数形结合思想论文(新)

数形结合思想论文(新)
数形结合思想论文(新)

渗透数形结合思想,提高学生的数形结合能力

初教数学 1112班范杰凯 0407311081 内容提要:数形结合思想是一种重要的数学思想之一,可以通过“以形助数”、“以数赋形”使某些抽象的数学问题直观化、生动化,变抽象思维为形象思维,体现了转化的思想,化归的思想,有助于把握数学问题的本质。因此,在高中数学教学中应注重运用数形结合思想,提高学生的思维能力和数学素养。本文结合自己的教学实践,阐述了如何使用教材对数形结合思想进行有效渗透,使学生逐步提高数形结合的能力。

关键词:数形结合思想转化化归

正文:

新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。

在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决。

一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想

在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究函数的单调性、奇偶性等性质还是感到困难,因此在教学中采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。

在讲完函数的概念以后,出了一道这样的练习题:下列图象中不能作为函数的图象的是()

让学生从形的角度进一步理解函数的概念。

在研究一次函数和二次函数的性质与图象时,由于学生在初中已用描点法作过一次函数和二次函数的图象,因此我先从学生已有知识出发,让学生列表、描点、连线,作出一次函数和二次函数的图象,引导他们先从数的角度认识单调性、奇偶性,对称性,然后再通过图象直观感觉单调性、奇偶性,对称性,让学生深刻体会“数缺形时少直观,形离数时难入微”。

二、借助实验活动,探究直线与平面垂直的判定定理,形象感受数形结合思想

垂直关系教学中,可以用定义判断直线与平面垂直,但无法验证任意性,故不具有可操作性。于是,为寻求其它可操作的判断方法,做如下实验:

如图1,请同学们准备好一块(任意)三角形的纸片,过ABC

?的顶点A所在的直线翻折纸片,得到折痕AD,将翻折后的纸片竖直放置在桌面上(BD、DC与桌面接触)

图1

探究1:折痕AD与桌面垂直吗?为什么?

(析:不垂直,因为AD与BD、DC不垂直)

探究2:如何翻折才能使折痕AD与桌面所在的平面垂直?

(析:当折痕AD是BC边上的高,即AD BC

⊥时,翻折后折痕AD与桌面垂直)

在这只实验中,根据直线与平面垂直的定义引导学生分析“不垂直”的原因。当AD BC

⊥时,引导学生继续进行实验,如图2,固定BD,并保持BD与CD紧贴桌面,让面CAD绕着AD旋转,观察可知AD始终与桌面垂直,利用直线与平面垂直的定义引导学生分析“垂直”的原因。引导学生发现折痕AD与桌面垂直的本质特征:AD BD

⊥且BD、CD是桌面内的两条相交直线。当

⊥、AD CD

⊥时,无论怎样翻折,翻折后垂直关系不变。

AD BC

图2

探究3:由上述实验,怎样判断直线与平面垂直?

(析:一条直线与平面内的两条相交直线都垂直,则该直线与平面垂直)探究4:若一条直线垂直平面内的两条直线,能判断直线与平面垂直吗?

(析:不能,必须是相交直线)

探究5:若一条直线与平面内的一条直线垂直,能判断直线与平面垂直吗?

(析:不能,让学生举例)

通过实验,归纳出了“直线与平垂直的判定定理”。整个过程是使学生空间想象能力、动手操作能力、探究能力得到了集中体现。为此,让学生自己亲自动手,深刻体会到数形结合的魅力。从中我们得到一个启发,让学生自己开展适度的设计活动,有利于提高空间想象力,发展思维能力。

数形结合思想论文(精编文档).doc

【最新整理,下载后即可编辑】 渗透数形结合思想,提高学生的数形结合能力 初教数学1112班范杰凯0407311081 内容提要:数形结合思想是一种重要的数学思想之一,可以通过“以形助数”、“以数赋形”使某些抽象的数学问题直观化、生动化,变抽象思维为形象思维,体现了转化的思想,化归的思想,有助于把握数学问题的本质。因此,在高中数学教学中应注重运用数形结合思想,提高学生的思维能力和数学素养。本文结合自己的教学实践,阐述了如何使用教材对数形结合思想进行有效渗透,使学生逐步提高数形结合的能力。 关键词:数形结合思想转化化归 正文: 新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。 在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合

