枚举大小sizeof 中枚举的大小详解

枚举大小sizeof 中枚举的大小详解
枚举大小sizeof 中枚举的大小详解

至从C语言开始enum类型就被作为用户自定义分类有限集合常量的方法被引入到了语言当中,而且一度成为C++中定义编译期常量的唯一方法(后来在类中引入了静态整型常量)。

根据上面对enum类型的描述,有以下几个问题:

1.到底enum所定义出来的类型是一个什么样的类型呢?

2.作为一个用户自定义的类型其所占用的内存空间是多少呢?

3.使用enum类型是否真的能够起到有限集合常量的边界约束呢?

4.大家可能都知道enum类型和int类型具有隐示(自动)转换的规则,那么是否真的在任何地方都可以使用enum类型的变量来代替int类型的变量呢?

1. 到底enum所定义出来的类型是一个什么样的类型呢?

在C++中大家都知道仅仅有两种大的类型分类:POD类型(注(1))和类类型。

enum所定义的类型其实属于POD类型,也就是说它会参与到POD类型的隐示转换规则当中去,所以才会出现enum类型与int类型之间的隐示转换现象。

那么也就是说enum所定义的类型不具备名字空间限定能力(因为不属于类类型),其所定义的常量子具备和enum类型所在名字空间相同的可见性,由于自身没有名字限定能力,所以会出现名字冲突现象。

如:

struct CEType

{

enum EType1 { e1, e2 };

enum EType2 { e1, e2 };

};

上面的例子会出现e1、e2名字冲突编译时错误,原因就在于枚举子(e1、e2)是CEType 名字空间中的名字,同样在引用该CEType中的枚举子时必须采用CEType::e1这样的方式进行,而不是CEType::EType1::e1来进行引用。

注(1)POD类型:

你可以将POD 类型看作是一种来自外太空的用绿色保护层包装的数据类型,POD 意为“Plain Old Data”(译者:如果一定要译成中文,那就叫“彻头彻尾的老数据”怎么样!)这就是POD 类型的含义。

其确切定义相当粗糙(参见C++ ISO 标准),其基本意思是POD 类型包含与C 兼容的原始数据。

例如,结构和整型是POD 类型,但带有构造函数或虚拟函数的类则不是。

POD 类型没有虚拟函数,基类,用户定义的构造函数,拷贝构造,赋值操作符或析构函数。

为了将POD 类型概念化,你可以通过拷贝其比特来拷贝它们。此外,POD 类型可以是非初始化的。

2. 作为一个用户自定义的类型其所占用的内存空间是多少呢?

该问题就是sizeof( EType1 )等于多少的问题,是不是每一个用户自定义的枚举类型都具有相同的尺寸呢?

在大多数的32位编译器下(如:VC++、gcc等)一个枚举类型的尺寸其实就是一个sizeof( int )的大小,难道枚举类型的尺寸真的就应该是int类型的尺寸吗?

其实不是这样的,在C++标准文档(ISO14882)中并没有这样来定义,

标准中是这样说明的:“枚举类型的尺寸是以能够容纳最大枚举子的值的整数的尺寸”,

同时标准中也说名了:“枚举类型中的枚举子的值必须要能够用一个int类型表述”,

也就是说,枚举类型的尺寸不能够超过int类型的尺寸,但是是不是必须和int类型具有相同的尺寸呢?

上面的标准已经说得很清楚了,只要能够容纳最大的枚举子的值的整数就可以了,那么就是说可以是char、short和int。

例如:

enum EType1 { e1 = CHAR_MAX };

enum EType2 { e2 = SHRT_MAX };

enum EType3 { e3 = INT_MAX };

上面的三个枚举类型分别可以用char、short、int的内存空间进行表示,也就是:sizeof( EType1 ) == sizeof( char );

sizeof( EType2 ) == sizeof( short );

sizeof( EType3 ) == sizeof( int );

那为什么在32位的编译器下都会将上面三个枚举类型的尺寸编译成int类型的尺寸呢?

主要是从32位数据内存对其方面的要求进行考虑的,在某些计算机硬件环境下具有对齐的强制性要求(如:sun SPARC),

有些则是因为采用一个完整的32位字长CPU处理效率非常高的原因(如:IA32)。

所以不可以简单的假设枚举类型的尺寸就是int类型的尺寸,说不定会遇到一个编译器为了节约内存而采用上面的处理策略。

3. 使用enum类型是否真的能够起到有限集合常量的边界约束呢?

首先看一下下面这个例子:

enum EType { e1 = 0, e2 };

void func1( EType e )

{

if ( e == e1 )

{

// do something

}

// do something because e != e1 must e == e2

}

void func2( EType e )

{

if ( e == e1 )

{

// do something

}

else if ( e == e2 )

{

// do something

}

}

func1( static_cast( 2 ) );

func2( static_cast( -1 ) );

上面的代码应该很清楚的说明了这样一种异常的情况了,在使用一个操出范围的整型值调用

func1函数时会导致函数采取不该采取的行为,而第二个函数可能会好一些他仅仅是忽略了超出范围的值。

这就说明枚举所定义的类型并不是一个真正强类型的有限常量集合,这样一种条件下和将上述的两个函数参数声明成为整数类型没有任何差异。所以以后要注意标准定义中枚举类型的陷阱。

(其实只有类类型才是真正的强类型)

4. 是否真的在任何地方都可以使用enum类型的变量来代替int类型的变量呢?

通过上面的讨论,其实枚举类型的变量和整型变量具有了太多的一致性和可互换性,那么是不是在每一个可以使用int类型的地方都可以很好的用枚举类型来替代呢?

