动量相比较是_____________________。 A.B A p p >; B.B A p p <; C.B A p p =。 3 在一重W 的车轮的轮轴上绕有软绳,绳的一端作用一水平力P ,已知车轮的半径为R ,轮轴的半径为r ,车轮及轮轴对中心O 的回转半径为ρ,以及车轮与地面间的滑动摩擦系数为f ,绳重和滚阻皆不计。当车轮沿地面作平动时,力P 的值为_________________。 A.ρ/fWR P =; B.r fWR P /=; C.r fW P /ρ=;④ fW P =。

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

第十三章动量矩定理

第十三章 动量矩定理 §13-1质点和质点系的动量矩 一、质点的动量矩 含义:质点相对某点“转动”运动强度。瞬时量。 二、质点系的动量矩 1.对定点: 表征质系相对定点O 点“转动”运动强度的量。 2.对质点C 绝对动量矩: 相对动量矩: 可证: 3. 对定点O 与对质心动量矩的关系: 对质心的绝对动量矩=相对动量矩 可证: 4. 转动刚体的动量矩(角动量): 若任意瞬时的角速度为ω,则刚体对于固定轴z 轴的动量矩为 2 2i i i i i i i z r m r m v m r L ∑=?∑=∑=ωω 式中 2 i i z r m J ∑= 称为刚体对z 轴的转动惯量,它是描述刚体的质量对z 轴分布状态的一个物理量,是刚体转动惯性的度量。代入后得 ωz z J L = 即,刚体对转动轴的动量矩等于刚体对该轴的转动惯量与角速度的乘积。

§13-2 动量矩定理 一. 质点动量矩定理 如图所示质点M 的动量对于O 点的矩,定义为质点对于O 点的动量矩,即 v r v M m m O ?=)( 质点对于O 点的动量矩为矢量,它垂直于矢径r 与动量mv 所形成的平面,指向按右手法则确定,其大小为 mvd OMD m O ==?2)(v M 将上式对时间求一次导数,有 )()()(F M F r v r v r v M O O m dt d m dt d m dt d =?=?+?= 得 )()(F M v M O O m dt d = 上式为质点的动量矩定理,即:质点对固定点O 的动量矩对时间的一阶导数等于作用于质点上的力对 同一点的力矩。 二.质系动量矩定理 设质系内有n 个质点,对于任意质点M i 有 n i m dt d e i i i O i i O 1)()()()()(=+=F M F M v M O 式中) ()(,e i i i F F 分别为作用于质点上的内力和外力。求n 个方程的矢量和有 ∑∑∑===+=n i e i O n i n i i i O i i O m dt d 1 ) (11)()()()(F M F M v M 式中 ∑==n i i i O 1 ) (0)(F M ,∑∑===?=n i n i e O i e i O 1 1 )() ()(M F r F M (e)i 为作用于系统上的外力系对于O 点的主矩。交换左端求和及求导的次序,有 ∑∑===n i n i i i O i i O m dt d m dt d 1 1)()(v M v M 令 ∑∑==?== n i n i i i i i O O m m 1 1 )(i v r v M L O L 为质系中各质点的动量对O 点之矩的矢量和,或质系动量对于O 点的主矩,称为质系对O 点的动量矩。 由此得 ) (e O O dt d M L = 上式为质系动量矩定理,即:质系对固定点O 的动量矩对于时间的一阶导数等于外力系对同一点的主矩。 (1)具体应用时,常取其在直角坐标系上的投影式

