轮对故障发生的原因和危害分析及其防范措施(正式)

轮对故障发生的原因和危害分析及其防范措施(正式)
轮对故障发生的原因和危害分析及其防范措施(正式)

编订:__________________

单位:__________________

时间:__________________

轮对故障发生的原因和危害分析及其防范措施(正

式)

Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-1182-31 轮对故障发生的原因和危害分析及

其防范措施(正式)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

一、问题的提出

为适应我国铁路跨越式发展的需要,自第六次全路大面积提速以来,随着铁路运用货车的新技术运用,使得货车提速转向架的改造工作全面迅速展开,目前运用货车中装有提速转向架的车辆已达到80%以上,在这种新的背景下,给铁路货车的各部配件都提出了很高的要求,尤其是轮对。进入20xx年以来,我作业场不断发现因轮对原因而直接或间接造成的车辆典型故障,如轮对踏面擦伤过限,踏面剥离,轮缘磨耗过限、缺损,轮缘缺损,踏面周围磨耗过限,轮辐板孔裂,滚动轴承保持架裂损,制动梁端轴开焊,支柱裂损等,一旦出现漏检,将会严重威胁到行车安全。

虽然目前全路各大干线都已安装使用了5T设备,

包括专门针对轮对故障的TPDS系统,但是实际运用中还未完全磨合好,轮对故障及由轮对故障而引起的其它故障对行车安全的危害还十分严重,铁道部及各路局对此也非常重视,因此有必要对轮对故障进行分析和研究,找出切实可行的办法降低危害,以便更好的为铁路运输服务。

二、原因分析

造成轮对故障大幅增加的原因是什么,它有什么样的规律,又有什么样的必然因素,下面从以下几个方面分析一下原因:

第一、气候因素

我国富源辽阔,从东北到西南,从华东到新疆,铁路线的长度都在5000公里上下,而且我国跨纬度非常大,从热带亚热带到温带、寒带,当南方阳光明媚的时候东北还处在冰天雪地之中,温差非常大,使车辆配件特别是轮对承受非常大的考验,使得材质容易发生变化,加上车轮不断的在滚动中不断与闸瓦发生摩擦,使表面材质过早产生疲劳,以致剥离缺损。

第二、设备因素

铁路货车车辆由于运输的需要,不断要进行编组,在一些大型编组站使用缓行器,有的使采取用夹板的方式夹住轮对,使车辆减速,来降低车辆速度,因此,使轮对受到不同于正常运行的阻力或打击,当遇有缺陷的轮对时,极易发生缺损.而在一些小型编组站,由于设备落后,还在使用铁鞋制动,当车轮踏面接触铁鞋后由于惯性原因还要再向前继续运行,但已不是滚动,而是变成了滑行,滑行距离较长时很容易擦伤轮对。

第三、车辆在运行中的因素

车辆在运行中,各种情况非常复杂,有自身的、外界的,是车辆轮对故障产生的主要因素,具体说来包括车辆自身结构方面的和机车操纵方面的及制动机性能方面。

a、车辆构造因素

今年来,车辆新技术得到大量应用,如交叉支撑装置,窄导框结构的侧架HDS型整体碾钢车轮,HDZ型整体铸钢车轮,L-A、L-B、L-C型组合式制动梁,高磨合

成闸瓦,弹簧托板,一体式构架等.使车辆性能大为改观,特别是提高了运行速度,从过去平均时速30-40Km/h,提高到了80Km/h,一些直通货场列车甚至接近100Km/h,行包列车更是达到了120Km/h。货车运行速度的提高,完全得益于提速转向架,转K2型转向架,转K4、转K5、转K6型转向架成为现行货车的主型转向架,车辆结构更加紧凑合理,这些优点是不争的事实,但凡事有利必有弊.货车运行速度的提高使制动距离延长,闸瓦与车轮踏面的磨擦加剧,特别是使用高磨合成闸瓦后,闸瓦本身虽然耐磨但对车轮的损伤却非常大,一方面摩擦时间长造成轮踏面表面的温度上升非常快,使材质变软;另一方面温度升高后闸瓦本身变化,将踏面表层较软的部分粘住,在不断滚动中使表层材质不断脱落,另外一个重要因素是整体辗钢车轮的踏面耐磨性减小,在实际运用中我们经常可以看到高磨合成闸瓦磨下的金属铁屑及踏面被磨出的构槽形状及明显的磨耗过限状况,甚至有的轮踏面凹下情况非常严重,圆周磨耗严重超限。而对于一部分仍使用转8A

型转向架的运用货车来讲,由于各部配件的配合尺寸较为不紧凑,所以车辆在运行中各部配件出现的偏磨现象较多,如车辆在通过曲线时靠外一侧的轮缘与钢轨紧贴,造成轮缘的偏磨。上述情况都是在列车正常运行中发生的,因此也可以称之为必然现象。

b、机车操纵方面的因素

由于目前我国的国情原因,客货车尚不能实现分专线行驶,货车只能在客车通过的间隙中通过,而在繁忙线路上,如我作业场在京广上、下行线的关键位置,京广、下上行的货车和石太线部分上行的货车都要到这里进行检修作业及编组,要想保证运输畅通列车就要不断的加速减速,才能正点到达,而在此过程中,如果由于机车操纵原因加速过快必须减速,就必须加大制动力,另外在长大下坡道上,列车由于长时间带闸运行使得闸瓦与车轮的磨耗加剧。在上述两种情况下很容易引起车轮踏面擦伤,这种属于一种必然因素。

c、制动机性能的影响

目前我国铁路货车的制动机类型主要有GK型、

103型、120型三种及新生产的120-1型,120型制动机是运用货车的主型制动机,性能较好,但不足之处就是在与GK型.103型制动机混编时容易出现不稳定的情况,如引起紧急制动,制动后缓解不良,制动力过大等情况.尤其是后面两种情况危害很大,它是目前导致车轮踏面擦伤的罪魁祸首。在目前情况下,这是一种必然引起的现象,相信经过一段时间的制动机改造,这种情况会有好转。

第四、材质不良

造成轮对故障的另一个因素是材质不良。目前我国铁路货车装用的轮对主要有整体碾钢轮对、新型提速减重碾钢或铸钢轮对。如:HDS型、HDZ型、HDSA型、HDZB型等,新型提速减重轮对的踏面剥离、擦伤、圆周磨耗较多,而整体碾钢轮对由于自身结构特性发生辐板孔裂纹的现象较为集中,造成这种情况的主要原因是在铸造的过程中,材质缺陷或工艺未达到要求而造成的。从实际运用情况看,发生踏面剥离的新型提速减重整体碾钢轮或整体铸钢轮,使用时间都不长,

车轮在出厂质量上存在缺陷,会导致车轮的局部凹下等情况。

第五、其他因素

除以上几方面外,发生轮对故障的还有其他因素。如:车辆在专用线上装车时,钢轨上石矿渣等其他硬物会造成车轮踏面的大面积麻点,逐步发展为其它危害较大的故障。还有车辆在运行中的离心力,在吊装过程中的损伤等都容易造成轮对故障。