其实也不是这样的,毕竟枚举类型是一个在编译时可区分的类型,

同时第2点的分析枚举类型不一定和int类型具有相同的尺寸,这两个差异就决定了在某些场合是不可以使用枚举类型来代替int类型的。

如:

第一种情况:

enum EType { e1 = 0, e2, e3 };

EType val;

std::cin >> val;

第二种情况:

enum EType { e1 = 0, e2, e3 };

EType val;

std::scanf( "%d", &val );

上面的两种情况看是基本上属于同一种类型的问题,其实不然。第一种情况会导致编译时错误,

会因为std::cin没有定义对应的枚举类型的重载>>运算符而出错,这就说明枚举类型是一种独立和鉴别的类型;

而第二种情况不会有任何编译时问题,但是可能会导致scanf函数栈被破坏而使得程序运行非法,为什么会这样呢?

上面已经分析过了枚举类型变量的尺寸不一定和int类型相同,这样一来我们采用%d就是说将枚举类型变量val当作4字节的int变量来看待并进行参数压栈,

而在某些编译器下sizeof( val )等于1字节,这样scanf函数就会将val变量地址中的后续的三字节地址也压入栈中,

并对其进行赋值,也许val变量后续的三个字节的地址没有特殊含义可以被改写(比如是字节对齐的空地址空间),

可能会认为他不会出现错误,其实不然,在scanf函数调用结束后会进行栈清理,

这样一来会导致scanf函数清理了过多的地址空间,从而破坏了外围函数的栈指针的指向,从而必然会导致程序运行时错误。

由上面的说明枚举类型有那么多的缺点,那我们怎样才能够有一个类型安全的枚举类型呢?实际上,在最新的C++0x 标准草案中有关于枚举作用域问题的提案,但最终的解决方案会是怎样的就无法未卜先知了,毕竟对于象C++ 这样使用广泛的语言来说,任何特性的增删和修改都必须十分小心谨慎。

当然,我们可以使用一些迂回的方法来解决这个问题(C++ 总是能给我们很多惊喜和意外)。

例如,我们可以把枚举值放在一个结构里,并使用运算符重载来逼近枚举的特性:

struct FileAccess {

enum __Enum {

Read = 0x1,

Write = 0x2

};

__Enum _value; // 枚举值

FileAccess(int value = 0) : _value((__Enum)value) {}

FileAccess& operator=(int value) {

this->_value = (__Enum)value;

return *this;

}

operator int() const {

return this->_value;

}

};

我们现在可以按照希望的方式使用这个枚举类型:

FileAccess access = FileAccess::Read;

并且,因为我们提供了到int 类型的转换运算符,因此在需要int 的地方都可以使用它,例如switch 语句:

switch (access) {

case FileAccess::Read:

break;

case FileAccess::Write:

break;

}

当然我们不愿意每次都手工编写这样的结构。通过使用宏,我们可以很容易做到这一点:

#define DECLARE_ENUM(E) \

struct E \

{ \

public: \

E(int value = 0) : _value((__Enum)value) { \

} \

E& operator=(int value) { \

this->_value = (__Enum)value; \

return *this; \

} \

operator int() const { \

return this->_value; \

} \

\

enum __Enum {

#define END_ENUM() \

}; \

\

private: \

__Enum _value; \

};

我们现在可以按如下的方式定义前面的枚举,并且不比直接写enum 复杂多少。

DECLARE_ENUM(FileAccess)

Read = 0x1,

Write = 0x2,

END_ENUM()

DECLARE_ENUM(FileShare)

Read = 0x1,

Write = 0x2,

END_ENUM()

(完整版)数据结构课后习题及解析第二章

第二章习题 1.描述以下三个概念的区别:头指针,头结点,首元素结点。 2.填空: (1)在顺序表中插入或删除一个元素,需要平均移动元素,具体移动的元素个数与有关。 (2)在顺序表中,逻辑上相邻的元素,其物理位置相邻。在单链表中,逻辑上相邻的元素,其物理位置相邻。 (3)在带头结点的非空单链表中,头结点的存储位置由指示,首元素结点的存储位置由指示,除首元素结点外,其它任一元素结点的存储位置由指示。3.已知L是无表头结点的单链表,且P结点既不是首元素结点,也不是尾元素结点。按要求从下列语句中选择合适的语句序列。 a. 在P结点后插入S结点的语句序列是:。 b. 在P结点前插入S结点的语句序列是:。 c. 在表首插入S结点的语句序列是:。 d. 在表尾插入S结点的语句序列是:。 供选择的语句有: (1)P->next=S; (2)P->next= P->next->next; (3)P->next= S->next; (4)S->next= P->next; (5)S->next= L; (6)S->next= NULL; (7)Q= P; (8)while(P->next!=Q) P=P->next; (9)while(P->next!=NULL) P=P->next; (10)P= Q; (11)P= L; (12)L= S; (13)L= P; 4.设线性表存于a(1:arrsize)的前elenum个分量中且递增有序。试写一算法,将X插入到线性表的适当位置上,以保持线性表的有序性。 5.写一算法,从顺序表中删除自第i个元素开始的k个元素。 6.已知线性表中的元素(整数)以值递增有序排列,并以单链表作存储结构。试写一高效算法,删除表中所有大于mink且小于maxk的元素(若表中存在这样的元素),分析你的算法的时间复杂度(注意:mink和maxk是给定的两个参变量,它们的值为任意的整数)。 7.试分别以不同的存储结构实现线性表的就地逆置算法,即在原表的存储空间将线性表(a1, a2..., an)逆置为(an, an-1,..., a1)。 (1)以一维数组作存储结构,设线性表存于a(1:arrsize)的前elenum个分量中。 (2)以单链表作存储结构。 8.假设两个按元素值递增有序排列的线性表A和B,均以单链表作为存储结构,请编写算法,将A表和B表归并成一个按元素值递减有序排列的线性表C,并要求利用原表(即A 表和B表的)结点空间存放表C。