梁坤京理论力学第十二章动量矩定理课后答案

动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: x a cos t y bsin2 t 式中a 、b 和 为常量。求质点对原点 O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 V x dx sin t dt a V y dy 2b cos2 t 质点对点 O 的动量矩为 L O M o (mV x ) M 0( mV y ) mv x y mv y x m ( a sin t) bsin2 t m 2b cos2 t acos t 2mab cos 3 t 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。 轮子轴心为A,质心为C, AC = e ;轮子半径为 R,对轴心A 的转动惯量为J A ; C 、A 、B 三点在同一铅直线上。(1 )当轮子只 滚不滑时,若 V A 已知,求轮子的动量和对地面上 B 点的动量矩。(2)当轮子又滚又滑时, 若V A 、 已知,求轮子的动量和对地面上 B 点的动量矩。 解:(1)当轮子只滚不滑时 B 点为速度瞬心。 轮子角速度 V A R 质心C 的速度V C BC R e 轮子的动量 p mv C mv A (方向水平向右) R 对B 点动量矩L B J B 2 2 2 由于 J B J C m (R e) J A me m (R e) 故 L B J A me 2 m (R e )2 食 (2)当轮子又滚又滑时由基点法求得 C 点速 度。 V C V A V CA V A e 轮子动量 p mv C m(v A e) (方向向右) 对B 点动量矩 L B mv C BC J C m(v A 2 e) (R e) (J A me) mv A (R e) (J A mRe) 12-13 如图所示,有一轮子,轴的直径为 50 mm 无初速地沿倾角 20的轨道滚下,设 只滚不滑,5秒内轮心滚动的距离为 s =3m 。试求轮子对轮心的惯性半径。 解:取轮子为研究对象,轮子受力如图( a )所示,根据刚体平面运动微分方程有 ma C mgsi n F ( 1) J C = Fr ( 2) 因轮子只滚不滑,所以有 a c = r ( 3) ? 12

第12章 动量矩定理(田)

第十二章 动量矩定理 一、填空题 1.如下(1)图所示,在提升重为G的物体A时,可在半径为r的鼓轮上作用一力偶M。已知鼓轮对轴O的转动惯量为I,某瞬时鼓轮的角加速度为α,则该瞬时,系统对轴O的动量矩定理可写成______________。 2.如下(2)图所示,轮B由系杆AB带动在固定轮A上无滑动滚动,两圆的半径分别为R,r。若轮B的质量为m,系杆的角速度为ω,则轮B对固定轴A的动量矩大小是_______________。 3.图(3)中匀质圆盘在光滑水平面上作直线平动,图(4)中匀质圆盘沿水平直线作无滑动滚动。设两圆盘的质量皆为m,半径皆为r,轮心O速度皆为v,则图示瞬时,它们各自对轮心O和对与地面接触点D的动量矩分别为:(3)LO =___________ ;LD =_____________________; (4)LO =_____________;LD =_____________________。 二、选择题 1.如下图(1)所示,已知两个匀质圆轮对转轴转动惯量分别为I A,I B,半径分别为RA,RB,作用在A轮上的转矩为M,则系统中A轮角加速度的大小为( )。 2 2A 2 2B 2 A A B A A 222A D C I I M B A B A B A B A A B B R I R I MR I M R I R I MR +==+=+=αααα、;、;、;、 2.如下图(2)所示,两匀质细杆OA和BC的质量均为m = 8kg,长度均为l = 0.5m, 固连成图所示的T字型构件,可绕通过点O的水平轴转动。当杆OA处于图示水平位置时,该构件的角速度ω = 4rad/s。则该瞬时轴O处反力的铅垂分力NOy的大小为( )。 A.NO=24.5N;B.NO=32.3N;C.NO=73.8N;D.NO=156.8N 3.如果把下图(3)中重为G A 的物体换为图(4)所示的力G A ,在这两种情况下,若把匀质滑轮的角加速度ε1和ε2的大小比较,则有( )。 A . ε1 < ε; B . ε1 > ε; C . ε1 = ε2 (1) (2) (3) (4) (1) (2) (3) (4)

动量定理与动量守恒定律典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

第17章 动量定理和动量矩定理总结

第17章 动量定理和 动量矩定理

工程力学学习指导 第17章 动量定理和动量矩定理 17.1 教学要求与学习目标 1. 正确理解动量的概念,能够熟练计算质点系、刚体以及刚体系的动量。 2. 认真理解有关动量定理、动量守恒定理以及质心运动定理,掌握这些定理的相互关系。 3. 正确而熟练地应用动量定理、动量守恒定理以及质心运动定理解决质点系动力学两类问题,特别是已知运动求未知约束力的问题。 4. 学习动量矩定理时,首先需要认识到,在动力学普遍定理中,动量定理和动量矩定理属于同一类型的方程,即均为矢量方程。而质点系的动量和动量矩,可以理解为动量组成的系统(即动量系)的基本特征量——动量系的主矢和主矩。两者对时间的变化率等于外力系的基本特征量——力系的主矢和主矩。 5. 认真理解质点系动量矩概念,正确计算系统对任一点的动量矩。 6. 熟悉动量矩定理的建立过程,正确应用动量矩定理求解质点系的两类动力学问题。 7. 于作平面运动的刚体,能够正确建立系统运动微分方程和补充的运动学方程,并应用以上方程求解刚体平面运动的两类动力学问题。 17.2 理 论 要 点 17.2.1 质点系的动量 质点系中所有质点动量的矢量和(即质点系动量的主矢)称为质点系的动量。即 i i i m v p ∑=