三、轮对故障的危害分析

轮对故障的存在,不仅仅是对轮对本身不利,更重要的是它还会造成一些比轮对本身危害更大的危害。综合分析起来有:

1、轮对自身故障危害a、轮缘与踏面偏磨所造成的危害

踏面偏磨后,容易引起轮径差过大,造成车体重心偏向小轮径一侧,加剧了踏面偏磨。

b、轮缘磨耗超限后的危害

轮缘磨耗超限后会导致轮缘根部断面减薄,强度

安装工程常见风险及主要防范措施.docx

安装工程常见风险及主要防范措施 序号 作业活动 危险因素 可能的事故 主要防范措施 环境及机械、工器具使用措施 个人作业及防护要求 1 汽轮机本体设备安装 火灾 火灾 人员伤亡 1、汽油清洗设备时设置安全警戒区,配备砂箱等防火器材,专人现场监护; 2、警戒区内无非防爆电器(开关柜、用电设备等)、无电火焊作业; 3、警戒区通风良好; 4、废油及油棉纱集中存放、保管; 1、作业人员着防静电工作服; 2、进入现场严禁携带火种,严禁在作业场所吸烟; 3、清洗中应避免金属构件直接碰撞; 4、废油、废棉纱集中存放到指定地点; 起重伤害 设备损坏 人员伤亡 1、行车等起重机械验收、试吊合格并取证,安全保护装置齐全可靠;链条葫芦等起重工器具定期检测合格;

2、作业区设置安全警戒、专人检查监护;现场专人指挥; 3、起重钢丝绳设置防快口措施; 4、起重物中途停止提升或下降进行设备底部的检查或其他设备安装时,必须设置硬性支撑进行保险; 1、设备的捆绑、伸钩应由专业起重人员进行; 2、起重及其他配合人员在站位选择时应避开起重物可能荡去的方向; 3、设备就位时,配合人员头、手等应避开危险位置,不得将头手伸入起重物就位的下方位置; 高处坠落 高处坠落 1、平台各预留孔洞安装双道色标栏杆并挂设安全警标标志; 2、覆水器喉部搭设安全隔离层; 3、在外缸上部或化装板顶部作业时须搭设操作平台或设置临边防护栏杆; 1、孔洞临边作业时安全带应悬挂在防护栏杆上;在设备顶部作业时安全带应悬挂在设备或管道上; 2、进入孔洞边缘作业前应先挂好安全带,然后从栏杆下部或开门处进入,严禁从栏杆顶部翻爬跃入; 触电 灼烫 触电 烫伤 1、电动扭力扳手等电动工器具检测合格; 2、电加热器开启前设置安全隔离区,挂设警示牌并安排专人监护; 3、配电盘装设漏电保护器; 1、电动工器具使用前检查确认电缆及手柄外壳等无破损; 2、试验确认漏是保护器灵敏可靠;

滑触线路的电压降问题

滑触线路的电压降问题 过去设计滑触线路时,采用最大电流来检验电压降。即从低压屏上的馈电形状到滑触线取末端,包括供电电缆在内的电压降不得超过12%,也就是滑触线和供电线路当作一个整体来考虑,在满足电压降的要求下,务使投资最少。随着近年来引进工程增多,综合国外资料,国外一般都以负荷计算电流来检验电压降,包括供电线路在内到滑触线最末的电压降值不得超过5%。 电压计算公式: △u=√3 ×I×I×Z 或△u=√3 ×I×I×(RCOSρ+XSinΨ) 式中:△u=电压降(V),I=负荷计算电流(V),R=电阻(Ω/km) X=电感(Ω/km),Z=阻抗(Ω/km),L=滑触线诸长度(m) 滑触线计算长度方式:为滑触线全长(m) 在滑触线端部供电时:I=L 在滑触线中部供电时:I=L/2 在滑触线两端部同时供电时:I=L/4 在滑触线两端端部距L/6处供电时:I=L/6 1、滑触线https://www.360docs.net/doc/631914793.html,/选型:先计算出设备额定电流,初步选定滑触线。然后再计算出设备启动电流峰值Ijf,再校验滑触线的电压降:△U=√3×Ijf×Z×L △U%=△U/U额×100% (滑线末端的压降不超过电源的8%即可满足设计要求) Ijf:滑触线上的尖峰电流,(I) Z:滑触线阻抗(Ω/km) L:滑触线计算长度(Ω/km) △U:吊车一端滑触线压降(V) U额:供电电源电压( 380V ) 只有电压降满足要求,才能最后选定滑触线。若是一点供电,供电点选择在滑触线的中间。如果计算电压降不能满足要求,可适当加大滑触线或采用多点供电的办法。然后再进行一次电压降校验。选择滑线侧滑方式,便于减小相间距,节约空间,减小阻抗,节约支架材料,建议推广。 2、多路多点供电滑触线当单路多点也难以满足压降要求时,可采用多路(2-3路)多点供电的滑触线,每路载流可相应减小,阻抗也低,可以有效解决压降问题。缺点是占用安装空间。多点供电应考虑供电电缆与变压器的距离最短。

发动机喘振故障的形成原因及防范措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 发动机喘振故障的形成原因及防范措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4642-29 发动机喘振故障的形成原因及防范 措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 摘要:涡轴8系列发动机为自由涡轮式的涡轮轴发动机,具有性能比较先进,尺寸小,重量轻,结构简单,工作可靠,使用维护方便的特点。发动机的压气机由一级跨音轴流压气机和一级超音离心压气机组成的混合式压气机,具有结构简单、重量轻、增压比高、性能平稳的特点。本文根据发动机的压气机工作原理分析喘振的原因并提出维护建议及防止喘振的措施。 关键词:发动机喘振空气压力故障 1失速与喘振的概述 工作叶轮进口处相对失速的方向与叶片弦线之间的夹角叫做攻角。影响攻角的因素有两个:一是转速,另一个是工作叶轮进口处的绝对速度(包括大小和方

向)。在攻角过大的情况下,会使气流在叶背处发生分离,这种现象叫做失速。失速区九朝着与叶片旋转方向相反的方向移动。这种移动失速比周围速度要小,所以站在绝对坐标系上观察时,失速区以较低的转速与压气机叶轮做同方向的旋转运动,称为旋转失速。 2发动机内部空气系统 发动机工作时,外界空气经直升机上的进气道流入压气机,首先在轴流压气机中得到压缩,然后再进入离心压气机被进一步压缩。压缩后的高压空气进入燃烧室,与燃油混合燃烧,生成高压高温的燃气。从燃烧室出来的燃气流向涡轮,首先在燃气发生器涡轮中膨胀做功,带动压气机工作;然后燃气进入自由涡轮中进一步膨胀做功,从而向外提供功率,驱动直升机旋翼等工作。 2.1 篦齿(或称迷宫)封严装置的密封原理。篦齿封严装置(或称迷宫封严装置)是利用篦齿前后空气的压差来达到密封目的。增压空气从压力高的一侧通过篦齿装置很小的间隙流向压力低的一侧,空气的