c语言中enum的使用

如果一个变量你需要几种可能存在的值,那么就可以被定义成为枚举类型。之所以叫枚举就是说将变量或者叫对象可能存在的情况也可以说是可能的值一一例举出来。 举个例子来说明一吧,为了让大家更明白一点,比如一个铅笔盒中有一支笔,但在没有打开之前你并不知道它是什么笔,可能是铅笔也可能是钢笔,这里有两种可能,那么你就可以定义一个枚举类型来表示它! enum box{pencil,pen};//这里你就定义了一个枚举类型的变量叫box,这个枚举变量内含有两个元素也称枚举元素在这里是pencil和pen,分别表示铅笔和钢笔。 这里要说一下,如果你想定义两个具有同样特性枚举类型的变量那么你可以用如下的两种方式进行定义! enum box{pencil,pen}; enum box box2;//或者简写成box box2; 再有一种就是在声明的时候同时定义。 enum {pencil,pen}box,box2; //在声明的同时进行定义! 枚举变量中的枚举元素系统是按照常量来处理的,故叫枚举常量,他们是不能进行普通的算术赋值的,(pencil=1;)这样的写发是错误的,但是你可以在声明的时候进行赋值操作! enum box{pencil=1,pen=2}; 但是这里要特别注意的一点是,如果你不进行元素赋值操作那么元素将会被系统自动从0开始自动递增的进行赋值操作,说到自动赋值,如果你只定义了第一个那么系统将对下一个元素进行前一个元素的值加1操作,例如 enum box{pencil=3,pen};//这里pen就是4系统将自动进行pen=4的定义赋值操作! 前面说了那么多,下面给出一个完整的例子大家可以通过以下的代码的学习进行更完整的学习! #include using namespace std;

sizeof()用法汇总

sizeof()功能:计算数据空间的字节数 1.与strlen()比较 strlen()计算字符数组的字符数,以"\0"为结束判断,不计算为'\0'的数组元素。 而sizeof计算数据(包括数组、变量、类型、结构体等)所占内存空间,用字节数表示。 2.指针与静态数组的sizeof操作 指针均可看为变量类型的一种。所有指针变量的sizeof 操作结果均为4。 注意:int *p; sizeof(p)=4; 但sizeof(*p)相当于sizeof(int); 对于静态数组,sizeof可直接计算数组大小; 例:int a[10];char b[]="hello"; sizeof(a)等于4*10=40; sizeof(b)等于6; 注意:数组做型参时,数组名称当作指针使用!! void fun(char p[]) {sizeof(p)等于4} 经典问题: double* (*a)[3][6]; cout<

运筹学课程设计指导书

运筹学课程设计指导书 一、课程设计目的 1、初步掌握运筹学知识在管理问题中应用的基本方法与步骤; 2、巩固和加深对所学运筹学理论知识及方法的理解与掌握; 3、锻炼从管理实践中发掘、提炼问题,分析问题,选择建立运筹学模型,利用模型求解问题,并对问题的解进行分析与评价的综合应用能力; 4、通过利用运筹学计算机软件求解模型的操作,掌握运筹学计算软件的基本操作方法,并了解计算机在运筹学中的应用; 二、课程设计内容与步骤 第一部分是基本实验,为必做部分;需要每位同学单独完成,并写出相应的实验报告。第二部分是提高部分,题目自选或自拟,锻炼综合应用运筹学知识及软件解决实际问题的能力;可以单独完成,也可以合作完成(最多3人一组),写出相应的报告。 1、基本实验在完成基本实验后,每位同学要按照实验要求完成实验报告,实验报告应包括问题描述、建模、上机求解、结果分析及答辩几方面。实验报告必须是打印稿(word文档等),手写稿无效。请大家按照要求认真完成实验报告,如果两份实验报告雷同,或相差很少,则两份实验报告均为0分,其它抄袭情况,将根据抄袭多少扣分。(约占总分的70%) 2、提高部分根据自己的兴趣或所查找的资料,从实际情况出发,自拟题目;在实验报告中,陈述问题,建立模型,求解,结果分析,此部分应着重突出自己的观点和想法。(此部分按照排名先后给分,约占总分的30%) 三、课程设计要求 1、实验目的 学会建立相应的运筹学模型 学会Excel、Lindo和WinQSB,QM for windows软件的基本使用方法 学会用Excel、Lindo和WinQSB,QM for windows软件得到问题的最优解 2、实验要求 分析问题、建立模型,并阐明建立模型的过程; 说明并显示软件使用和计算的详细过程与结果; 结果分析,将结果返回到实际问题进行分析、评价。 四、题目内容 (一)Excel规划求解基本实验 1、雅致家具厂生产4种小型家具,由于该四种家具具有不同的大小、形状、重量和风格,所以它们所需要的主要原料(木材和玻璃)、制作时间、最大销售量与利润均不相同。该厂每天可提供的木材、玻璃和工人劳动时间分别为600单位、1000单位与400小时,详细的数据资料见下表。问: (1)应如何安排这四种家具的日产量,使得该厂的日利润最大? (2)家具厂是否愿意出10元的加班费,让某工人加班1小时? (3)如果可提供的工人劳动时间变为398小时,该厂的日利润有何变化? (4)该厂应优先考虑购买何种资源?