起来,并充分利用这种结合,寻找解题思路,使问题得到解决。一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想 在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究函数的单调性、奇偶性等性质还是感到困难,因此在教学中采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。 在讲完函数的概念以后,出了一道这样的练习题:下列图象中不能作为函数的图象的是() 让学生从形的角度进一步理解函数的概念。 在研究一次函数和二次函数的性质与图象时,由于学生在初中已用描点法作过一次函数和二次函数的图象,因此我先从学生已有知识出发,让学生列表、描点、连线,作出一次函数和二次函数的图象,引导他们先从数的角度认识单调性、奇偶性,对称性,然后再通过图象直观感觉单调性、奇偶性,对称性,让学生深刻体会“数缺形时少直观,形离数时难入微”。 二、借助实验活动,探究直线与平面垂直的判定定理,形象感受数形结合思想

数形结合思想方法

八、数形结合思想方法 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合一是一个数学思想方法,应用主要是借助形的直观性来阐明数之间的联系,其次是借助于数的精确性来阐明形的某些属性。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化。 Ⅰ、再现性题组: 1. 设命题甲:0b>1 D. b>a>1 3. 如果|x|≤π4 ,那么函数f(x)=cos 2x +sinx 的最小值是_____。 (89年全国文) A. 212- B. -212+ C. -1 D. 122 - 4. 如果奇函数f(x)在区间[3,7]上是增函数且最小值是5,那么f(x)的[-7,-3]上是____。(91年全国) A.增函数且最小值为-5 B.增函数且最大值为-5 C.减函数且最小值为-5 D.减函数且最大值为-5 5. 设全集I ={(x,y)|x,y ∈R},集合M ={(x,y)| y x --32 =1},N ={(x,y)|y ≠x +1},那么M N ∪等于_____。 (90年全国) A. φ B. {(2,3)} C. (2,3) D. {(x,y)|y =x +1 6. 如果θ是第二象限的角,且满足cos θ2-sin θ2=1-sin θ,那么θ2 是_____。 A.第一象限角 B.第三象限角 C.可能第一象限角,也可能第三象限角 D.第二象限角 7. 已知集合E ={θ|cos θ-+-=-???x x x m x 即:30212->-=-???x x m () 设曲线y 1=(x -2)2 , x ∈(0,3)和直线y 2=1-m ,图像如图所示。由图 可知:① 当1-m =0时,有唯一解,m =1; ②当1≤1-m<4时,有唯一解,即-3