桥式起重机安全滑触线使用及改进

起重机的焊接工艺设计 起重机械是用于物料起吊、运输、装卸和安装等作业的机械设备。GB 6974.1将起重机械定义为:以间歇、重复工作方式,通过起重吊钩或其他钓具起升、下降,或升降与运移重物的机械设备。起重机属于国家技术监督局蓝剑的特种设备,对制造质量,使用安全性能有较高的要求。起重机的基本参数包括起重量、跨国、起重高度、规矩、幅度、各机构工作速度、工资级别、轮压等,这些参数是起重机设计的依据,与焊接生产要求密切相关。而起重机焊接生产执行的标准主要涉及起重机焊接结构设计、材料、焊接材料、焊接工艺、无损探伤检测、涂装等内容。 桥式起重机是横架于车间、仓库和料场上空进行物料吊运的起重设备。因为它的两画廊端坐落在高大的水泥柱或者金属支架上,外形似桥。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,能够充足应用桥架下面的空间吊运物料,不受地面设备的妨碍。它是应用范畴最广、数目最多的一种起重机械。桥式起重机是古代产业生产和起重运输中实事实现出产进程机械化、主动化得主要工具和装备。所以桥式起重机在室内外工矿企业、钢铁化工、铁路交通、港口码头以及物流周转等部分和场合均得到普遍的应用。起升机构包含电动机、制动器、减速器、卷筒和滑轮组。电动机通过减速器,带动卷筒滚动,使钢丝绳绕上卷筒或从卷筒放下,以升降重物。小车架是支托和安装起升机构和小车运行机构等部件的机架,通常为焊接结构。起重机运行机构的驱动方法可分为两大类:一类为集中驱动,即用一台电动机带动长传动轴驱动两边的自动车轮;另一类为分辨驱动、即两边的主动车轮各用一台电动机驱动,天然岩片。中、小型桥式起重机较多采用制动器、减速器和电念头组合成一体的“三合一”驱动方式,大起重量的一般桥式起重机为便于装置和调剂,驱动安装常采取万向联轴器。起重机运行机构个别只用四个主动跟从动车轮,假如起分量很大,常用增添车轮的措施来下降轮压。当车轮超过四个时,必需采用铰接平衡车架装置,鹅卵石滤料,使起重机的载荷平均地散布在各车轮上。桥架的金属构造由主梁和端梁组成,分为单主梁桥架和双梁桥架两类,葡萄苗。单主梁桥架由单根主梁和位于跨度两边的端梁组成,双梁桥架由两根主梁和端梁组成。主梁与端梁刚性衔接,端梁两端装有车轮,用以支承桥架在高架上运行,钢丝网骨架塑料聚乙烯复合管。主梁上焊有轨道,张力计,供起重小车运行,转氨酶增高说明什么。桥架起重机梁的结构类型较多比拟典范的箱形结构、四桁架结构和空腹桁架结构。 桥式起重机可分为普通桥式起重机、简易梁桥式起重机和冶金专用桥式起重机三种。普通桥式起重机一般由起重小车、桥架运行机构、桥架金属结构组成。起重小车又由起升机构、小车运行机构和小车架三部分组成。起升机构包括电动机、制动器、减速器、卷筒和滑轮组。电动机通过减速器,带动卷筒转动,使钢丝绳绕上卷筒或从卷筒放下,以升降重物。小车架是支托和安装起升机构和小车运行机构等部件的机架,通常为焊接结构。起重机运行机构的驱动方式可分为两大类:一类为集中驱动,即用一台电动机带动长传动轴驱动两边的主动车轮;另一类为分别驱动、即两边的主动车轮各用一台电动机驱动。中、小型桥式起重机较多采用制动器、减速器和电动机组合成一体的“三合一”驱动方式,大起重量的普通桥式起重机为便于安装和调整,驱动装置常采用万向联轴器。起重机运行机构一般只用四个主动和从动车轮,如果起重量很大,常用增加车轮的办法来降低

天车滑触线基础知识与安装

多级管式滑线 一、产品概述 DHG、DHGJ安全滑接输电装置(安全滑触线)是目前发达国家日益重视的一种安全、可靠、新颖的移动输电装置,是替代钢质裸滑线和电缆卷筒等供电的理想产品。 DHG、DHGJ装置是在特殊配置的半封闭工程塑料导管或铝合金导管内,嵌有多极输电铜导轨或带绝缘槽板的铜导轨作为输电母线,导管内装有配合紧凑、移动灵活的集电器,能在地哦那个受电设备如起重机、电动葫芦、悬挂输送机等设备的拖动下同步移动,同时通过在集电器上配置的多极电刷在铜导轨上华东接触,将铜导轨上的电源或信号可靠地输送给移动手电设备。 产品适应于输送交流660V以下,直流1000V以下,可作动力或信息传输用。 产品特点: 安全:该产品外壳防护等级可达IP23级,防雨雪冰冻、放异物触及、产品经过多种试验环境、绝缘性能的严格考核,操作、维护人员触及输电导管的外部无任何危险。 可靠:该产品集电器在导管内行走,输电铜导轨嵌在导管中,所以集电器行走轨道与铜导轨相对位置恒定,集电器电刷与铜导轨始终在恒压状况下接触,保证了接触的可靠性。电刷由具有高导电性能、高耐磨性能的金属陶瓷材料制成。集电器移动灵活,定向性能好,能有效控制接触电弧和串弧现象。 经济:该产品结构简单,由于以铜代钢导电,与铜质裸线相比节点15%,且大大节省材料和安装费用。 方便:DHG与DHGJ装置集多极母线于一根导管中,安装简便,其固定支架、连接、悬吊装置均以标准件提供,装拆、调整、维修十分方便。 产品用途:DHG与DHGJ滑接输电装置适用于以下场合传输电能和控制信息: 电动葫芦、电动桥式起重机、龙门式起重机、装卸桥、堆垛机等仓储设备;移动式电动工具、照明器具、自动生产线、检测线等一切需移动受电的设施与场所。 产品型号和类别:a.输电导管:

输煤行车常见的故障原因及处理方法 张宣

输煤行车常见的故障原因及处理方法 一、电气系统 1 故障现象及产生原因: (1)主电机回路一般包括主电机绕组、电阻箱中串联电阻、控制箱中的交流接触器和联动线路等。由于起重机在正常工作时,电阻箱中的电阻组大部分时间均投入运行,因此将产生大量的热量,从而使电阻组的温度较高。在高温环境中,无论是电阻本身还是电阻连接端子均易变质。一方面将改变电阻材质,引起电阻阻质的改变:另一方面可能导致电阻连接端子的断裂,使得电机转子或定子的串联电阻阻值不平衡。与此同时,起重机工作过程中各种交流接触器的切换频率特别高,其触点很容易在频繁的切换中损伤、老化,造成部分触点接触电阻变大或发生缺相现象,使电机绕阻的串联电阻阻值不平衡。在上述两种情况下,起重机重载或长时间工作时均会导致电机损坏等故障。 (2)主供电系统故障主要是供电滑触线故障。如由滑触线引起的断电现象,导管明显变形造成受电器无法移动,电刷侧面擦伤和表面有粒状凹坑,工作时导管晃动太大,电刷磨损太快,电器滑行有较大声响及外壳擦伤等。其原因往往是导轨安装不合适引起的变形,环境温度过高热膨胀造成卡死现象,受电器的不正确安装及定位偏差等。 (3)电气系统中的电子元器件的质量问题会导致主电机和其他电机的损坏。如交流接触器质量差,机械可靠性不好,线圈发热,吸合不好及线圈烧坏;各种保护继电器质量差及损坏。有的交流接触器触点含银量低或接触铜片选用镀铜铁片,接触器塑料外壳薄或使用再生塑料,因而造成触点接触不良,冒火花和易熔化,三相触点弹簧压力不均和外壳破裂等。 (4)电源电压瞬时降低。由于主电机(起升电机)功率大(一般在15 kW 以上),又是全电压起动,如果起重机安装地点距电源变压器较远或专用供电线路上搭载有其他较大功率的电器,且选用的电源供电线的线径较小时,就会使电源电压瞬时降低,有时造成电源电压降低值大于额定值的10 %。电源电压降低必然会使电机的起动时间加长或造成起动困难,也会导致电机损坏。 2 预防措施

桥式起重机的常见故障及排除方法

桥式起重机的常见故障及排除方法 下面就从机械、电气和金属结构三个方面阐述桥式起重机的常见故障及排除方法。 一、机械传动方面的常见故障 1、制动器刹车不灵、制动力矩小,起升机构发生溜钩现象;在运行机构中发生溜车现象。其原因分析及其解决方法叙述于后: (1) 制动轮表面有油污、摩擦系数减小导致制动力矩减小故刹不住车。可用煤油或汽油将表面油污清洗干净即可解决。 (2) 制动瓦衬磨损严重、铆钉裸露,制动时铆钉与制动轮表面接触,不但降低制动力矩刹不住车而且又拉伤制动轮表面,危害较大。更换制动瓦衬即可。 (3) 主弹簧调整不当、张力小而导致制动力矩减小、刹不住车而产生溜车或溜钩现象。重新调整制动器使其主弹簧张力增大。 (4) 主弹簧疲劳、材料老化或产生裂纹、无弹力、张力显著减小而刹不住车。应更换新弹簧并调整之。 (5) 制动器安装不当、其制动架与制动轮不同心或偏斜而导致溜钩或溜车现象。通常先把制动器闸架地脚螺栓松开,然后将制动器调紧,使闸瓦抱紧制动轮,这时再将悬浮的制动器闸架底部间隙填实,然后再紧固地脚固定螺栓,即可达到二者同心。 (6) 电磁铁冲程调整不当或长行程制动电磁铁水平杆下面有支承物,导致刹不住车。通常重新调整磁铁冲程或去掉支承物即可解决。 (7)液压推动器的叶轮转动不灵活,导致刹车力矩减小。调整叶轮消除卡塞阻力,使叶轮转动滑块即可解决。 2、制动器打不开。导致制动器打不开的原因及排除方法有以下几种: (1) 主弹簧张力过大、电磁铁磁拉力小于主弹簧的张力,故打不开闸,重新

调整制动器,使主弹簧张力减小即可。 (2) 制动器杠杆传动系统有卡住现象,松闸力在传递中受阻,故打不开闸。检查传动系统,消除卡塞现象即可解决。 (3) 制动器制动螺杆弯曲,螺杆头顶碰不到磁铁动铁芯,故无法推开制动闸瓦。拆开制动器,取下螺杆将其调直或更换螺杆即可。 (4) 制动瓦衬胶粘在有污垢的制动轮工作面上。 消除制动轮表面上的污垢即可解决。 (5) 电磁铁线圈被烧毁或其接线折断、制动电磁铁无磁拉力所致。 更换制动线圈或接通线圈接线即可。 (6) 液压推动器的叶轮卡住。 消除叶轮卡塞故障即可。 (7) 线路电压降过大,导致制动电磁铁线圈电压低于额定电压的80%、磁铁磁拉力小于主弹簧的张力,故打不开闸。 消除电压降和原因,恢复正常电压值即可解决。 3、制动器工作时,制动瓦衬发热,“冒烟”,并有烧焦味道产生,瓦衬迅速磨损。 (1) 制动瓦衬与制动轮间的间隙调整不当、间隙过小、工作时瓦衬始终接触制动轮工作面而摩擦生热所致。 重新调整瓦衬与制动轮间的间隙,使其均匀且在工作时完全脱开,不与制动轮接触。 (2) 短行程制动器的副弹簧失效,推不开制动闸瓦,使闸瓦始终贴于制动轮表面上工作,长期摩擦生热所致。 更换副弹簧且重新调整制动器。 (3) 制动器闸架与制动轮不同心,制动瓦边缘与制动轮工作面脱不开而摩擦

10kV配电线路故障原因分析及防范措施示范文本_1

10kV配电线路故障原因分析及防范措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

10kV配电线路故障原因分析及防范措 施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 引言 随着我国经济发展不断加快,产业结构不断优化,我 市的经济业已步入发展的快车道,综合实力明显增强。近 年来供电量每年都保持着10%以上的增长,这对城配网的 安全可靠运行要求越来越高。10kV线路和设备发生故障不 但给供电企业造成经济损失、影响广大居民的正常生产和 生活用电,而且在很大程度上也反映出我们的优质服务水 平。根据我公司配电网络的实际运行状况,对近几年间所 发生的10kV配电运行事故进行分类统计分析,并结合其他 单位配电运行事故,找出存在的薄弱点,积极探索防范措 施,这对于提高配电网管理水平具有重要意义。

1城配网常见故障类型 1.1外破造成的故障因l0kV线路面向用户端,线路通道远比输电网复杂,交跨各类线路、道路、建筑物、构筑物、堆积物等较多,极易引发线路故障的,具体以下几个方面:①城区大部分线路架设在公路边,经济发展所带来的交通繁忙,以及少数驾驶员的违章驾驶,引起的车辆撞到电杆,造成倒杆、断杆等事故发生。②城市建设步伐加快,旧城改造进程中,有大量的市政施工,在社会固定资产投资增幅明显的背景下,所带来的建设项目快速增长。基建、市政施工时,对配网造成破坏,主要表现在两个方面:一是基面开挖伤及地下敷设电缆;二是施工机械、物料超高超长碰触带电部位或破坏杆塔。③市区规模日趋扩大,原来处于空旷地带中的高压输电线路正逐步被扩大的城市建筑物延伸包围。虽然线路建设在先,但仍然出现部分违章建筑物,直接威胁了线路的安全运行。这样,要么

