LED双色显示屏单元板原理图

解决LED显示屏单元板常见故障

12步解决LED显示屏单元板常见故障 LED显示屏单元板故障我们经常会遇到,那么怎么解决所遇到的故障呢?接下来教你12步解决显示屏单元板常见故障。如下: 1 、LED显示屏整板不亮:板子没有接上电源;输入排线插反;输入输出颠倒;电源正负极接反。 2 、LED显示屏本板不亮传输正常: 保护电路损坏。解决办法可以把74HC138第4脚和第5脚短路。 3 、LED显示屏隔三行有一行不亮:4953损坏(是其中一个损坏)。 4 、LED显示屏隔一行亮一行:A信号的问题,请检查74HC245和74HC138是否有虚焊;可以用万用表量74HC138第1脚电压是否等于2.5V左右,如果有更换74HC138;仔细量金针带ICA信号的通路情况。 5 、LED显示屏隔二行亮二行:B信号的问题,请检查74HC245和74HC138是否有虚焊;可以用万用表量74HC138第2脚电压是否等于2.5V左右,如果有更换74HC138;仔细量金针带ICA信号的通路情况。 6 、LED显示屏上半板正常下半板全亮或不亮:如果是T08A接口有这种情况,这是应检查下8行DR数据信号是否通路,如正常先更换74HC245如不好再更换第一个74HC595。 7 、此板上半板和下半板STB和CLK信号是共同的,数据是分开的(如果是T12接口数据也是1个)。如检查T08A 板子是上下半板要分开检查。 8 、如果板子有1颗灯不亮:检查是否虚焊、更换此灯管。 9 、LED显示屏竖着有4颗灯不亮:第一检查74HC595是否有虚焊;第二更换74HC595;第三更换灯管。 10 、LED显示屏在竖着4颗灯里有3颗不亮有1颗正常:更换正常那颗灯管。 11 、如板子从中间或别的位置往后显示不正常:检查数据信号通路情况;更换最后一个正常显示控制灯的74HC595;如未排除更换第一个显示不正常的灯控制的74HC595。每个74HC595 控制8点宽*4点高个灯管。74HC595是用DR数据信号串联起来的也就是DR信号从74HC595的第14脚入到第9脚出接到下一片74HC595的第14脚上至到最后一个74HC595. 比如本板DR数据从金针到74HC345放大后到UR1到UR2到UR3一直到UR8后到输出金针。 12 、有时在调试整屏的过程中前面的模组到后面的模组显示不正常,一般故障是排线没有插好或损坏;也可以用稍长些排线把下面正查的模组排线插到上面不正常的模组上来,看显示如何,也可以把上面不正常处前面正常模组输出接到下一排模组上去看显示如何,看到底是哪个模组出了问题。

单元板扫描方式的识别

单元板扫描方式的识别 怎么识别LED显示屏扫描方式1/2、1/4、1/8 、/16 在一定的显示区域内,同时点亮的行数与整个区域行数的比例,称扫描方式;室内单双色一般为1/16扫描,室内全彩一般是1/8 扫描,室外单双色一般是1/4扫描,室外全彩一般是静态扫描。 目前市场上LED显示屏的驱动方式有静态扫描和动态扫描两种,静态扫描又分为静态实像素和静态虚拟,动态扫描也分为动态实像和动态虚拟;驱动器件一般用国产HC595,台湾MBI5026,日本东芝TB62726,一般有 1/2 扫,1/4扫,1/8扫,1/16扫。 举列说明:一个常用的全彩模组像素为 16*8 (2R1G1B),如果用MBI5026 驱动,模组总共使用的是: 16*8*(2+1+1)=512 ,MBI5026 为 16位芯片,512/16=32 (1)如果用32 个MBI5026芯片,是静态虚拟 (2)如果用16个MBI5026芯片,是动态1/2扫虚拟 (3)如果用8个MBI5026芯片,是动态 1/4扫虚拟 如果板子上两个红灯串连 (4)用24个MBI5026芯片,是静态实像素 (5)用12个MBI5026芯片,是动态1/2扫实像素 (6)用6个MBI5026芯片,是动态1/4扫实像素 在LED单元板,扫描方式有1/16,1/8,1/4,1/2,静态。如果区分呢?一个最简单的办法就是数一下单元板的LED的数目和74HC595的数量。 计算方法:LED的数目除以74HC595的数目再除以8 =几分之一扫描 实像素与虚拟是相对应的:简单来说,实像素屏就是指构成显示屏的红绿蓝三种发光管中的每一种发光管最终只参与一个像素的成像使用,以获得足够的亮度。虚拟像素是利用软件算法控制每种颜色的发光管最终参与到多个相邻像素的成像当中,从而使得用较少的灯管实现较大的分辨率,能够使显示分辨率提高四倍。 看单个模块的IC数量,静态的驱动ic控制16个点, 如果单个模块是32*16个点,里面只有8个ic,那就32*16/16/8=4,即1/4扫描;个人观点,仅供参考,欢迎指正! 在一定的显示区域内,同时点亮的行数与整个区域行数的比例,称扫描方式;室内单双色一般为1/16扫描,室内全彩一般是1/8 扫描,室外单双色一般是1/4扫描,室外全彩一般是静态扫描。 目前市场上LED显示屏的驱动方式有静态扫描和动态扫描两种,静态扫描又分为