谈谈用枚举算法解决问题的编程思路与步骤方法

谈谈用枚举算法解决问题的编程思路与步骤方法 一.问题 上海市普通高中在信息科技学科中开展《算法与程序设计》教学,教材中有一章名为“算法实例”的内容,其中有一节介绍“枚举算法”。教材中关于枚举算法的描述:有一类问题可以采用一种盲目的搜索方法,在搜索结果的过程中,把各种可能的情况都考虑到,并对所得的结果逐一进行判断,过滤掉那些不合要求的,保留那些符合要求的。这种方法叫做枚举算法(enumerative algorithm)。 枚举法就是按问题本身的性质,一一列举出该问题所有可能的解,并在逐一列举的过程中,检验每个可能解是否是问题的真正解,若是,我们采纳这个解,否则抛弃它。在列举的过程中,既不能遗漏也不应重复。 生活和工作中,人们经常会不经意间运用“枚举算法”的基本原理,进行问题的解决。比如,让你用一串钥匙,去开一把锁,但是不知道具体是用哪一把钥匙,你就会一把一把地挨个地逐个尝试,最终打开锁为止。又如,要对1000个零件,进行合格检验,等等。 二.用枚举算法的思想编写程序的思路与步骤 枚举算法,归纳为八个字:一一列举,逐个检验。在实际使用中,一一列举;采用循环来实现,逐个检验:采用选择来实现。 下面,通过一个问题的解决来说明这一类问题的解决过程的方法与步骤; 例1:在1—2013这些自然数中,找出所有是37倍数的自然数。 这个问题就可以采用枚举算法来解决: 1).一一列举;采用循环来实现; 循环需要确定范围:本循环控制变量假设用i,起始值是1,终止值是2013。 2).逐个检验:采用选择来实现; 选择需要列出判断的关系表达式:i Mod 37 = 0 这样,就可以写出整个求解的VB代码: Dim i As Integer For i = 1 To 2013 If i Mod 37 = 0 Then Print i End If Next i 说白了,用枚举算法解决问题,其实是利用计算机的高速度这一个优势,就好比上题完全可以使用一张纸和一支笔,采用人工的方法完成问题的解,从1开始,一一试除以37,这样计算2013次,也可以找到问题的答案。 在教学中,问题的求解往往是针对数学上的问题,下面举一些相关的例子,来巩固与提高采用枚举算法进行程序设计的技能。 三.枚举算法举例: 1:一张单据上有一个5位数的编号,万位数是1,千位数是4,百位数是7,个位数、十位数已经模糊不清。该5位数是57或67的倍数,输出所有满足这些条件的5位数的个数。(147□□) 1).一一列举;采用循环来实现;

sizeof详细分析以及陷阱

1、什么是sizeof 首先看一下sizeof在msdn上的定义: The sizeof keyword gives the amount of storage, in bytes, associated with a variable or a type (including aggregate types). This keyword returns a value of type size_t. 看到return这个字眼,是不是想到了函数?错了,sizeof不是一个函数,你见过给一个函数传参数,而不加括号的吗?sizeof可以,所以sizeof不是函数。网上有人说sizeof是一元操作符,但是我并不这么认为,因为sizeof更像一个特殊的宏,它是在编译阶段求值的。举个例子: cout<

C语言共用体、枚举、typedef

一、typedef声明新的类型名 结构体类型名较长、有些类型名不直观或不习惯、不喜欢?可不可以重命名呢? 用typedef声明新的类型名来代替已有的类型名 例如: 1)typedef float single; 2) typedef struct STU SD; 则“float x,y;”与“single x,y;”等价;

“p=(struct STU*)malloc(sizeof(struct STU));”与 “p=( SD *)malloc(sizeof(SD));”等价。 二、共用体 1、共用体类型的定义 当若干变量每次只使用其中之一时,可以采用“共用体”数据结构。共用体数据中各成员存放到同一段内存单元,设置这种数据类型的主要目的就是节省内存。 共用体类型需要用户自己定义,然后才能用之来定义相应类

型的变量、数组、指针等。 定义共用体类型的格式为: union 共用体类型名 { 数据类型1 成员名1; 数据类型2 成员名2; …… 数据类型n 成员名n; }; 【注意】在右花括号}的后面有一个语句结束符“分号”。

2、共用体变量、数组的定义 有三种方法可以定义共用体变量、数组:先定义共用体类型,然后定义变量、数组;同时定义共用体类型和变量、数组;定义无名称的共用体类型的同时定义变量、数组。 例如:①union GYT {char a[2]; int b; }; GYT x ,y[5]; ②union GYT

{ char a[2]; int b; }x ,y[5]; ③union { char a[2]; int b; }x ,y[5]; 上述三种方法完全等价。 【注意】(1)共用体变量所占内存单元数目等于占用单元数目最多的那个成员的单元数目。 (2)共用体变量各成员占据相同的起始地址,每一瞬时