主要风险源及预防措施

主要风险源及预防措施 我部负责达陕高速公路D10合同段土建路基工程的施工,起讫桩号K59+760~K67+925,路线长8.165Km。主要工程量有路基挖方118万方,填方132万方;桥梁12座合计1998.7延米;隧道2座合计单洞6143延米;涵洞18道合计695.15延米及路基防护、排水等工程。 根据国家、地方施工安全方面的具体规定与技术标准以及承发包合同、招投标文件、设计文件和施工图纸,万达高速公路现场调查所获得的地质、水文、气象等资料,结合本管段的实际地形地貌,经过认真分析,得出以下存在的主要风险源: 一、金竹山隧道主要风险源及预防措施 通过对金竹山隧道设计图纸、施工方案的研究,并结合实际地形、地貌和设计地质条件,分析了隧道存在的主要风险源。 (一)不良自然地质带来主要风险源和应对措施 1、不良自然地质现象 (1)岩溶 对隧道的影响:存在涌、突水危险和断层带处突岩屑、泥现象。 (2)断层及破碎带 (3)突水、突泥 (4)浅埋、偏压 (5)坍塌冒顶,沟水突然涌入隧道的潜在危险。 2、应对措施 (1)岩溶 岩溶主要发生在石灰岩地层中。岩溶的发育程度取决于围岩的溶蚀性。治理岩溶地层,首先要查明岩溶在隧道出露的位置、规模、形态,有无泥、砂充填,是否与地下暗河连通,是否有地

表水补给等。根据探明的情况分别采取相应的处置措施。 位于拱部及边墙的小型溶洞,在衬砌断面外用浆砌片石或低等级混凝土回填,有水时则视水量大小采用埋管或凿槽的方法将水引入边墙水沟内。位于隧底的溶洞,采取换填、钢管注浆加固的处理方法,也可根据溶洞规模采用架设钢筋混凝土梁的方法。对于有泥、砂、水充填的大型溶洞,应遵循“限量排放,排堵结合,因地制宜,综合治理”的原则进行处置。对其采取长管棚或小导管注浆进行超前支护,短台阶预留核心土环状开挖,网喷和钢支撑进行初期支护的综合处理措施。对于特大型溶洞一时难以处理的,可考虑设置迂回道坑,后期再进行处理,以节省工期。 (2)断层及破碎带 为防止开挖断层及破碎带时出现坍塌,保证施工安全,开挖前应对断层及破碎带进行地质探测。根据探测的水量大小、水压高低等情况采取相应的处理措施:大水量、高水压地段以堵为主,限量排放,先帷幕注浆,再开挖,辅以小导管注浆。水量不大时采用长管棚注浆超前支护,然后开挖,水以排为主,排堵结合。 (3)突水、突泥 根据地质超前预报资料,施工中有针对性地采取注浆封堵措施,防止突水、突泥发生。通过地质超前预报确定突水、突泥地段的准确位置,留不小于4m的安全岩柱。用钻机向工作面钻眼,使前方地段的水和泥有控制的排出,缓解压力,避免突水、突泥情况的发生。 出现突水、突泥情况,采取以下处置方案: 1)从炮眼或围岩裂隙往外喷水、喷泥时,说明有突水、突泥可能,立即撤出人员。在这种情况下爆破采用远距离放炮或洞外放炮,人员撤至洞外。 2)规模较小,可采取清除填充物,用浆砌片石回填,再进行

关于天车常见故障的原因及分析

关于天车常见故障的原因及分析 今天,我们一起来探讨天车在使用中,常见故障的原因及表象的分析。本次交流会重点针对新入职不久的员工。在开始前我想请各位配合一下,把您手机的响闹装置调到静音或关闭状态,以免会议过程中一鸣惊人,谢谢合作。 概述:我们首先来认识一下我们分厂天车的控制系统,主要有凸轮控制器直接控制和经接触器控制以及PLC和变频控制三大类。 供电:供电部分主要有滑触线、受电器、主开关及主接触器组成。其主常见故障有所有连锁限位开关都已锁好但无法启动,或行进中突然断电无法重新启动,及运行中无法换向(且空调无法正常运转)。故障原因主要为:划线停电或受电器脱落。还有就是配电柜内断路指示显示断项错误,有时伴有断电后工作指示灯常亮时,大多是主开关坏或主接触器粘连。 连锁开关:常见故障有;供电部分正常上车后无法启动或运行中遇到颠簸后突然电后无法启动。故障原因多为限位开关坏或松动(包括急停和钥匙开关)。 大车:常见故障有;只向一侧行进或跳档。其故障原因大多为:前者是接近限位器坏及限位线断,或红外防撞限位坏或着放置不适。后者多为接触器坏(正反转接触器坏几率较大)或零位不正(凸轮直接控制式多为档位触头坏)。注:就其故障原因除变频式外升降、小车判断方法均通用后面不再一一注解。还就是两侧电机不同步其故障原因多为两侧抱闸调整不适或配电柜内有线头脱落以及电机坏。 小车拖动电缆:其故障多为随着小车行走位置不同,而造成小车行走、升降系统出现间断性单向运行的现象。故障原因多为供电及各信号线缆破损或断裂。 升降:常见故障有;单向运行、跳档或直接高档位运行时,出现摩擦音或运行无力。前者判断方法前面已经介绍过了就不再重复啦。后者原因多为抱闸调整不合适如以排除抱闸为题后故障仍存在大多时电机内碳刷或滑环线出现问题。再有就是吊运中突然溜钩,很有可能是电机烧坏。 电铃:故障多为不踩开关自己鸣响或工作,其原因多为连线或配电柜内空开跳闸及脚踏开关坏。 过流继电器:当操作手柄工作时频繁出现掉闸现象时多为过流继电器调整不合适或坏。 减速机:常见故障为运行中出行砊砊声时,其故障原因多为地脚螺丝松动,用脚转动联轴器时其空转距离大于周长的三分之一时就是减速机内齿轮坏。 车轮及清障铲:行走过程中有摩擦音且阻力较大,其原因多为车轮轴承坏、车轮啃轨或清障铲磨轨及脱落。