LED显示屏常用驱动芯片资料(精)

LED 常用芯片技术资料 1、列电子开关74HC595 (串并移位寄存器) 第14脚DATA ,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 第13脚EN ,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB ,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能 将移入的数据送QA~QH口输出。 第11脚CLK ,时钟口,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR ,复位口,只要有复位信号,寄存器内移入的数据将清空,一般接VCC 。第9脚DOUT ,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也就是驱动输出口,驱动LED 。 2、译码器 74HC138 第1~3脚A 、B 、C ,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A 、B 、C 信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。

3、缓冲器件74HC245 第1脚DIR ,输入输出端口转换用,DIR=“1” A输入B 输出,DIR=“0” B输入A 输出。第2~9脚“A ”信号输入输出端;第11~18脚“B ”信号输入输出端。 第19脚G ,使能端,为“1”A/B端的信号将不导通,为“0”时A/B端才被启用。

4、4953的作用:行驱动管,功率管。 1、3脚VCC , 2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 5、74HC04的作用:6位反相器。 信号由A 端输入Y 端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 6、 74HC126(四总线缓冲器)正逻辑 Y=A 2、SDI 串行数据输入端 3、CLK 时钟信号输入端, 4、LE 数据锁存控制端 5~20、恒流源输出端 21、OE 输出使能控制端 22、SDO 串行数据输出端,级联下一个芯片 23、R-EXT 外接电阻,控制恒流源输出端电流大小

P10单元板故障分析及维修步骤

第一章数字电路简介 为了让读者对LED显示屏采用的控制电路进行深入的分析了解,进而掌握LED显示屏模组的维修技术,这里有必要对数字电路的基础简单介绍一下。 电灯只有亮和灭两种状态,如果我们把灯亮用1表示,灭用0表示,那么1和0就是表示状态的数字量。一连串的1和0就构成了数字信号,完成对数字量进行算术运算和逻辑运算的电路称为数字电路。数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用,由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。 在具体的应用中1表示为高电平,0表示为低电平。数字电路的工作信号在时间上和数值上是不连续变化的。数字信号反映在电路上只有高电平和低电平两种状态,高电平通常为+3.5 v左右,低电平通常为+0.3 v左右。这两种状态很方便地用二极管或三极管的导通、截止即开、关状态来实现。分别用1和0表示这两个状态,就可以用二进制数进行信息的传输和处理。 数字电路研究的主要问题是输入信号的状态(0或1)与输出信号的状态(0或1)之间的因果关系,称为逻辑关系,也就是电路的逻辑功能。它只规定高电平的下限和低电平的上限值,凡大于高电平下限值的都认为是高电平1;凡小于低电平上限值的都认为是低电平0,而不着重研究它们的具体数值 刚才提到的一连串的1和0,连着8位1和0的列如:0110 0101叫8位数字处理电路,通常最靠右边的第一位叫低位,上列中低位数据是1,是高电平。在P10模组中使用的74HC 245就是一种八位移位寄存器,。 现代的数字电路由半导体工艺制成的若干数字集成器件构造而成。逻辑门是数字逻辑电路的基本单元。存储器是用来存储二值数据的数字电路。从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。 1、组合逻辑电路 简称组合电路,它由最基本的的逻辑门电路组合而成。特点是:输出值只与当时的输入值有关,即输出惟一地由当时的输入值决定。电路没有记忆功能,输出状态随着输入状态的变化而变化,类似于电阻性电路,如加法器、译码器、编码器、数据选择器等都属于此类。LED显示屏就是组合逻辑电路的典型应用, 2、时序逻辑电路

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

LED显示屏各芯片管脚定义汇总

一、1.2 LED板的芯片功能 74HC245的作用:信号功率放大。 第1脚DIR,为输入输出转换端口,当DIR=“1”高电平(接VCC)时信号由“A” 端输入“B”端输出,DIR=“0”低电平(接GND)时信号由“B”端输入“A”端输出。 第19脚G,使能端,若该脚为“1”A/B端的信号将不导通,只有为“0”时A/B 端才被启用,该脚也就是起到开关的作用. 第2~9脚“A”信号输入\输出端,A1=B1、、、、、、A8=B8,A1与B1是一组,如果DIR=“1”G=“0”则A1输入B1输出,其它类同。如果DIR=“0”G=“0”则B1输入A1输出,其它类同。 第11~18脚“B”信号输入\输出端,功能与“A”端一样。 第10脚GND,电源地。 第20脚VCC,电源正极。 74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。 第16脚VCC,电源正极 第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 QA~QH的输出由输入的数据控制。