CString用法

需要强制类型转化时,C++规则容许这种选择。比如,你可以将(浮点数)定义为将某个复数(有一对浮点数)进行强制类型转换后只返回该复数的第一个浮点数(也就是其实部)。可以象下面这样:Complex c(1.2f,4.8f);float realpart=c;如果(float)操作符定义正确的话,那么实部的的值应该是1.2。这种强制转化适合所有这种情况,例如,任何带有LPCTSTR类型参数的函数都会强制执行这种转换。于是,你可能有这样一个函数(也许在某个你买来的DLL中):BOOL DoSomethingCool(LPCTSTR s);你象下面这样调用它:CString file("c:¥¥myfiles¥¥coolstuff")BOOL result=DoSomethingCool(file);它能正确运行。因为DoSomethingCool函数已经说明了需要一个LPCTSTR类型的参数,因此LPCTSTR被应用于该参数,在MFC 中就是返回的串地址。如果你要格式化字符串怎么办呢?CString graycat("GrayCat");CString s;s.Format("Mew!I love%s",graycat);注意由于在可变参数列表中的值(在函数说明中是以"..."表示的)并没有隐含一个强制类型转换操作符。你会得到什么结果呢?一个令人惊讶的结果,我们得到的实际结果串是:"Mew!I love GrayCat"。因为MFC的设计者们在设计CString数据类型时非常小心,CString类型表达式求值后指向了字符串,所以这里看不到任何象Format或sprintf中的强制类型转换,你仍然可以得到正确的行为。描述CString的附加数据实际上在CString名义地址之后。有一件事情你是不能做的,那就是修改字符串。比如,你可能会尝试用","代替"."(不要做这样的,如果你在乎国际化问题,你应该使用十进制转换的National Language Support特性,),下面是个简单的例子:CString v("1.00");//货币金额,两位小数LPCTSTR p=v;p[lstrlen(p)-3]=,;这时编译器会报错,因为你赋值了一个常量串。如果你做如下尝试,编译器也会错:strcat(p,"each");因为strcat的第一个参数应该是LPTSTR类型的数据,而你却给了一个LPCTSTR。不要试图钻这个错误消息的牛角尖,这只会使你自己陷入麻烦!原因是缓冲有一个计数,它是不可存取的(它位于CString地址之下的一个隐藏区域),如果你改变这个串,缓冲中的字符计数不会反映所做的修改。此外,如果字符串长度恰好是该字符串物理限制的长度(梢后还会讲到这个问题),那么扩展该字符串将改写缓冲以外的任何数据,那是你无权进行写操作的内存(不对吗?),你会毁换坏不属于你的内存。这是应用程序真正的死亡处方。CString转化成char*之二:使用CString对象的GetBuffer方法;如果你需要修改CString中的内容,它有一个特殊的方法可以使用,那就是GetBuffer,它的作用是返回一个可写的缓冲指针。如果你只是打算修改字符或者截短字符串,你完全可以这样做:CString s(_T("File.ext"));LPTSTR p=s.GetBuffer();LPTSTR dot=strchr(p,.);//OK, should have used s.Find...if(p!=NULL)*p=_T(¥0);s.ReleaseBuffer();这是GetBuffer的第一种用法,也是最简单的一种,不用给它传递参数,它使用默认值0,意思是:"给我这个字符串的指针,我保证不加长它"。当你调用ReleaseBuffer时,字符串的实际长度会被重新计算,然后存入CString对象中。必须强调一点,在

c语言中枚举类变量使用

#include void main() { printf("c语言中枚举类型变量的使用:\n"); printf("\n"); printf("实际问题说明:\n"); printf("口袋中有红、黄、蓝、白、黑5种颜色的球若干。每次从袋子中先后取出三个球,求得到3种不同颜色的球的可能取法:\n"); printf("\n"); enum color{red,yellow,blue,white,black }; enum color pri; int i,j,k,n,loop; n=0; for(i=red;i<=black;i++) { for(j=red;j<=black;j++) { if(i!=j) { for(k=red;k<=black;k++) { if((k!=i)&&(k!=j)) { n=n+1; printf("第%d个筛选组合\n",n); printf("%-4d",n); for(loop=1;loop<=3;loop++) {

switch(loop) { case 1: pri=(enum color)i;//此处需要进行强制类型转换,否则报错 break; case 2: pri=(enum color)j;//此处需要进行强制类型转换,否则报错 break; case 3: pri=(enum color)k;//此处需要进行强制类型转换,否则报错 break; default: break; } switch(pri) { case red: printf("%-10s","red"); break; case yellow: printf("%-10s","yellow"); break; case blue: printf("%-10s","blue"); break; case white: printf("%-10s","white");

C语言32个关键字九种控制语句34种运算符

总结归纳了C语言的32个关键字 第一个关键字:auto 用来声明自动变量。可以显式的声明变量为自动变量。只要不是声明在所有函数之前的变量,即使没加auto关键字,也默认为自动变量。并且只在声明它的函数内有效。而且当使用完毕后,它的值会自动还原为最初所赋的值。自动变量使用时要先赋值,因为其中包含的是未知的值。 例:auto int name=1; 第二个关键字:static 用来声明静态变量。可以显式的声明变量为静态变量。也为局部变量。只在声明它的函数内有效。它的生命周期从程序开始起一直到程序结束。而且即使使用完毕后,它的值仍旧不还原。即使没有给静态变量赋值,它也会自动初始化为0. 例:static int name=1. 第三个关键字:extern 用来声明全局变量。同时声明在main函数之前的变量也叫全局变量。它可以在程序的任何地方使用。程序运行期间它是一直存在的。全局变量也会初始化为0. 例:extern int name; 第四个关键字:register 用来声明为寄存器变量。也为局部变量,只在声明它的函数内有效。它是保存在寄存器之中的。速度要快很多。对于需要频繁使用的变量使用它来声明会提高程序运行速度。 例:register int name=1; 第五个关键字:int 用来声明变量的类型。int为整型。注意在16位和32位系统中它的范围是不同的。16位中占用2个字节。32位中占用4个字节。还可以显式的声明为无符号或有符号: unsigned int或signed int .有符号和无符号的区别就是把符号位也当作数字位来存储。也可用short和long来声明为短整型,或长整行。 例:int num; 第六个关键字:float 用来声明变量的类型。float为浮点型,也叫实型。它的范围固定为4个字节。其中6位为小数位。其他为整数位。 例:float name;