防止触电的技术方法和措施

为了达到安全用电的目的,必须采用可靠的技术措施,防止触电事故发生。绝缘、安全间距、漏电保护、安全电压、遮栏及阻挡物等都是防止直接触电的防护措施。保护接地、保护接零是间接触电防护措施中最基本的措施。所谓间接触电防护措施是指防止人体各个部位触及正常情况下不带电,而在故障情况下才变为带电的电器金属部分的技术措施。专业电工人员在全部停电或部分停电的电气设备上工作时,在技术措施上,必须完成停电、验电、装设接地线、悬挂标示牌和装设遮栏后,才能开始工作。 一、绝缘 1.绝缘的作用绝缘是用绝缘材料把带电体隔离起来,实现带电体之间、带电体与其他物体之间的电气隔离,使设备能长期安全、正常地工作,同时可以防止人体触及带电部分,避免发生触电事故,所以绝缘在电气安全中有着十分重要的作用。良好的绝缘是设备和线路正常运行的必要条件,也是防止触电事故的重要措施。绝缘具有很强隔电能力,被广泛地应用在许多电器、电气设备、装置及电气工程上,如胶木、塑料、橡胶、云母及矿物油等都是常用的绝缘材料。 2.绝缘破坏绝缘材料经过一段时间的使用会发生绝缘破坏。绝缘材料除因在强电场作用下被击穿而破坏外,自然老化、电化学击穿、机械损伤、潮湿、腐蚀、热老化等也会降低其绝缘性能或导致绝缘破坏。绝缘体承受的电压超过一定数值时,电流穿过绝缘体而发生放电现象称为电击穿。气体绝缘在击穿电压消失后,绝缘性能还能恢复;液体绝缘多次击穿后,将严重降低绝缘性能;而固体绝缘击穿后,就不能再恢复绝缘性能。在长时间存在电压的情况下,由于绝缘材料的自然老化、电化学作用、热效应作用,使其绝缘性能逐渐降低,有时电压并不是很高也会造成电击穿。所以绝缘需定期检测,保证电气绝缘的安全可靠。 3.绝缘安全用具 一些情况下,手持电动工具的操作者必须戴绝缘手套、穿绝缘鞋(靴),或站在绝缘垫(台)上工作,采用这些绝缘安全用具使人与地面,或使人与工具的金属外壳,其中包括与相连的金属导体,隔离开来。这是目前简便可行的安全措施。为了防止机械伤害,使用手电钻时不允许戴线手套。绝缘安全用具应按有关规定进行定期耐压试验和外观检查,凡是不合格的安全用具严禁使用,绝缘用具应由专人负责保管和检查。常用的绝缘安全用具有绝缘手套、绝缘靴、绝缘鞋、绝缘垫和绝缘台等。绝缘安全用具可分为基本安全用具和辅助安全用具。基本安全用具的绝缘强度能长时间承受电气设备的工作电压,使用时,可直接接触电气设备的有电部分。辅助安全用具的绝缘强度不足以承受电气设备的工作电压,只能加强基本安全用具的保安作用,必须与基本安全用具一起使用。在低压带电设备上工作时,绝缘手套、绝缘鞋(靴)、绝缘垫可作为基本安全用具使用,在高压情况下,只能用作辅助安全用具。 二、屏护 屏护是指采用遮栏、围栏、护罩、护盖或隔离板等把带电体同外界隔绝开来,以防止人体触及或接近带电体所采取的一种安全技术措施。除防止触电的作用外,有的屏护装置还能起到防止电弧伤人、防止弧光短路或便利检修工作等作用。配电线路和电气设备的带电部分,如果不便加包绝缘或绝缘强度不足时,就可以采用屏护措施。开关电器的可动部分一般不能加包绝缘,而需要屏护。其中防护式开关电器本身带有屏护装置,如胶盖闸刀开关的胶盖、

轮对故障发生的原因和危害分析及其防范措施(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 轮对故障发生的原因和危害分析及其防范措施(通用版)

轮对故障发生的原因和危害分析及其防范措 施(通用版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 一、问题的提出 为适应我国铁路跨越式发展的需要,自第六次全路大面积提速以来,随着铁路运用货车的新技术运用,使得货车提速转向架的改造工作全面迅速展开,目前运用货车中装有提速转向架的车辆已达到80%以上,在这种新的背景下,给铁路货车的各部配件都提出了很高的要求,尤其是轮对。进入2010年以来,我作业场不断发现因轮对原因而直接或间接造成的车辆典型故障,如轮对踏面擦伤过限,踏面剥离,轮缘磨耗过限、缺损,轮缘缺损,踏面周围磨耗过限,轮辐板孔裂,滚动轴承保持架裂损,制动梁端轴开焊,支柱裂损等,一旦出现漏检,将会严重威胁到行车安全。 虽然目前全路各大干线都已安装使用了5T设备,包括专门针对轮对故障的TPDS系统,但是实际运用中还未完全磨合好,轮对故障及由轮对故障而引起的其它故障对行车安全的危害还十分严重,铁道部及各

滑触线衡量标准

滑触线衡量标准: 1、碳刷使用寿命--属于易耗品,行驶距离影响设备维护周期。 2、滑触线外壳质量--适用温度,环境等。 3、集电器性能--主要从轮子使用寿命、转弯轮设计和集电器是否满足各种环境下使用。 4、滑触线膨胀问题--长度超过100米以后就要考虑膨胀问题。 5、电压降问题--根据各种铜条长度电压降有所不同。 集电器是一种新型的向移动机械设备馈电的供电系统,导体为特殊配方优质铝合金型材,其外装护套采用特殊聚氯乙烯原料,起到防雨、防尘、防雪、防触电的安全作用。结构简单、安装维护方便,被广泛用于矿山、冶金、化工、机械、码头、货场等移动设备的供电线。 特点: 1.安全可靠,即使用手指接触也没有触电危险,符合IP23标准。 2.节能降耗,采用特殊配方铝合金型材作为导体;电阻小,可最大程度降低电能的损耗。 3.使用寿命长,导体护套也采用独特的配方,极大延长了滑导线系统的使用寿命。 4.集电器可三维空间运动,能满足供电设备的不间断供电;采用双绝缘设计,工作更安全可靠。 5.新材料、新技术、新工艺保证产品有更高的抗腐蚀性、耐侯性和工作温度使用范围,工作性能更加安全可靠。 6.轻型系列≤500A,重I型系列630A~1250A,重Ⅱ型系列>1250A,同一系列,护套及配件通用。 7.采用组合设计,易于安装和日常维护,特别适合于高空作业。 滑触线集电器是滑触线系统中集电侧拾取电能的主要装置之一,它通过集电刷与导轨的滑动接触,将电能直接传导至用电器,从而实现系统的移动供电.滑触线集电器由机械结构的张力装置和直接与导轨滑动接触的集电刷两部分组成,机械结构的张力装置决定集电刷与导轨的滑动接触压力和机构的稳定性,集电刷则是导轨滑动接触拾取电能的导体,它的性能和导电质量以及材料结构成分的优劣,将直接影响整个系统设备的安全运行质量,因此滑触线集电器是整个滑线系统中最主要的部件之一.

配电线路故障原因分析及防范措施

编号:AQ-JS-03625 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 配电线路故障原因分析及防范 措施 Cause analysis and preventive measures of distribution line fault

配电线路故障原因分析及防范措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科 学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 配电网是完成向用户供电的最后一个环节,它的运行可靠性直接决定着用户是否能够得到持续的电力供应,因此保证配电网的安全运行是非常重要的。配电线路因点多、面广、线长,路径复杂,设备质量参差不齐,受气候、地理的环境影响较大,又直接面对用户端,所以经常产生各类故障,给供电企业和用电客户都将带来很大的经济损失。怎样全面分析事故的原因,采取合适的防范措施是提高配电网供电可靠性的关键。 1光明分局所辖配电网故障现状 光明分局辖区内9座变电站、64个开闭所,142条10kV线路,478台断路器构成,10KV配电线路全长598公里。全年10KV配电线路发生跳闸58次(重合不成功按2次统计),接地18次。其中6-8月份故障发生40次,占故障总数的%。 按故障原因不同统计:

序号 故障类别 故障次数(次) 占总故障比例(%)1 外力破坏 18 28.13 2 树障 14 21.88 3 雷击 15 23.44

主要风险源及预防措施

主要风险源及预防措施 Prepared on 24 November 2020

主要风险源及预防措施 我部负责达陕高速公路D10合同段土建路基工程的施工,起讫桩号K59+760~K67+925,路线长。主要工程量有路基挖方118万方,填方132万方;桥梁12座合计延米;隧道2座合计单洞6143延米;涵洞18道合计延米及路基防护、排水等工程。 根据国家、地方施工安全方面的具体规定与技术标准以及承发包合同、招投标文件、设计文件和施工图纸,万达高速公路现场调查所获得的地质、水文、气象等资料,结合本管段的实际地形地貌,经过认真分析,得出以下存在的主要风险源: 一、金竹山隧道主要风险源及预防措施 通过对金竹山隧道设计图纸、施工方案的研究,并结合实际地形、地貌和设计地质条件,分析了隧道存在的主要风险源。 (一)不良自然地质带来主要风险源和应对措施 1、不良自然地质现象 (1)岩溶 对隧道的影响:存在涌、突水危险和断层带处突岩屑、泥现象。 (2)断层及破碎带 (3)突水、突泥 (4)浅埋、偏压 (5)坍塌冒顶,沟水突然涌入隧道的潜在危险。 2、应对措施 (1)岩溶 岩溶主要发生在石灰岩地层中。岩溶的发育程度取决于围岩的溶蚀性。治理岩溶地层,首先要查明岩溶在隧道出露的位

置、规模、形态,有无泥、砂充填,是否与地下暗河连通,是否有地表水补给等。根据探明的情况分别采取相应的处置措施。 位于拱部及边墙的小型溶洞,在衬砌断面外用浆砌片石或低等级混凝土回填,有水时则视水量大小采用埋管或凿槽的方法将水引入边墙水沟内。位于隧底的溶洞,采取换填、钢管注浆加固的处理方法,也可根据溶洞规模采用架设钢筋混凝土梁的方法。对于有泥、砂、水充填的大型溶洞,应遵循“限量排放,排堵结合,因地制宜,综合治理”的原则进行处置。对其采取长管棚或小导管注浆进行超前支护,短台阶预留核心土环状开挖,网喷和钢支撑进行初期支护的综合处理措施。对于特大型溶洞一时难以处理的,可考虑设置迂回道坑,后期再进行处理,以节省工期。 (2)断层及破碎带 为防止开挖断层及破碎带时出现坍塌,保证施工安全,开挖前应对断层及破碎带进行地质探测。根据探测的水量大小、水压高低等情况采取相应的处理措施:大水量、高水压地段以堵为主,限量排放,先帷幕注浆,再开挖,辅以小导管注浆。水量不大时采用长管棚注浆超前支护,然后开挖,水以排为主,排堵结合。 (3)突水、突泥 根据地质超前预报资料,施工中有针对性地采取注浆封堵措施,防止突水、突泥发生。通过地质超前预报确定突水、突泥地段的准确位置,留不小于4m的安全岩柱。用钻机向工作面钻眼,使前方地段的水和泥有控制的排出,缓解压力,避免突水、突泥情况的发生。 出现突水、突泥情况,采取以下处置方案:

滑触线安装标准

滑触线安装标准 1、支架应作防腐处理,应连续焊接、安装审固、安装孔位置一 致。 2、支架间距单线种型300A以下三1.5m、400A以上三3m多线接触滑触线型1.0-1.5m,导管型1.0-1.5m、电缆滑车型灵活掌握,视具 体情况确定,但最短不行少于1m,最长不大于6m。 3、悬挂件位置要正确、安装审固、数量符合要求。 4、滑触线主体。防护外壳与导体间隙三2mm;与轨道中心高度允差v 士15mm与轨道中心纵向允差三士15mm 扭曲度v 15mm/10m 5、伸缩器数量要符合规定;间隙距离应满足安装现场最大温差所引起的理论伸缩量。 6、集电器的方钢支架焊接牢固,中心线与滑触线垂直允差 士3mm方钢支架与滑触线尺寸,应保证集电器活动臂与滑触线主体 平行允差士3mm集电器与滑触线平面滑动顺畅符合规定压力。 7、紧固件。紧固螺帽的扭短应符合制造厂的推荐值。 8、电源进线,进线源牢固不得承受压力。 9、如采用临时线待要注要在恢复正常电源时检查电线的相序有无接反,正确调整相序

起重机平台、爬梯安装要求 1、由于安装处于高空作业进入安装现场请戴好安全帽、系好安全带后方可进行作业。 2、爬梯的安装应注意爬梯的安装部位,四周应留有足够的空间以保证人员的安全操作。 3、爬梯应采用焊接的方式固定在钢梁上或采用打固定螺栓的方式固定在水泥柱上无论何种方式须保证紧固安全可靠。 4、爬梯及护圈的焊接应保证实焊,应道焊缝结束后。应清除焊渣、检查焊缝不应存在虑焊,应按焊接要求不小于6mm 焊高。 5、平台的安装必须注意安装位置应便于维修人员安全操作,所有焊接应完全符合焊接要求每道焊缝应进行焊渣清理检查确定合格后才能交付使用。对于立焊或仰焊的部位应特别注意,不应存在虑焊状况。 6、所有安装、焊接的外观必须保证符合焊符合焊接件标准去除安装后留有的毛刺、焊瘤等缺陷。

电动机故障原因及防治措施(新编版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 电动机故障原因及防治措施(新 编版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

电动机故障原因及防治措施(新编版) 摘要:根据对电机车牵引电动机故障的统计,分析了故障部位发生故障的原因,并提出了使用前检查、使用中正确操作、定期维护修理等防治故障的措施。 关键词:牵引电动机;故障原因;防治措施 直流电动机与交流电动机相比,具有良好的启动性能;在广范围内平滑而经济地调速的性能;在电磁制动方面,投入加设备少,容易实现。所以直流电动机广泛使用在煤矿井上、运输的架线式和蓄电池式电机车上。但是,它比交流电动机构复杂,运行中维修比较麻烦。只有对直流电机车的故障原正确地分析判断,才能采取相应的方法、措施,预防和处理故障 本文拟采用电动机型号为ZQ-37.5型。在工作过程中进行故障分析。

1故障部位及原因分析 1.1换向器故障 换向器故障比例最大,这说明直流电动机换向方面的故障突出。在牵引电动机使用中,解决换向器故障仍是一个不容忽视的问题。 从直流电动机的工作特性可知,直流电动机在运行中,换向是一个较复杂的物理、化学等多方面问题的综合表现。所以换向器故障是直流电动机常见的一种故障。换向器常会出现灼伤痕迹,分为两种情况:一种是从换向器灼伤表面看不太严重,用纱布沾汽油可以擦除,不留明显痕迹;另外一种是灼伤较严重,用沾汽油的纱布擦拭后,留有灼伤痕迹。造成换向器灼伤的主要原因是:在换向时有火花产生,甚至产生环火所致。换向器产生火花的原因主要有机械原因和电磁原因两类。 (1)换向器火花产生的机械原因:换向器表面不清洁,主要有污垢、电刷磨损粉末;换向器表面不光洁,主要有换向片突出、换向片间云母绝缘突出、换向器表面太粗糙;各换向极的气隙不均匀;转子平衡不好,出现电刷在换向器上跳动。