第12脚STB,锁存端,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。 第11脚CLK,时钟端,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR,复位端,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。 第9脚DOUT,串行数据输出端,将数据传到下一个。 第15、1~7脚,并行输出端也就是驱动输出端,驱动LED。 HC16126\TB62726的作用:LED驱动芯片,16位移位锁存器。 备注:HC16126驱动芯片定义和5020,5024,2016等芯片一样 第1脚GND,电源地。 第24脚VCC,电源正极 第2脚DATA,串行数据输入 第3脚CLK,时钟输入 第4脚STB,锁存输入 第23脚输出电流调整端,接电阻调整 第22脚DOUT,串行数据输出 第21脚EN,使能输入 其它功能与74HC595相似,只是TB62726是16位移位锁存器,并带输出电流调整功能,但在并行输出口上不会出现高电平,只有高阻状态和低电平状态。74HC595并行输出口有高电平和低电平输出。TB62726与5026的引脚功能一样,结构相似。

LED显示屏P10单元板故障与维修

P10单元板故障与维修 单元板故障: A.整板不亮 1、检查供电电源与信号线是否连接。 2、检查测试卡是否以识别接口,测试卡红灯闪动则没有识别,检查灯板是否与测试卡同电源地,或灯板接口有信号与地短路导致无法识别接口。(智能测试卡) 3、检测74HC245有无虚焊短路,245上对应的使能(EN)信号输入输出脚是否虚焊或短路到其它线路。 注:主要检查电源与使能(EN)信号。 B.在点斜扫描时,规律性的隔行不亮显示画面重叠 1、检查A、B、C、D信号输入口到245之间是否有断线或虚焊、短路。 2、检测245对应的A、B、C、D输出端与138之间是否断路或虚焊、短路。 3、检测A、B、C、D各信号之间是否短路或某信号与地短路。 注:主要检测ABCD行信号。 C.全亮时有一行或几行不亮 1、检测138到4953之间的线路是否断路或虚焊、短路。 D.在行扫描时,两行或几行(一般是2的倍数,有规律性的)同时点亮 1、检测A、B、C、D各信号之间是否短路。 2、检测4953输出端是否与其它输出端短路。 E.全亮时有单点或多点(无规律的)不亮 1、找到该模块对应的控制脚测量是否与本行短路。 2、更换模块或单灯。 F.全亮时有一列或几列不亮 1、在模块上找到控制该列的引脚,测是否与驱动IC (74HC595/TB62726、、、)输出端连接。 G.有单点或单列高亮,或整行高亮,并且不受控 1、检查该列是否与电源地短路。 2、检测该行是否与电源正极短路。 3、更换其驱动IC。 H.显示混乱,但输出到下一块板的信号正常 1、检测245对应的STB锁存输出端与驱动IC的锁存端是否连接或信号被短路到其它线路。 I.显示混乱,输出不正常 1、检测时钟CLK锁存STB信号是否短路。 2、检测245的时钟CLK是否有输入输出。 3、检测时钟信号是否短路到其它线路。 注:主要检测时钟与锁存信号。