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

浅谈数形结合思想在小学数学教学中的渗透

浅谈数形结合思想在小学数学教学中的渗透 摘要:“数”与“形”之间密不可分,它们相互转化,相辅相成。在教学中渗透数形结合的思想,可把抽象的数学概念直观化,帮助学生形成概念;可使计算中的算式形象化,帮助学生在理解算理的基础上把握算法;可将复杂问题简朴化,在解决问题的过程中,提高学生的思维能力和数学素养。适时的渗透数形结合的思想,可达到事半功倍的效果。 关键词:数形结合;小学数学;数学思想 美国教育心理家布鲁纳也指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的是数学思想方法。小学数学中常用的数学思想方法中“数形结合”思想尤为重要。那么在小学数学教学中如何去挖掘并适时地加以渗透呢?以下根据自身的数学教学实践谈谈自己的粗浅见解。 数、形是数学中两大基本概念之一,可以说全部数学大体上都是围绕这两个基本概念的提炼、演变、发展而展开的。“数”和“形”是紧密联系的。我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。“数形结合“的思维方法,便是理论与实际的有机联系,是思维的起点,是儿童建构数学模型的基本方法。 本文先解读“数形结合”思想,浅谈其历史性及重要意义,后结合实践重点探讨“数形结合”在小学数学教学中的实际应用和实施途径。 一.了解小学数学教材中蕴涵的主要数学思想方法 数学思想:符号思想,集合思想,对应思想,化归思想。 数学方法: (1)思维方法:分析、综合、抽象、概括、归纳、演绎 (2) 一般方法:观察、实验、比较、分类、联想、类比、化归、猜想 (3)数学特点较强的方法:函数法、数学模型法、数形结合法、统计法、变换法、分析法、综合法 (4)数学技能:换元法、代入法、系数比较法、合并同类项法、因式分解法、判别式法、配方法、加减消元法、代入消元法、待定系数法、恒等变形法、公式法、构造法、通分母、去括号 在小学数学教学中渗透的数学思想和方法,是以数学方法为主,一般称为数学思想方法,包括思维方法与数学技能。、 二、“数形结合”,由来已久?早在数学被抽象、分离为一门学科之前,人们在生活中度量长度、面积和体积时,就已经把数和形结合起来了。在宋元时期,我国古代数学家系统地引进了几何问题代数化的方法,用代数式描述某些几何特

数形结合毕业论文

数形结合思想在解题中的应用 摘要:数学是研究数量关系和空间形式的科学,数和形的关系是非常密切的。把数和形结合起来,能够使抽象的数学知识形象化,把数学题目中的一些抽象的数量关系转化为适当的几何图形,在具体的几何图形中寻找数量之间的联系,由此可以达到化难为简、化繁为易的目的。 关键词:数形结合解题应用 数形结合是一种极富数字特点的信息转换方法,数学上总是用数的抽象性质说明形的事实,同时又用图形的性质来说明数的事实。应用数形结合法,通过图形性质的的分析,使数学中的许多抽象的概念及定理直观化、形象化、简单化,并借助代数的计算和分析得以严谨化。下面,我将从3个方面来说明数形结合思想在解题中的应用 (一)、解决集合问题 在集合运算中常常借助于数轴、韦恩图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例 1: 已知集合 A=[0,4],B=[-2,3], 求 A∩B。 分析: 对于这两个有限集合, 我们可以将它们在数轴上表示出来, 就可以很清楚的知道结果。如图 1, 由图我们不难得出A∩B=[0,3]。 图1 例2:某校高二年级参加市级数学竞赛, 已知共有40个学生参加第二试(第二试共3道题), 参赛情况如下: ① 40个学生每人都至少解出一道题 ②在没有解出第一道题的学生中, 解出第二道题的人数是解出第三道题人数的2倍 ③仅解出第一道题的人数比余下的

学生中解出第一道题的人数多1个 ④ 仅解出一道题的学生中有一半没有解出第一道题 试问:(1)仅解出第二道题的学生有几个? (2)解出第一道题的学生有几个? 分析 本题数量关系错综复杂,似乎与集合无关,但若把“解出第一道题”、 “解出第二道题”和“解出第三道题”的学生分别看作一个集合,则可利用韦恩 图直观求解. 解答 设集合A ={解出第一道题的学生数},集合B ={解出第二道题的学生 数},集合C ={解出第三道题的学生数},如图2,可得 ???????+=+++=+=+=++++++c b a g e d a f c f b g f e d c b a 1)(240 解之得a =11,b =10,c =1,d+e+g =10 所以仅解出第二道题的学生有10个,解出第一道题学生有21个. (二)、解决函数问题 利用图形的直观性来讨论函数的值域(或最值),求解变量的取值范围,运用 数形结合思想考查化归转化能力、逻辑思维能力,是函数教学中的一项重要内容。 例 3: 对于 x ∈R, y 取 4 - x, x + 1,2 1(5 - x)三个值的最小值。求y 与x 的函数关系及最大值。 分析:在分析此题时, 要引导学生利用数形结合思想, 在同一坐标系中, 先 分别画出 y = 4 - x, y = x + 1, y = 2 1(5 - x)的图像,如图3。易得:A (1, 2) ,B (3, 1) , 分段观察函数的最低点,故y 与x 的函数关系式是: y=??? ????--+x x x 4)5(211 3) >(x 3)1<(1)1(≤≤x