质点系的动量是自由矢,是度量质点系整体运动的基本特征量之一。具体计算时可采用其在直角坐标系的投影形式,即 ?? ?? ? ?? ?? ===∑∑∑i iz i z i iy i y i ix i x v m p v m p v m p 质点系的动量还可用质心的速度直接表示:质点系的动量等于质点系的总质量与质心速度的乘积,即 C m v p = 这相当于将质点系的总质量集中于质心一点的动量,所以说质点系的动量描述了其质心的运动。 上述动量表达式对于刚体系也是正确的。 17.2.2 质点系动量定理 质点系动量定理建立了质点系动量的变化率与外力主矢量之间的关系。其微分形式为 (e)(e)R d d i i t ==∑p F F 质点系的动量对时间的变化率等于质点系所受外力系的矢量和。式中(e)i i ∑F 或 (e)R F 为作用在质点系上的外力系主矢。 质点系动量定理的积分形式,也称为质点系的冲量定理,即 2 1 (e)(e)21d t i i t i i t ?==∑∑∫p p F I 质点系动量在某时间间隔内的改变量等于质点系所受外力冲量。此式将广 泛应用于求解碰撞问题。 17.2.2 动量守恒定理 1. 质点系动量守恒定理 当外力主矢恒等于零,即(e)R 0=F 时,质点系的动量为一常矢量。即 112C p p == 式中1C 是常矢量,由运动的初始条件决定。 2. 质点系动量在某轴上的投影守恒 质点系的动量定理实际应用时常采用投影式,即

角动量定理及角动量守恒定律

角动量定理及角动量守恒定律 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θsin Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋法则来判断:把右手拇指伸直,其余四指弯曲,弯曲的方向由矢径通过小于1800的角度转向力的方向时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之 间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对 转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θsin Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一 个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、质点的角动量定理及角动量守恒定律 在讨论质点运动时,我们用动量来描述机械运动的状态,并讨论了在机械运动过程中所遵循的动量守恒定律。同样,在讨论质点相对于空间某一定点的运动时,我们也可以用角动量来描述物体的运动状态。角动量是一个很重要的概念,在转动问题中,它所起的作用和(线)动量所起的作用相类似。 在研究力对质点作用时,考虑力对时间的累积作用引出动量定理,从而得到动量守恒定律;考虑力对空间的累积作用时,引出动能定理,从而得到机械能守恒定律和能量守恒定律。至于力矩对时间的累积作用,可得出角动量定理和角动量守恒定律;而力矩对空间的累积作用,则可得出刚体的转动动能定理,这是下一节的内容。本节主要讨论的是绕定轴转动的刚体的角动量定理和角动量守恒定律,在这之前先讨论质点对给定点的角动量定理和角动量守恒定律。 下面将从力矩对时间的累积作用,引入的角动量的概念,讨论质点和刚体的角动量和角动量守恒定律。 1.质点的角动量(Angular Momentum )——描述转动特征的物理量 1)概念 一质量为m 的质点,以速度v 运动,相对于坐标原点O 的位置矢量