LED显示屏专用驱动芯片详细介绍

目前,LED显示屏专用驱动芯片生产厂家主要有TOSHIBA(东芝)、TI(德州仪器)、SONY(索尼)、MBI{聚积科技}、SITI(点晶科技)等。在国内LED显示屏行业,这几家的芯片都有应用。 TOSHIBA产品的Xing价比较高,在国内市场上占有率也最高。主要产品有TB62705、TB62706、TB62725、TB62726、TB62718、TB62719、TB62727等。其中TB62705、TB62725是8位源芯片,TB62706、TB62726是16位源芯片。TB62725、TB62726分别是TB62705、TB62706的升级芯片。这些产品在电流输出误差(包括位间和片间误差)、数据移位时钟、供电电压以及芯片功耗上均有改善。作为中档芯片,目前”TB62725、TB62726已经逐渐替代了TB62705和TB62706。另外,TB62726还有一种窄体封装的TB62726AFNA芯片,其宽度只有6.3mm(TB62706的贴片封装芯片宽度为8.2mm),这种窄体封装比较适合在点间距较小的显示屏上使用。需要注意的是,AFNA封装与普通封装的引脚定义不一样(逆时针旋转了90度)。TB62718、TB62719是TOSHIBA针对高端市场推出的驱动芯片,除具有普通恒流源芯片的功能外,还增加了256级灰度产生机制(8位PWM)、内部电流调节、温度过热保护(TSD)及输出开路检测(LOD)等功能。此类芯片适用于高端的LED全彩显示屏,当然其价格也不菲。TB62727为TOSHIBA的新产品,主要是在TB62726基础上增加了电流调节、温度报警及输出开路检测等功能,其市场定位介于TB62719(718)与TB62726之间,计划于2003年10月量产。 TI作为世界级的IC厂商,其产品Xing能自然勿用置疑。但由于先期对中国LED市场的开发不力,市场占有率并不高。主要产品有TLC5921、TLC5930和TLC5911等。TLC5921是具有TSD、LOD功能的高精度16位源驱动芯片,其位间电流误差只有±4%,但其价格一直较高,直到最近才降到与TB72726相当的水平。TLC5930为具有1024级灰度(10位PWM)的12位源芯片,具有64级亮度可调功能。TLC5911是定位于高端市场的驱动芯片,具有1024级灰度、64级亮度可调、TSD、LOD等功能的16位源芯片。在TLC5921和TLC5930芯片下方有金属散热片,实际应用时要注意避开LED灯脚,否则会因漏电造成LED灯变暗。 SONY产品一向定位于高端市场,LED驱动芯片也不例外,主要产品有CXA3281N和CXR3596R。CXA3281N是8位源芯片,具有4096级灰度机制(12位PWM)、256级亮度调节、1024级输出电流调节、TSD、LOD和LSD(输出短路检测)等功能。CXA3281N主要是针对静态驱动方式设计的,其最大输出电流只有40mA。CXA3596R是16位源芯片,功能上继承了CXA3281N的所有特点,主要是提高了输出电流(由40mA增加到80mA)及恒流源输出路数(由8路增加到16路)。目前CXA3281N的单片价格为1美元以上,CXA3596R价格在2美元以上。 MBI(聚积科技)的产品基本上与TOSHIBA的中档产品相对应,引脚及功能也完全兼容,除了恒流源外部设定电阻阻值稍有不同外,基本上都可直接代换使用。该产品的价格比TOSHIBA的要低10~20%,是中档显示屏不错的选择。MBI的MBl5001和MBl5016分别与TB62705和TB62706对应,MBl5168千口MBl5026分另(j与TB62725禾口TB62726对应。另外,还有具有LOD功能的其新产品MBl5169(8位源)、MBl5027(16位源)、64级亮度调节功能的MBl5170(8位源)和MBl5028(16位源)。带有LOD及亮度调节功能的芯片采用MBI公司的Share-I-OTM技术,其芯片引脚完全与不带有这些功能的芯片,如MBl5168和MBl5026兼容。这样,可以在不变更驱动板设计的情况下就可升级到新的功能。

LED显示屏单元板维修方法

LED 单元板维修方法 作者:风度翩翩广告https://www.360docs.net/doc/6116836642.html, 1.LED显示屏单元板整板不亮 (1)、检查供电电源与信号线是否连接。 (2)、检查测试卡是否以识别接口,测试卡红灯闪动则没有识别,检查灯板是否与测试卡同电源地,或灯板接口有信号与地短路导致无法识别接口。(智能测试卡)(3)、检测74HC245有无虚焊短路,245上对应的使能(EN)信号输入输出脚是否虚焊或短路到其它线路。 注:主要检查电源与使能(EN)信号。 2.在点斜扫描时,规律性的隔行不亮显示画面重叠。 (1)、检查A、B、C、D信号输入口到245之间是否有断线或虚焊、短路。 (2)、检测245对应的A、B、C、D输出端与138之间是否断路或虚焊、短路。 (3)、检测A、B、C、D各信号之间是否短路或某信号与地短路。 注:主要检测ABCD行信号。 3.全亮时有一行或几行不亮:检测138到4953之间的线路是否断路或虚焊、短路。4.在行扫描时,两行或几行(一般是2的倍数,有规律性的)同时点亮。 (1)、检测A、B、C、D各信号之间是否短路。 (2)、检测4953输出端是否与其它输出端短路。 5.全亮时有单点或多点(无规律的)不亮 (1)、找到该模块对应的控制脚测量是否与本行短路。 (2)、更换模块或单灯。 6.全亮时有一列或几列不亮 (1)、在LED单元板上找到控制该列的引脚,测是否与驱动IC(74HC595/TB62726)输出端连接。 7.有单点或单列高亮,或整行高亮,并且不受控 (1)、检查该列是否与电源地短路。 (2)、检测该行是否与电源正极短路。 (3)、更换其驱动IC。 8.显示混乱,但输出到下一块板的信号正常 (1)、检测245对应的STB锁存输出端与驱动IC的锁存端是否连接或信号被短路到其它线路。 9.显示混乱,输出不正常 (1)、检测时钟CLK锁存STB信号是否短路。 (2)、检测245的时钟CLK是否有输入输出。 (3)、检测时钟信号是否短路到其它线路。 注:主要检测时钟与锁存信号。 10.显示缺色 (1)、检测245的该颜色的数据端是否有输入输出。 (2)、检测该颜色的数据信号是否短路到其它线路。 (3)、检测该颜色的驱动IC之间的级连数据口是否有断路或短路、虚焊。 注:可使用电压检测法较容易找到问题,检测数据口的电压与正常的是否不同,确定LED单元板故障区域。