三种数学思想方法教案

课题:中职常见的三种数学思想方法 教学目标:1.理解数形结合思想,分类讨论思想,转化与化归思想; 2.学会用数形结合思想,分类讨论思想,转化与化归思想 等三种思想解答实际数学问题。 教学重点:帮助学生树立数形结合思想,分类讨论思想,转化与化归思想。 教学难点:数形结合思想,分类讨论思想,转化与化归思想在实际数学问题中的应用。 教学方法:讲练结合及世界大学城空间网络教学 教学设计: Ⅰ.新课讲授 (一)专题一:数形结合思想 1.数形结合的含义 (1)数形结合,就是根据数与形之间的对应关系,通过数与形 的相互转化来解决数学问题的一种重要思想方法. 数形结合思想通过“以形助数,以数辅形”,使复杂问题简单化, 抽象问题具体化,能够变抽象思维为形象思维,有助于把握数 学问题的本质,它是数学的规律性与灵活性的有机结合. (2)数形结合包含“以形助数”和“以数辅形”两个方面,其应用大 致可以分为两种情形:一是借助形的生动性和直观性来阐明数 形之间的联系,即以形作为手段,数作为目的,比如应用函数

的图像来直观地说明函数的性质;二是借助于数的精确性和规 范严密性来阐明形的某些属性,即以数作为手段,形作为目的, 如应用曲线的方程来精确地阐明曲线的几何性质. 角度一:利用数形结合讨论方程的解或图像交点 [例1]函数f(x)=x 1 2 - ? ? ? ? ?1 2 x 的零点的个数为( ) A.0 B.1 C.2 D.3 方法规律:讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. 强化训练:1.方程log3(x+2)=2x解的个数为 角度二:利用数形结合解不等式或求参数问题 [例2]使log2(-x)

《数形结合思想》专题(整理)

数形结合思想 知识综述 (1)函数几何综合问题是近年来各地中考试题中引人注目的新题型,这类试题将几何问题与函数知识有机地结合起来,重在考查学生的创新思维及灵活运用函数、几何有关知识,通过分析、综合、概括和逻辑推理来解决数学综合问题的能力,此类试题倍受命题者青睐,究其原因,它是几何与代数的综合题,构题者巧妙地将几何图形置于坐标系中,通过函数图象为纽带,将数与形有机结合,并往往以开放题的形式出现。 (2)解答此类问题必须充分注意以下问题: a. 认识平面坐标系中的两条坐标轴具有垂直关系 b. 灵活将点的坐标与线段长度互相转化 c. 理解二次函数与二次方程间的关系——抛物线与x轴的交点,横坐标是对应方程的根。 d. 熟练掌握几个距离公式: 点P(x,y)到原点的距离 e. 具备扎实的几何推理论证能力。 一、填空题(每空5分,共50分) 1. 如果a,b两数在数轴上的对应点如图所示: 则化简:__________。 2. 已知A,B是数轴上的两点,AB=2,点B表示数-1,则点A表示的数为__________。 3. 已知△ABC的三边之比是,则这个三角形是__________三角形。 4. 已知点A在第二象限,它的横坐标与纵坐标之和是1,则点A的坐标是__________。(写出符合条件的一个点即可) 5. 如图,在梯形ABCD中,AB∥CD,E为CD的中点,△BCE的面积为1,则△ACD 的面积为__________。 6. 已知二次函数的图象如图所示,则由抛物线的特征写出如下含有系数

a,b,c的关系式:①②③④,其中正确结论的序号是__________(把你认为正确的都填上) 7. 如图,AB是半圆的直径,AB=10,弦CD∥AB,∠CBD=45°,则阴影部分面积为__________。 8. 某公司市场营销部的营销人员的个人收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是__________元。 9. 如图,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为 __________。 10. 如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若 ,则AD的长为__________。