动能定理习题及解答

动能定理习题及解答 P314 13-1:已知圆盘半径r=0.5m, m A =3kg, m B =2kg ,力偶矩M=4?, 绳与盘之间无相对滑动; 求:?由0至2π时,力偶M 与物块重力所作功的总和。 解:W=?π ? ?20d 4+ (m A – m B )g ? 2πr = 109.7J P314 13-4:已知长为l ,质量为m 的均质杆OA 以球铰链O 固定,并以等角速度ω绕铅直线转动,杆与铅直线的交角为θ; 求:杆的动能。 解:此杆绕铅直轴作定轴转动,杆的转动惯量为 J z =θχθχ2 222l 0sin l 3m d sin l m =? 杆的动能为 T = 2 z J 21 ω = θω222sin ml 61 P316 13-11: 已知均质杆AB 的质量m=4kg,长l=600mm,均质圆盘 B 的质量为6kg ,半径r=100mm,作纯滚 动。弹簧刚度k=2N/mm,不计套筒A 及弹 簧的质量。连杆在30o角无初速释放; 求:(1)当AB 杆达水平位置而接触弹簧 时,圆盘与连杆的角速度;(2)弹簧的最大压缩量δmax 。 解:(1)该系统初始静止,动能为0;AB 杆达 水平位置时,B 点是AB 杆的速度瞬心,圆盘的角速度ωB =0,设杆的角速度为ωAB ,由动能定理,得 2230sin 203121l mg ml AB ?=-?ω 解得连杆的角速度 ωAB = 4.95 rad/s (2)AB 杆达水平位置接触弹簧时,系统的动能为T 1,弹簧达到最大压缩量δmax 的瞬时,系统再次静止,动能T 2=0,由

T 2 - T 1 = W 12 得 22610max 2 max 22δδωmg k ml AB +-=- 解得 δmax =87.1mm P316 13-12:已知均质轮B 和C 的质量均为m 2,半径均为r,轮B 上的力偶矩M=常量,物A 的质量为m 1; 求: 物A 由静止上移距离s 时的速度和加速度。 解:该系统初动能为零,设物A 移动距离s 时速度为υ,有 θ?ωυsin 0)2121221(12222 1g sm M r m m -=-???+ 式中 r s =?, r υω= (a) 解得 s m m r gr m M )(sin (2211+-= θ υ (b) 将式(a)(或式(b ))对时间求一阶导数,注意υ=. s ,解得 )(sin 211m m r gr m M a +-= θ P317 13-13: 已知动齿轮半径为r ,质量为m 1, 可看成均质园盘;均质曲柄OA 质量为m 2; 定齿轮半径为R 。OA 上的力偶矩M=常量。 机构位于水平面内,初始静止; 求:曲柄转过?角时的角速度和角加速度。 解:该系统初动能为零,设曲柄转过?角时的角速度为ω,有 ?υωωM m r m r R m A A =-+?++?0)21 2121)(3121(21221222 (a ) 式中 ω ωωυr r R r A A A +==,

第十二章动量矩定理授课时间

授课时间 第24课,第 2 周星期 4 第1、2 节课时 2 授课方式理论课√讨论课□习题课□实验课□上机课□技能课□其他□授课题目 第十二章动量矩定理§12-1 质点和质点系的动量矩 §12-2动量矩定理 目的与 要求 掌握质点和质点系的动量矩的概念,动量矩定理的应用。 重点与 难点 重点:动量矩定理的应用。 难点:动量矩定理的应用。 教学基本内容方法及手段§12-1 质点和质点系的动量矩 1.质点的动量矩 对点O的动量矩 对z 轴的动量矩 单位:kg·m2/s 2.质点系的动量矩 对点的动量矩 对轴的动量矩 电教 30分钟 () O M mv r mv =? r r r r () O M mv r mv =? r r r r [()]() O z z M mv M mv = r r r 1 () n O O i i i L M m v = =∑ r r r 1 () n z z i i i L M m v = =∑ r [] O z z L L = r O x y z L L i L j L k =++ r r r r 即

(1) 刚体平移.可将全部质量集中于质心,作为一个质点来计算. (2) 刚体绕定轴转动 转动惯量 §12-2 动量矩定理 1.质点的动量矩定理,设O 为定点,有 其中, 因此, 称为质点的动量矩定理:质点对某定点的 动量矩对时间的一阶导数,等于作用力对 同一点的矩. 投影式: 2. 质点系的动量矩定理 由于 20分钟 20分钟 10分钟 () z z C L M mv =r () O O C L M mv =r r r i i i i i z z r v m v m M L ∑=∑=)(2 i i i i i r m r r m ∑=∑=ωω2i i z r m J ∑=ω z z J L =d d ()()d d O M mv r mv t t =?r r r r d d ()d d r mv r mv t t =?+?r r r r d ()d mv F t =r r (O 为定点) d d r v t =r r 0v mv ?=r r d ()() d O O M mv M F t =r r r r d ()()d x x M mv M F t =r r d ()()d y y M mv M F t =r r d ()()d z z M mv M F t =r r ()()d ()()()d i e O i i O i O i M m v M F M F t =+r r r r r r ()()d ()()()d i e O i i O i O i M m v M F M F t ∑=∑+∑r r r s r r () ()0 i O i M F ∑=r r d d d ()()d d d O O i i O i i L M m v M m v t t t ∑=∑=r r r r r