单元板基本原理简介

在这里给大家介绍一下LED单元板的原理,懂得原理后LED显示屏出现任 何问题都方便准确找出故障及维修。因为各种单元板的工作原理基本相同,这 里以常见的plo半户外型为例。 下面照片是单元板原件的组成: I.电源 注意观察有两个接线柱,一个是电源地另一个是电源正5伏,旁边有注明,一边写的是“UND”即电源地,另一边写的是“tiCC"即电源正5伏,这个很简单,不做过多说

明。 2.电容 这里用到的是电解电容470iiF,让电源输入更加稳定,不会出现突然上电或,突然掉 电,其实做用也不是很大,如果没有它单元板也可以照常工作。 3.138芯片 138芯片全名74HC138D,是很常用的三线八线译码器,即三路输入八路输出,输出脚为1如下图(左)所示,有1。到17共八个脚Y的上面有一个横杠,说明是低电平有效。123脚是输入脚,A的上面没有横杠说明是高电平有效。另外-l56脚为使能脚,这几个脚的作用着重说明一下,只有当4,接低电平并且6接高电平时芯片才响应输入,否则无论怎么输入均无输出,同样有横的为低电平有效,没有横杠的为高电平有效,所有芯片使用都是这个原则大家可以记住。它的真值表如下图(右)所示。 4.04芯片 04芯片全名74HC04D,简单的说它就是六非门或六反 向器,它集成6个单独的非门,所谓非门就是输入低电平输 出高电平,输入高电平输出低电平,就是输入和输出总是相

反的,所以又称为反向器。同样A是输入Y是输出。如右 图所示。 5 .595芯片 595芯片全名74HC595D,这个芯片是单元板的核心 芯片,这个是串行输入并行输出,也称作移位器。Qo-Q7 为8路输出高电平有效,DS为数据输入脚,OE为使能脚 低电平有效,同样只有当OE为低电平时芯片才能正常工作,否则的话任何输入都不会有输出,SH CP为时钟线, 当时钟线有上升沿(即由低电平变高电平的瞬间)的时候 DS脚上的数据才写进芯片,STOP为输出锁存时钟钱, 当该脚电平上升沿时把输入的数据输出。MR为数据清。脚,当该脚为低电平时芯片里面数据清。,Q7’为输出脚,

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放置的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64× 64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为 256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film Transi stor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家 常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装置,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄

LED显示屏常用器件的介绍(精)

LED 显示屏常用器件的介绍 1.IC的管脚功能 IC 芯片分别:74HC245、74HC595、74HC138、74HC04、4953。各IC 管脚功能如下: A: 74HC245功能是放大及缓冲。 20 和1接电源(+5V 19脚和10脚接电源地(GND 当电源是以上接时:输入脚分别为2、3、4、5、6、7、8、9。 输出脚分别为11、12、13、14、15、16、17、18 注:2脚输入时,18脚输出。其它脚以此类推。 B :74HC138功能是8选1译码器,输出为8行。控制行数据。 第8脚GND ,电源地。第15脚VCC ,电源正极第1-3脚A 、B 、C ,输入脚。第4-6脚选通输入端,(一般第5脚为EN )9-15脚和第7脚输出端。 C :74HC595功能是8位串入串、并出移位寄存器。控制列数据。 16脚和10脚接电源(+5V),13脚和8脚接电源地(GND )。 列信号输出脚:1、2、3、4、5、6、7、15。 第一列输出脚为7脚,以此类推。另第八列输出脚为15脚。 数据信号输入脚(Din )为14,数据信号输出脚(Din )为9。 锁存信号脚(L )为12脚,移位信号脚为11脚。