MATLAB与在运筹学中的应用

MATLAB与在运筹学中的应用 摘要:论文通过MATLAB在运筹学中的应用实例,探讨了MATLAB在运筹学中的应用方法和技巧,初步了解matlab中优化工具箱的使用。 关键字:MATLAB应用运筹学优化计算 引言 运筹学是近代应用数学的一个分支,主要是研究如何将生产、管理等事件中出现的运筹问题加以提炼,然后利用数学方法进行解决的学科。运筹学是应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。运筹学中常用的运算工具有Matlab、Mathematica、Maple、SAS 、SPSS、Lindo/Lingo、GAMS、WinQSB、Excel、其他,如SQP、DPS、ORS、Visual Decision、Decision Explore、AIMMS、Crystal等。 Matlab是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,和Mathematica、Maple并称为三大数学软件。 用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括Matlab和Simulink两大部分。 主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 将matlab用于运筹学的最优化运算可以很好的解决优化问题,而且matlab 还专门有优化工具箱,是处理优化问题更加方便。 一、例:0-1规划(《运筹学》80页例3-9) 求minZ=x1-3*x2+6*x3+2*x4-4*x5 6*x1+2*x2-x3+7*x4+x5<=12 约束条件 x1+4*x2+5*x3-x4+3*x5>=10 Xj=0或1,j=1,2,3,4

C语言自定义数据类型

自定义数据类型 结构体 结构体是程序员在程序中自定义的一种数据类型,在说明和使用之前必须先定义它,也就是构造它。定义一个结构体的语法格式如下: Struct 结构体类型名 { 成员1的数据类型名成员1名称; 成员2的数据类型名成员2名称; . . 成员n的数据类型名成员n名称; }结构体变量表={成员初始化}; 注意成员可以由若干个不同的数据类型组成,每个成员也可以是结构体,即可以嵌套定义。 例如: Struct student { Long num; Char name; Char sex; Float score; }; 已经定义的某种结构体类型可以视为一种标准的数据类型,它的使用方法与标准数据类型使用方法相同,可以用来定义变量、数组、指针。 结构体变量说明 结构体变量的说明在程序的变量说明部分给出,一般在结构定义之后,它的语法格式如下: Struct 结构类型名结构变量名表; 例如: Struct student stu; 指出了结构变量stu是student类型的变量,它由四个成员组成,每个成员的数据类型和名字都与student结构定义中给出的相同。系统完全按照结构定义时制定的内存模式为结构变量分配内存空间。 可以在定义结构体类型的同时给出结构体变量。 Struct student { Long num; Cha name[20]; Cha sex; Float score; }stu1,stu2; 这种形式与前面给出的结构定义和结构说明分开处理效果相同。

结构体成员访问 结构体成员是通过结构体变量名和成员名进行访问的,不能把他作为一个整体进行访问。其访问格式如下: 结构体变量名.成员名 其中运算符.是成员访问运算符,其运算级别是最高的,和圆括号运算符()、下标运算符[]是同一级别的。如果结构体成员是指针变量,则访问格式为: *https://www.360docs.net/doc/6214162555.html, 如果某个结构体变量的成员数据类型又是一个结构体,则访问方式为: 外层结构体变量名.外层成员名.内层成员名 可以在定义结构体变量的同时对结构体变量初始化。 {结构体成员}结构体变量={初始数据}; struct student { long num; char name[20]; char sex; float score; } stu1={200401L,"ZhangHong",'f',92.5f}; 对于嵌套的结构体类型数据,访问格式为: 结构体变量名1.结构体变量名2.成员名 结构体变量初始化的格式如下: struct 结构体名 {结构体成员}结构体变量={初始数据}; 初始数据类型必须与结构成员的数据类型相匹配,并且先后顺序一一对应赋值。 要对结构体变量的成员地址进行访问,其语法格式为: &结构体变量.成员名 当一个指针变量用来指向一个结构变量时,称为结构体指针变量。结构体指针变量中的值是所指向的结构体变量的首地址。 结构体指针变量: Struct 结构名*结构体指针变量名 Struct student *pstu; 必须先赋值后使用,把结构体变量的首地址赋给指针变量,不能把结构名或结构体变量名赋给指针变量。 pstu=&stu1; 结构体名和结构体变量是两个不同的概念,结构体名只能表示一个结构形式,编译系统并不对它分配内存空间,只有当某变量被说明为这种类型的结构时,才对该变量分配存储空间。这是因为结构体变量被定义后相当于标准数据类型被使用。 利用结构体指针变量访问成员如下: (*结构体指针变量).成员名 或者: 结构体指针变量->成员名 后一种形式较为方便,容易区分。

枚举算法 练习题

1.用50元钱兑换面值为1元、2元、5元的纸币共25张。每种纸币不少于1张,求出有多少种兑换方案?每种兑换方案中1元、2元、5元的纸币各有多少张? 假设面值为1元、2元、5元的纸币分别是x、y、z张,兑换方案有k种,从题意可得出x、y、z满足的表达式为 x+y+z=25 x+2y+5z=50 解决此问题的Visual Basic程序如下,在(1)和(2)划线处,填入合适的语句或表达式,把程序补充完整。 Private Sub Command1_Click() Dim k As Integer Dim x As Integer, y As Integer, z As Integer k = 0 List1.Clear For y = 1 To 23 For z = 1 To 9 x = 25 - y - z If (1) Then List1.AddItem "1元" + Str(x) + "张 2元" + Str(y) + "张 5元" + Str(z) + "张" ____(2)___________ End If Next z Next y Label1.Caption = "共有" + Str(k) + "种兑换方案" End Sub 程序中划线处(1)应填入_____________ 程序中划线处(2)应填入_____________ 2.以下Visual Basic程序的功能是:计算表达式1+2+22+23+24+25+26+27+28+29+210的值,并在文本框Text1中输出结果。为了实现这一功能,程序中划线处的语句应更正为_____________。 Private Sub Command1_Click() Dim i As Integer,s As Long s = 0 k = 2 For i= 1 To 10 s = s + k k = k * 2 Next i Text1.Text=Str(s) End Sub