动量矩定理例题

第12章 动量矩定理 12-1 质量为m 的点在平面Oxy 内运动,其运动方程为: t b y t a x ωω2sin cos == 式中a 、b 和ω为常量。求质点对原点O 的动量矩。 解:由运动方程对时间的一阶导数得原点的速度 t b t y v t a t x v y x ωωωω2cos 2d d sin d d ==-== 质点对点O 的动量矩为 t a t b m t b t a m x mv y mv m M m M L y x O O ωωωωωωcos 2cos 22sin )sin ()()(0??+?-?-=?+?-=+=y x v v t mab ωω3cos 2= 12-3 如图所示,质量为m 的偏心轮在水平面上作平面运动。轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为J A ;C 、A 、B 三点在同一铅直线上。(1)当轮子只滚不滑时,若v A 已知,求轮子的动量和对地面上B 点的动量矩。(2)当轮子又滚又滑时,若v A 、ω已知,求轮子的动量和对地面上B 点的动量矩。 解:(1)当轮子只滚不滑时B 点为速度瞬心。 轮子角速度 R v A =ω 质心C 的速度 )(e R R v C B v A C += =ω 轮子的动量 A C mv R e R mv p += =(方向水平向右) 对B 点动量矩 ω?=B B J L 由于 222)( )( e R m me J e R m J J A C B ++-=++= 故 [] R v e R m me J L A A B 22)( ++-= (2)当轮子又滚又滑时由基点法求得C 点速度。 e v v v v A CA A C ω+=+= 轮子动量 )(e v m mv p A C ω+== (方向向右) 对B 点动量矩 ) ( )()()( )( 2e mR J e R mv me J e R e v m J BC mv L A A A A C C B +++=-+++=+=ωωωω 12-5 图示水平圆板可绕z 轴转动。在圆板上有一质点M 作圆周运动,已知其速度的大小为常量,等于v 0,质点M 的质量为m ,圆的半径为r ,圆心到z 轴的距离为l ,M 点在圆板的位置由?角确定,如图所示。如圆板的转动惯量为J ,并且当点M 离z 轴最远在点M 0时,圆板的角速度为零。轴的摩擦和空气阻力略去不计,求圆板的角速度与?角的关系。 解:以圆板和质点M 为系统,因为系统所受外力(包括重力和约束反力),对z 轴的矩均为零,故系统对z 轴动量矩守恒。在任意时刻M 点的速度包含相对速度v 0和牵连速度v e 。其中ω?=OM v e 。设质点M 在M 0 位置为起始位置,该瞬时系统对z 轴的动量矩为

第12章 动量矩定理

第十二章 动量矩定理 §12—1 质点和质点系的动量矩 一、质点的动量矩 质点Q 的动量对于点O 的矩,定义为质点对于点O 的动量矩 动量矩的单位:kgm 2/s 二、 质点系的动量矩 ()mv r mv M O ?=()OQA r mv mv M O ?=?=2sin ?() i i n i O O v m M L ∑==1 () i i n i z z v m M L ∑==1 ()A Q O mv M z ' '?±=2()[]() mv M mv M z z O =

绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角速度的乘积。 §12—2 动量矩定理 一、质点的动量矩定理 质点的动量矩定理: 质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩。 直角坐标投影式为 []z z O L L =()2 1 1 1 i n i i i n i i i i i n i z z r m r v m v m M L ∑∑∑====?==ω2 1 i n i i z r m J ∑==ω z z J L =()mv dt d r mv dt dr mv r dt d mv M dt d O ?+?=?=)()(()F r mv v mv M dt d O ?+?=()()F M mv M dt d O O =()()()()()()F M m v M dt d F M m v M dt d F M m v M dt d z z y y x x == =

特殊情形: 当质点受有心力F 的作用时,如图11-4所示,力矩0=)(o F M ,则质点对固定点O 的动量矩)(m o v M =恒矢量,质点的动量矩守恒。例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩0=)(o F M ,行星的动量矩 )(m o v M =恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此 恒矢量的大小是不变的,即mvh =恒量,行星的速度v 与恒星到速度矢量的距离h 成反比。