D :74HC04功能是六带缓冲反相器,控制使零信号(EN )。 15脚接电源(+5V),7脚电源地(GND )。 信号输入脚为:1、3、5、9、11、13。 信号输出脚为:2、4、6、8、10、12。 E : 4953行管功能是开关作用,每个行管控制2行。 1脚和3脚接电源(+5V)。 信号输入脚:2、4。 信号输出脚:5、6、7、8。 5脚和6脚为一组输入, 7脚和8脚、5脚和6脚为一组输出。 TB62726与5026 5024 16126 的作用:LED 驱动芯片,16位移位锁存器。 第1脚GND ,电源地。第24脚VCC ,电源正极第2脚DATA ,串行数据输入 第3脚CLK ,时钟输入. 第4脚STB ,锁存输入 . 第23脚输出电流调整端,接电阻调整 第22脚DOUT ,串行数据输出第21脚EN ,使能输入第5-12脚和13-20脚驱动输出端。 其它功能与74HC595相似,只是TB62726是16位移位锁存器,并带输出电流调整功能,但在并行输出口上不会出现高电平,只有高阻状态和低电平状态。74HC595并行输出口有高电平和低电平输出。TB62726与5026 5024的引脚功能一样,结构相似。不同点是TB62726和5026每路输出电压为5-90毫安,5024 16126为3-45毫

led显示屏常用芯片说明

LED 显示屏中常用的芯片说明及原理 Led中常见的芯片有:74HC595列驱动,74HC138译码驱动,74HC245信号放大,74HC4953行扫描等。 1、74HC595 74HC595是硅结构的CMOS器件,兼容低电压TTL电路,遵守JEDEC标准。 74HC595 是具有8位移位寄存器和一个存储器,三态输出功能。移位寄存器和存储器是分别的时钟。数据在SHcp(移位寄存器时钟输入)的上升沿输入到移位寄存器中,在STcp(存储器时钟输入)的上升沿输入到存储寄存器中去。如果两个时钟连在一起,则移位寄存器总是比存储寄存器早一个脉冲。移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。 8位串行输入/输出或者并行输出移位寄存器,具有高阻关断状态。三态。 将串行输入的8位数字,转变为并行输出的8位数字,例如控制一个8位数码管,将不会有闪烁。 2特点 8位串行输入 /8位串行或并行输出存储状态寄存器,三种状态

输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。)可以直接清除 100MHz的移位频率 特点8位串行输入 /8位串行或并行输出存储状态寄存器,三种状态 输出寄存器(三态输出:就是具有高电平、低电平和高阻抗三种输出状态的门电路。)可以直接清除 100MHz的移位频率 3输出能力并行输出,总线驱动;串行输出;标准中等规模集成电路 595移位寄存器有一个串行移位输入(Ds),和一个串行输出(Q7’),和一个异步的低电平复位,存储寄存器有一个并行8位的,具备三态的总线输出,当使能OE时(为低电平),存储寄存器的数据输出到总线。 参考数据 Cpd决定动态的能耗, Pd=Cpd×VCC×f1+∑(CL×VCC^2×f0) F1=输入频率,CL=输出电容 f0=输出频率(MHz) Vcc=电源电压 4、引脚说明符号引脚描述 Q0…Q7 8位并行数据输出,其中Q0为第15脚 GND 第8脚地 Q7’第9脚串行数据输出 MR 第10脚主复位(低电平) SHCP 第11脚移位寄存器时钟输入 STCP 第12脚存储寄存器时钟输入 OE 第13脚输出有效(低电平) DS 第14脚串行数据输入 VCC 第16脚电源