C语言二级考前一个月复习概况

整数的三种表示形式 表示形式 组成 开头部分 十进制 D,或不加表示 0-9 以1-9开头 八进制 O 0-7 以0开头 十六进制 H 0-9,A-F 以0x 开头 int a[100],*p; 等价语句 p=a; P=&a[0]; 等价语句 p=a+1; P=&a[1]; 文本文件 二进制文件 使用方式 含义 使用方式 含义 r 打开文本文件进 行只读 rb 打开二进制文件进行只读 w 建立新的文本文件进行只写 wb 建立二进制文件进行只写 a 打开文本文件进 行追加 ab 打开二进制文件进行追加/写 R+ 打开文本文件进 行读/写 Rb+ 打开二进制文件进行读/写 W+ 建立新的文本文件进行读/写 Wb+ 建立二进制文件进行读/写 A+ 打开文本文件进行读/写/追加 Ab+ 打开二进制文件进行读/写/追加

指针是以地址作为其值的变量,数组名的值是一个特殊的固定地址,可以作为常量指针。 类型 名称 类型名 数据长度 整型 整型 Int 32位 短整型 Short int 16位 长整型 Long int 32位 字符型 字符型 Char 8位 实型(浮点型) 单精度浮点型 float 32位 双精度浮点型 double 64位 函数 数据类型 格式 printf float %f double %e scanf float %f %e double %lf %le 字符串的输入和输出 输入 Scanf() 该函数遇到空格或回车输入结束 Gets() 该函数遇到回车符输入结束 输出 Printf() 输出时遇到’\0’输出结束 Puts() 输出时遇到’\0’输出结束 运算符 优先级 结合方式 优先级:高->低 逻辑运算符 ! 右->左 算术运算符 ++ -- + - * 右->左 * / % + - 左->右 关系运算符 <= < >= > == != 左->右 逻辑运算符 && || 左-> 右 条件表达式 ?: 右->左 赋值运算符 *= /= %= += - = = 右->左

(完整版)小学奥数枚举法题及答案【三篇】

小学奥数枚举法题及答案【三篇】 导读:本文小学奥数枚举法题及答案【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。 【篇一】枚举法问题 在一个圆周上放了1个红球和1994个黄球。一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。你知道这时圆周上还剩下多少个黄球吗? 答案与解析: 根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。 在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。 他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。 因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。【篇二】

在一个圆周上放了1个红球和1994个黄球。一个同学从红球开始,按顺时针方向,每隔一个球,取走一个球;每隔一个球,取走一个球;……他一直这样操作下去,当他取到红球时就停止。你知道这时圆周上还剩下多少个黄球吗? 答案与解析: 根据题中所说的操作方法,他在第一圈的操作中,取走的是排在黄球中第2、4、6、……1994位置上的黄球,这时圆周上除了一个红球外,还剩下1994÷2=997个黄球。 在第二圈操作时,他取走了这997个黄球中,排在第1、3、5、7、……995、997位置上的黄球,这时圆周上除了一个红球外,还剩下997—(997+1)÷2=498个黄球。 他又要继续第三圈操作了,他隔过红球,又取走了这498个黄球中,排在第1、3、5、……495、497的位置上的黄球,这时圆周上除了一个红球外,还剩下498÷2=249个黄球。 因为在上一圈操作时,排在这498个黄球中最后一个位置上的黄球没有被取走,所以他再进行操作时,第一个被取走的就是那个红球,这时,他的操作停止,圆周上剩下249个黄球。【篇三】

C语言基本数据类型

第2章基本数据类型 本章介绍常量与变量的概念,以及C语言基本数据类型中的整型、字符型、实型数据的基本知识,各种不同数据类型之间的转换及混合运算。 2.1 数据概述 一个完整的计算机程序,至少应包含两方面的内容,一方面对数据进行描述,另一方面对操作进行描述。数据是程序加工的对象,数据描述是通过数据类型来完成的,操作描述则通过语句来完成。 C语言不仅提供了多种数据类型,还提供了构造更加复杂的用户自定义数据结构的机制。C语言提供的主要数据类型有: 1.基本类型:包括整型、字符型、实型(浮点型)和枚举类型 2.构造类型:包括数组、结构体和共用体类型 3.指针类型 4.空类型 其中整型、字符型、实型(浮点型)和空类型由系统预先定义,又称标准类型。 基本类型的数据又可分为常量和变量,它们可与数据类型结合起来分类,即为整型常量、整型变量、实型(浮点型)常量、实型(浮点型)变量、字符常量、字符变量、枚举常量、枚举变量。在本章中主要介绍基本数据类型(除枚举类型外),其它数据类型在后续章节中再详细介绍。 2.1.1 常量与符号常量 在程序执行过程中,其值不发生改变的量称为常量。常量区分为不同的类型,如68、0、-12为整型常量,3.14,9.8为实型常量,‘a’,‘b’,‘c’则为字符常量。常量即为常数,一般从其字面即可判别。有时为了使程序更加清晰和便于修改,用一个标识符来代表常量,即给某个常量取个有意义的名字,这种常量称为符号常量。如: 【例2-1】 #define PI 3.14 main( ) { float aera; aera=10*10*PI; printf(“aera=%f\n”,aera); }