理论力学课后习题 第10章 动能定理其应用 )

C v ? A B C r v 1 v 1 v 1 ω?(a) C C ωC v ωO (a) 第10章 动能定理及其应用 10-1 计算图示各系统的动能: 1.质量为m ,半径为r 的均质圆盘在其自身平面内作平面运动。在图示位置时,若已知圆盘上A 、B 两点的速度方向如图示,B 点的速度为v B ,θ = 45o(图a )。 2.图示质量为m 1的均质杆OA ,一端铰接在质量为m 2的均质圆盘中心,另一端放在水平面上,圆盘在地面上作纯滚动,圆心速度为v (图b )。 3.质量为m 的均质细圆环半径为R ,其上固结一个质量也为m 的质点A 。细圆环在水平面上 作纯滚动,图示瞬时角速度为ω(图c )。 解: 1.2 22222163)2(2121)2(212121B B B C C C mv r v mr v m J mv T =?+=+= ω 2.2 22122222214321)(21212121v m v m r v r m v m v m T +=?++= 3.2 2222222)2(2 12121ωωωωmR R m mR mR T =++= 10-2 图示滑块A 重力为1W ,可在滑道内滑动,与滑块A 用铰链连接的是重力为2W 、长为l 的匀质杆AB 。现已知道滑块沿滑道的速度为1v ,杆AB 的角速度为1ω。当杆与铅垂线的夹角为?时,试求系统的动能。 解:图(a ) B A T T T += )2121(21222211ωC C J v g W v g W ++= 21 221121212211122]cos 22)2 [(22ω?ωω??+?++++=l g W l l v l v l g W v g W ]cos 3 1 )[(2111221222121?ωωv l W l W v W W g +++= 10-3 重力为P F 、半径为r 的齿轮II 与半径为r R 3=的固定内齿轮I 相啮合。齿轮II 通过匀质的曲柄OC 带动而运动。曲柄的重力为Q F ,角速度为ω,齿轮可视为匀质圆盘。试求行星齿轮机构的动能。 解: C OC T T T += 2222)21(212121C C C C OC O r m v m J ωω++= 22P 2P 22Q )2(41)2(21])2(31[21r r r g F r g F r g F ωωω++= 习题10-2图 习题10-3图 B v A C θ (a) v O ω A 习题10-1图 (b) (c) A

第十一章动量矩定理习题解答

习题 11-1质量为m的质点在平面Oxy内运动,其运动方程为: 。其中a、b和w均为常量。试求质点对坐标原点 O的动量矩。 11-2 C、D两球质量均为m,用长为2 l的杆连接,并将其中点固定在轴AB上,杆CD与轴AB的交角为,如图11-25所示。如轴AB以角速度w转动,试求下列两种情况下,系统对AB轴的动量矩。<1)杆重忽略不计;<2)杆为均质杆,质量为2m。b5E2RGbCAP 图11-25 (1> (2> 11-3 试求图11-26所示各均质物体对其转轴的动量矩。各物体质量均为m。 图11-26 (a>

(b> (c> (d> 11-4如图11-27所示,均质三角形薄板的质量为m,高为h,试求对底边的转动惯量Jx。 图11-27 面密度为 在y处 微小区域对于z轴的转动惯量 11-5 三根相同的均质杆,用光滑铰链联接,如图11-28所示。试求其对与ABC所在平面垂直的质心轴的转动惯量。p1EanqFDPw 图11-28 11-6 如图11-29所示,物体以角速度w绕O轴转动,试求物体对于O轴的动量矩。(1> 半径为R,质量为m的均质圆盘,在中央挖去一边长为R的正方形,如图11-32a所示。(2> 边长为4a,质量为

m的正方形钢板,在中央挖去一半径为a的圆,如图11-32b所示。DXDiTa9E3d 图11-29 (1> (2> 11-7如图11-30所示,质量为m的偏心轮在水平面上作平面运动。轮子轴心为A,质心为C,AC=e;轮子半径为R,对轴心A的转动惯量为JA;C、A、B三点在同一直线上。试求下列两种情况下轮子的动量和对地面上B点的动量矩:(1>当轮子只滚不滑时,已知vA;(2>当轮子又滚又滑时,已知vA、w。RTCrpUDGiT 图11-30 (1>

相关文档
最新文档