LED显示单元板常见故障

LED显示屏常见故障及其排除方法 LED显示屏常见信号的了解 CLK时钟信号:提供给移位寄存器的移位脉冲,每一个脉冲将引起数据移入或移出一位。数据口上的数据必须与时钟信号协调才能正常传送数据,数据信号的频率必须是时钟信号的频率的1/2倍。在任何情况下,当时钟信号有异常时,会使整板显示杂乱无章。 STB锁存信号:将移位寄存器内的数据送到锁存器,并将其数据内容通过驱动电路点亮LED显示出来。但由于驱动电路受EN使能信号控制,其点亮的前提必须是使能为开启状态。锁存信号也须要与时钟信号协调才能显示出完整的图象。在任何情况下,当锁存信号有异常时,会使整板显示杂乱无章。 EN使能信号:整屏亮度控制信号,也用于显示屏消隐。只要调整它的占空比就可以控制亮度的变化。当使能信号出现异常时,整屏将会出现不亮、暗亮或拖尾等现象。 数据信号:提供显示图象所需要的数据。必须与时钟信号协调才能将数据传送到任何一个显示点。一般在显示屏中红绿蓝的数据信号分离开来,若某数据信号短路到正极或负极时,则对应的该颜色将会出现全亮或不亮,当数据信号被悬空时对应的颜色显示情况不定。 ABCD行信号:只有在动态扫描显示时才存在,ABCD其实是二进制数,A是最低位,如果用二进制表示ABCD信号控制最大范围是16行(1111),1/4扫描中只要AB信号就可以了,因为AB 信号的表示范围是4行(11)。当行控制信号出现异常时,将会出现显示错位、高亮或图像重叠等现象。 故障与排除方法 * 判断问题必须先主后次方式的处理,将明显的、严重的先处理,小问题后处理。短路应为最高优先级。 1、电阻检测法,将万用表调到电阻档,检测一块正常的电路板的某点的到地电阻值,再检测另一块相同的电路板的同一个点测试与正常的电阻值是否有不同,若不同则就确定了问题的范围。 2、电压检测法,将万用表调到电压档,检测怀疑有问题的电路的某个点的到地电压,比较是否与正常值相似,否则确定了问题的范围。 3、短路检测法,将万用表调到短路检测挡(有的是二极管压降档或是电阻档,一般具有报警功能),检测是否有短路的现象出现,发现短路后应优先解决,使之不烧坏其它器件。该法必须在电路断电的情况下操作,避免损坏表。 4、压降检测法,将万用表调到二极管压降检测档,因为所有的IC都是由基本的众多单元件组成,只是小型化了,所以在当它的某引脚上有电流通过时,就会在引脚上存在电压降。一般同一型号的IC相同引脚上的压降相似,根据引脚上的压降值比较好坏,必须电路断电的情况下操作。该方法有一定的局限性,比如被检测器件是高阻的,就检测不到了。 单元板故障: A.整板不亮 1、检查供电电源与信号线是否连接。 2、检查测试卡是否以识别接口,测试卡红灯闪动则没有识别,检查灯板是否与测试卡同电源地,或灯板接口有信号与地短路导致无法识别接口。(智能测试卡) 3、检测74HC245有无虚焊短路,245上对应的使能(EN)信号输入输出脚是否虚焊或短路到其它

LED显示屏驱动芯片的各类及应用

1 引言 LED显示屏主要是由发光二极管(LED)及其驱动芯片组成的显示单元拼接而成的大尺寸平面显示器。驱动芯片性能的好坏对LED显示屏的显示质量起着至关重要的作用。近年来,随着LED市场的蓬勃发展,许多有实力的IC厂商,包括日本的东芝(TOSHIBA)、索尼(SONY),美国的德州仪器(T1),台湾的聚积(MBl)和点晶科技(SITl)等,开始生产LED专用驱动芯片。 2 驱动芯片种类 LED驱动芯片可分为通用芯片和专用芯片两种。所谓的通用芯片,其芯片本身并非专门为LED 而设计,而是一些具有LED显示屏部分逻辑功能的逻辑芯片(如串-并移位寄存器)。而专用芯片是指按照LED发光特性而设计专门用于LED显示屏的驱动芯片。LED是电流特性器件,即在饱和导通的前提下,其亮度随着电流的变化而变化,而不是靠调节其两端的电压而变化。因此专用芯片一个最大的特点就是提供恒流源。恒流源可以保证LED的稳定驱动,消除LED 的闪烁现象,是LED显示屏显示高品质画面的前提。有些专用芯片还针对不同行业的要求增加了一些特殊的功能,如亮度调节、错误检测等。本文将重点介绍专用驱动芯片。 2.1通用芯片 通用芯片一般用于LED显示屏的低档产品,如户内的单色屏,双色屏等。最常用的通用芯片是74HC595。74HC595具有8位锁存、串—并移位寄存器和三态输出。每路最大可输出35mA 的电流(非恒流)。一般的IC厂家都可生产此类芯片。显示屏行业中常用Motorola(Onsemi),Philips及ST等厂家的产品,其中Motorola的产品性能较好。 2.2专用芯片 专用芯片具有输出电流大、恒流等特点,比较适用于电流大,画质要求高的场合,如户外全彩屏、室内全彩屏等。 专用芯片的关键性能参数有最大输出电流、恒流源输出路数、电流输出误差(bit-bit,chip-chip)和数据移位时钟等。 ●最大输出电流 目前主流恒流源芯片的最大输出电流多定义为单路最大输出电流,一般在90mA左右。恒流是专用芯片的最根本特性,也是得到高画质的基础。而每个通道同时输出恒定电流的最大值(即最大恒定输出电流)对显示屏更有意义,因为在白平衡状态下,要求每一路都同时输出恒流电流。一般最大恒流输出电流小于允许最大输出电流。 ●恒流源输出路数 恒流源输出路数主要有8(8位源)和16(16位源)两种规格,现在16位源基本上占主流:如TLC5921,TB62706/TB62726,MBl5026/MBl5016等。16位源芯片主要优势在于减少了芯片尺寸,便于LED驱动板(PCB)布线,特别是对于点间距较小的PCB更是有利。