最新sort函数的用法

sort函数的用法 做ACM题的时候,排序是一种经常要用到的操作。如果每次都自己写个冒泡之类的O(n^2)排序,不但程序容易超时,而且浪费宝贵的比赛时间,还很有可能写错。STL里面有个sort 函数,可以直接对数组排序,复杂度为n*log2(n)。使用这个函数,需要包含头文件。 做ACM题的时候,排序是一种经常要用到的操作。如果每次都自己写个冒泡之类的O(n^2)排序,不但程序容易超时,而且浪费宝贵的比赛时间,还很有可能写错。STL里面有个sort 函数,可以直接对数组排序,复杂度为n*log2(n)。使用这个函数,需要包含头文件。 这个函数可以传两个参数或三个参数。第一个参数是要排序的区间首地址,第二个参数是区间尾地址的下一地址。也就是说,排序的区间是[a,b)。简单来说,有一个数组int a[100],要对从a[0]到a[99]的元素进行排序,只要写sort(a,a+100)就行了,默认的排序方式是升序。 拿我出的“AC的策略”这题来说,需要对数组t的第0到len-1的元素排序,就写sort(t,t+len); 对向量v排序也差不多,sort(v.begin(),v.end()); 排序的数据类型不局限于整数,只要是定义了小于运算的类型都可以,比如字符串类string。 如果是没有定义小于运算的数据类型,或者想改变排序的顺序,就要用到第三参数——比较函数。比较函数是一个自己定义的函数,返回值是bool型,它规定了什么样的关系才是“小于”。想把刚才的整数数组按降序排列,可以先定义一个比较函数cmp bool cmp(int a,int b) { return a>b; } 排序的时候就写sort(a,a+100,cmp); 假设自己定义了一个结构体node struct node{ int a; int b; double c;

运用线性规划对运输问题研究

运用线性规划对运输问题研究 班级:金融103班姓名:王纬福学号:5400210132摘要:由于企业选择运输路线或运输工具不合理而导致物流运输成本不能最小化的问题普遍存在而管理运筹学却能很好的解决此问题。通过科学的方法对问题进行具体化再建立数学模型并求解,就能找到运输成本最小的运输组合。 关键词:物流运输成本、输成本、管理运筹学、WinQSB2.0、线性规划 一、引言 日常生活中,人们经常需要将某些物品由一个空间位置移动到另一个空间位置,这就产生了运输。如何判定科学的运输方案,使运输所需的总费用最少,就是管理运筹学在运输问题上的运用需要解决的问题。 运输问题是一类应用广泛的特殊的线性规划问题,在线性规划的一般理论和单纯形法出现以前,康托洛维奇(L.V.Kant)和希奇柯克(F.L.Hitchcock)已经研究了运输问题。所以,运输问题又有“康-希问题”之称。对于运输问题(Transportation Problem TP)当然可用前面所讲的单纯形法求解,但由于该问题本身的特殊性,我们可以找到比标准单纯形法更简单有效的专门方法,从而节约计算时间和费用。主要是因为它们的约束方程组的系数矩阵具有特殊结构,使得这类问题的求解方法比常规的单纯形法要更为简便。 一、研究现状 运输问题的研究较多,并且几乎所有的线性规划书中都有论述。遗憾的是一些书中所建立的数学模型都不够全面和系统的。但是也有一些模型是严谨的没有漏洞和缺陷,并且很容易在此基础上修改或添加一些其他约束条件便于在实际工程中进行应用。管理运筹学在运输问题上的研究较为深入、全面、系统。对于计算机软件的引用也很前言,winQSB2.0对于普通甚至深入研究运输问题就已经是简单而又使用、耐用、好用的了。现在相关的杂志、期刊都越来越多关于管理运筹学,关于运输问题的文章论文初版,越来越得到重视。 二、文献回顾 随着物流行业和企业对物流运输要求的不断提高,企业的面临着更大的市场竞争,其运输活动在企业不断发展过程中,面临着越来越大难度的运输组合的选择决策问题。如何正确解决这个问题,是企业能够持续经营和发展不可忽视和必须面对的。这个问题同时也引起了企业界、学术界等社会各界的广泛关注。运输问题的实质是企业与运输组合的经济性问题,成功的企业通常都会面临如何选取最佳运输组合或运输路线这样一个重要问题,即以企业运输成本最小化作为确定最佳运输组合或运输路线的原落脚点。 四、案例分析 例:某公司下设生产同类产品的加工厂A1、A2、A3,生产的产品由4个销售点B1、B2、B3、B4出售。各工厂的生产量、各销售点的销量以及各工厂到各销售点的单位运价如下表:

C语言中sizeof()的用法

C语言中sizeof()的用法 2008-12-31 09:45:35.0 来源:51CTO 关键词:C语言 要参加软件研发的笔试(C/C++)几乎都会涉及到sizeof()的用法,我昨天也遇到了,有的也会,但是真正sizeof()的核心还是没有领会,今天上网,无聊中就看到了详细的sizeof()的阐述,现在分享给大家。 ------------sizeof---------------- sizeof 一般形式为:sizeof(object),也可以sizeof var_char,不过大部分programer 习惯用sizeof()。 对象可以是表达式或者数据类型名,当对象是表达式时,括号可省略。sizeof是单目运算符,其运算符的含义是:求出对象在计算机内存中所占用的字节数。一般来讲,不同的机器,运行不同的对象是不一样的,当目前几乎所有的机器都是32位,很少16位的,所以一般考试都是基于32位的window和linux的。 C语言中数据类型不多。 1.整数型的: short,int,long(我没有考虑符号问题),一般c语言书上讲,int是2个字节的,即16位,范围是-32768-32767,long是4个字节,范围是-2^32---2^32-1。当时在xp上运行sizeof(int)的时候,会output 4.这就是32位的原因。sizeof(long)也是4. 如下:#include "stdio.h" #include "string.h" #include "stdlib.h" int main() { short int sa=10; int a=10; long la=10; float f = 20; double d=20; char ch=''c''; char str[]="ABC"; char *p=str; struct str{ double d; char ch; int data; }str_wu; struct str1{ char ch; double d; int data; }str_wu1; printf("sizeof(short):%d\n",sizeof(sa)); printf("sizeof(int):%d\n",sizeof(a));

相关文档
最新文档