滑触线膨胀段的原理分析及描述

滑触线膨胀段的原理分析及描述 膨胀系统1.包括插入一根6米长的滑导线中的一级滑动部件2.重叠在一起的铜条可以作为滑导线的接触面,而且可以保证导电的连续性。 铜杆在滑套3中滑动,从而起到机械的导向作用和可靠电接触。 最大间隙为200mm 每个膨胀系统由一导体护套4和一接口护套5给予保护。在接口护套的两端内扣装一端盖! 膨胀段是根据滑触线在不同温度环境工作的情况下,对滑触线在热胀冷缩时所产生的直线形变(型材挤压对顶)和冷缩时(型材收缩)而造成断电而设计的。它由两个可移动段与滑触线干线本体直截串联连接而成,其基本原理为:它由相对的静态滑片和动态滑片叠插组成一个与滑触线本体截面相吻合的过渡体,在滑触线环境温度变化时可自由地进行直线移动。由于静态滑片和动态滑片叠插后,无论怎样伸展与收缩,它都能够给集电器的电刷一个直线过渡的平面,从而克服了较早时期膨胀接头而带来的膨胀范围窄,集电器电刷跨越困难而造成断电,接触面变小而跳火等故障。由于静态滑片和动态滑片两端与滑线本体直截连接后,同时又设置两根滑动导杆将静态滑片和动态滑片穿插导向,因此,它具有良好的同轴度。与此同时,在静态滑片和动态滑片两端的上方还设置两根与滑接片相并联的软电缆,从而稳定和增加该膨胀段的载流量,使整个系统不致于因膨胀段的设置而影响整线额定载流量.膨胀段的可伸缩范围可在0~200mm之间调节,可以吸收滑线导轨本体材料为铝、铜,膨胀点距离150米/段、周边

环境温度-40℃~+115℃时,所产生膨胀系数而引发的伸缩距离,并使集电器能顺畅通过而不影响其供电质量。 由于静态滑片和动态滑片叠插后,无论怎样伸展与收缩,它都能够给集电器的电刷一个直线过渡的平面,从而克服了较早时期膨胀接头而带来的膨胀范围窄,集电器电刷跨越困难而造成断电,接触面变小而跳火等故障。由于静态滑片和动态滑片两端与滑线本体直截连接后,同时又设置两根滑动导杆将静态滑片和动态滑片穿插导向,因此,它具有良好的同轴度。与此同时,在静态滑片和动态滑片两端的上方还设置两根与滑接片相并联的软电缆,从而稳定和增加该膨胀段的载流量,使整个系统不致于因膨胀段的设置而影响整线额定载流量。 膨胀段的可伸缩范围可在0~150mm之间调节,可以吸收滑线导轨本体材料为铝、膨胀点距离150米/段、周边环境温度-40℃~+115℃时,所产生膨胀系数而引发的伸缩距离,并使集电器能顺畅通过而不影响其供电质量。洛阳前卫滑触线

浅析电缆故障原因和防范措施

浅析电缆故障原因和防范 措施 电力电缆供电以其安全、可靠、有利于美化城市,获得越来越广泛的应用。电力电缆多埋于地下,由于机械损伤、绝缘老化变质及材料缺陷等原因,经常会发生短路故障,如何快速寻找故障并采取应对措施显得比较重要。 、电缆故障原因 电缆故障的最直接原因是绝缘降低而被击穿。导致绝缘降低的因素很多,根据实际运行经验,归纳起来不外乎以下几种情况。 (一)外力损伤 由近几年的运行分析来看,尤其是在经济高速发展中的上海浦东,现在相当多的电缆故障都是由于机械损伤引起的。 二)绝缘受潮 这种情况也很常见,一般发生在直埋或排管里的电缆接头处。比如电缆接头制作不合格和在潮湿的气候条件下做接头,会使接头进水或混入水蒸气,时间久了在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。 三)化学腐蚀 电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐 蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。化工单位的电缆腐蚀情况就相当严重。 四)长期过负荷运行 超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产生附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。尤其在炎热的夏季,电缆的升温常常导致电缆绝缘薄弱处首先被击穿,因此在夏季,电缆的

故障也就特别多 五)电缆接头故障 电缆接头是电缆线路中最薄弱的环节,由人员直接过失(施工不良)引发的电缆接头故障时常发生。施工人员在 制作电缆接头过程中,如果有接头压接不紧、加热不充分等原因,都会导致电缆头绝缘降低,从而引发事故。 六)电缆本体的正常老化或自然灾害等其他原因 电缆运行故障是电缆系统在运行过程中因自身的原因引发的故障。此外,还有施工时,使电缆或附件受损或不符合相应规范,引起日后电缆系统的故障。 、电缆故障的防范措施 电缆进水后干燥处理非常困难(如用热氮气加压吹侧,一般也没有配置相应的设备。实际操作中,如果电缆进水,只是锯掉前端几米,如整条电缆已进水,就无法可取。因此,电缆进水的防止,应以预防为主,采用以下措施:电缆头应密封锯掉的电缆端头,无论是堆放还是敷设,均要用塑料密封起来(采用电缆专用的密封套), 防止潮气渗入。电线敷设后要及时进行电缆头的制作。购买电缆时,必须选择质量过硬的厂家。由于绝缘中的杂质、气孔等是水树发生的起点,因而电缆质量的好坏对防止水树老化至关重要。 加强电缆头制作工艺的管理一旦电缆进水,则最早出现击穿现象的往往是电缆头,因而电线头制作得好,可以延长电缆的整体寿命。如电缆在剥离半导体层时,我们在半导体层上竖着划几道,然后像甘蔗剥皮一样剥去半导体。但在用刀划时,若划得太深,便会伤及绝缘层,给水树的产生带来机会。采用冷缩电缆头3M 公司的冷缩硅橡胶电缆附件,制作简单方便,不用喷灯,不用焊锡。且硅橡胶电缆附件有弹性,紧紧地贴在电缆上,克服了热缩材料的缺点(热缩材料没有弹性,在电缆热胀冷缩的过程中,会与电缆本体间出现间隙,这就为水树的发展提供了便利)。长电缆采用电缆分支箱钢厂的几条长电缆,每条长度在3km 左右,对于这样的电缆,除了做中间接头外,我们还采用一至二个电缆分支箱,一旦其中的一段电缆进水后,不会扩散到其它段的电缆,而且在电缆故障时也便于分段查找。 采用PVC 塑料双壁波纹管该管耐腐蚀、内壁光滑、强度与韧性良好,因而在电缆直埋敷设时,可大大减少电缆外护套破损。电缆沟(管)与电缆井的设计由于条件的限制,电缆敷设均采用直埋或电缆沟形式,而且以直埋为多。电缆的试验电缆头制作完成后,在投运之前做一次高压直流泄漏试验以后,一般只对变电所出线电缆做预试,其它电缆不做试验。因为,变电所出线电缆一旦故障,短路

相关文档
最新文档