LED显示屏整屏与单元板维修方法

LED 显示屏整屏与单元板维修方法 宏龙 一、LED显示产品发展历程: LED诞生于1923年,罗塞夫(lossen . o. w)在研究半导体sic时发现掺有杂质的p-n 结,通电后会有光发射出来,由此研制出了发光二极管(led :light emitting diode),但之后LED的应用一直不受重视。随着电子工业的快速发展,在60年代,显示技术得到迅速发展,人们研究出pdp 激光显示等离子显示板、LED 液晶显示器、发光二极管led 、等多种显示技术。由于半导体的制作和加工工艺逐步成熟和完善,发光二极管已日趋在固体显示器中占主导地位。LED之所以受到广泛重视并得到迅速发展,是因为它本身有很多优点。例如:亮度高、工作电压低、功耗小、易于集成、驱动简单、寿命长、耐冲击且性能稳定,其发展前景极为广阔。目前正朝着更高亮度、更高耐气候性和发光密度、发光均匀性、全色化发展。随着发展,人们需要—种大屏幕的显示设备,于是有了投影仪,但是其亮度无法在自然光下使用,于是出现了LED显示器(屏),它具有视角大、亮度高、色彩艳丽的特点。 二、LED大屏幕的发展呈现如下几个发展阶段: 1、第一代:单色LED显示屏 2、以单红色为基色,显示文字及简单图案为主,主要用于通知、通告及客流引导系统。 3、第二代:双基色多灰度显示屏 4、以红色及黄绿色为基色,因没有蓝色,只能称其为伪彩色,可以显示多灰度图像及视频,目前在国广泛应用于电信,银行,税务,医院,政府机构等场合,主要显示标语,公益广告及形象宣传信息。 5、第三代:全彩色(full color) 多灰度显示屏 6、以红色,蓝色及黄绿色为基色,可以显示较为真实的图像,目前正在逐渐替代上一代产品。

单元板基础知识

单元板基础知识讲座 一。问题的提出 目前我司推向市场的点阵模块和单元板出现很多客诉,给公司的市场声誉和应收账款的回收带来极大影响。 鉴于产品的应用没有统一的标准,及客户端的专业性参差不齐,导致使用条件随心所欲,甚至呈失控状态。总结这些问题的产生与演变过程,以及后续可能带来的不良后果和发展趋势,我们必须采取相应对策,一方面让客户尽可能掌握产品合理的使用方法和条件,确保我们的品质在其可以承受的使用条件下,稳定地工作,给客户一个满意的品质保障。另一方面,体现一个负责任的公司专业水准,以及对客户承诺和应尽的责任/义务,同时也减少我们的客诉和经济损失。 任何产品都受到使用条件的限制,不恰当的使用带来的后果是可怕的,短期内可能体现不出来,后续的麻烦会持续不断。尤其是责任的界定难以达成共识,纠纷在所难免。从常理上说,使用不当,责任理应由客户承担,但供方没有履行告知义务,也难辞其咎,特别是行业标准不规范不健全的当下。 一旦客户了解到这些应用知识,相信他们会全力配合,谁都不愿看到出现品质异常,谁都不愿意牺牲品质而换取高亮度,谁都不愿意面对纠缠不清的品质客诉,这一点供需双方的目标是完全一致的。 二。出现客诉的原因分析及解决的办法 (一)。单元板主要不良及原因 1。屏花,一致性差,这个不良是可以让步接受的。 。单元板设计问题:布线合理性差(压降大)/功率元件人为减少(为降低成本),以致小马拉大车,处于非线性过负荷工作状态,导致电流或电压输出稳定性差,比如减少一组(8个)4953是目前通常的做法,不管是恒流板,还是恒压板,都会产生屏花现象,仅仅是为了一个单元板成本降低2-3元。 对于1388(或更小点间距产品),采用目前双面板设计,是无法改变花屏的,原因是线路太密,线径太细,导致线阻过大,线路压降大,也就是说,每行(列)LED的电流误差大,亮度不均衡。 解决的办法是改用双层板设计,但成本上升约5元/板。现在还没有厂家选用此方案。 。模块质量问题,主要是芯片一致性问题:这是模块厂家芯片控制问题,目前芯片尺寸越来越小,参数越来越离散,又要追求高亮度,势必使芯片始终处于超负荷工作状态,因此,屏花是难以避免的。这是市场恶性竞争的必然结果。产品价格在不断下降,品质标准理应作出调整. 。IC型号问题:各种IC的品牌品质差异很大,同一品牌不同批次都有差异,因此,在单元板上选择哪家IC,哪批次IC都影响到一致性。 。外接电源问题:客户端外接电源的容量(带载数量),输出电压调整的一致性,电源输出精度(品牌)等因素都很重要。 这对恒流单元板影响不大,对恒压单元板的影响就非常之大。

相关文档
最新文档