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

数形结合论文完整版

数形结合论文 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

数形结合思想在中学数学解题中应用摘要:数形结合在数学中应用广泛,新教材也在结合数形结合思想来编写。数形结合思想在数学中得到了充分的重视。本文就数形结合思想在数学问题解析中的应用加以整理、总结,并给出部分例题,以便得到更好的推广。 关键词:数形结合代数问题几何问题相互转化For combining the application in mathematics (YANG zhongxiang) Abstract : Several combining in mathematics teaching is widely used in combination, a new mathematical thought to write with. Several combining ideas in mathematics got full attention. Based on several combining analytical mathematical thoughts in the application are summarized, and gives some examples, in order to get better. Key words:Combining the number Algebra problem Geometry problems Mutual transformation 前言 数形结合思想在实际的应用中显得十分重要和广泛,数形结合思想几乎贯穿了整个解析几何,可以说数形结合思想是解析几何的精髓所在。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统

数形结合思想在小学数学教学中的渗透与应用

数形结合思想在小学数学教学中的渗透与应用 数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形,可以使许多数学问题变得简易化。 小学数学中虽然不像初中数学那样,将数形结合的思想系统化, 但作为学习数学的启蒙和基础阶段,数形结合的思想已经渐渐渗透其中,为更好的学习数与代数、空间与图形两方面的知识服务,同时也在培养抽象思维,解决实际问题方面起了较大的作用。 数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。 如我在教学“求一个数的几倍是多少”时,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化成自己的东西?我认为用图形演示的方法是最简单又最有效的方法。于是我就利用书上的主题图。在第一行排出用4根小棒围出的一个正方形,再在第二行排出同样的两个正方形,第三行摆出同样的四个正方形。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:第一行与第二行比较,第一行是1个4根,第二行是2个4根;把一个4根当作一份,则第一行小棒是1份,而第二行就有两份。用数学语言:把4根小棒当作1倍,第二行小棒的根数就是第一行小棒的2倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。接着我请学生说出第三行小棒根数与第一行的关系,学生能准确的从三个4根说出了第三行是第一行的3倍。 再如六年级有这样一题:一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶? 此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思 5分米,或宽增加12分米,面积都增加60平方分米,原来长方形的面积是多少平方分米?”的教学中,我引导学生根据题意画出面积图:

学习心得数形结合

数形结合学习心得 低年段数学中的数形结合思想很多。例如:在教学100以内进位加法时,我通过课件演示28根小棒加72根小棒两次满十进一的过程使学生理解相同数位对齐、满十进一的道理。通过多媒体教学,既充分展现数与形之间的内在关系,又激发了学生的好奇心和求知欲,为培养学生数形结合的兴趣提供了可靠的保证。 又例如:在教学有余数的除法时,我是利用7根小棒来完成的教学的。首先出示7根小棒,问能拼成几个三角形?要求学生用除法算式表示拼三角形的过程。像这样,把算式形象化,学生看到算式就联想到图形,看到图形能联想到算式,更加有效地理解算理。 再如:教学连除应用题时,课一始,呈现了这样一道例题:“有30个桃子,有3只猴子吃了2天,平均每天每只猴子吃了几个?”请学生尝试解决时,教师要求学生在正方形中表示出各种算式的意思。学生们经过思考交流,呈现了精彩的答案。 30÷2÷3,学生画了右图:平均分成2份,再将获得一份平均分成3份。 30÷3÷2,学生画了右图:先平均分成3份,再将获得一份平均分成2份。 30÷(3×2),学生画了右图:先平均分成6份,再表示出其中的1份。 在教学中我要求学生在正方形中表示思路的方法,是一种在画线段图基础上的演变和创造。因为正方形是二维的,通过在二维图中的表达,让学生很容易地表达出了小猴的只数、吃的天数与桃子个数之间的关系。通过数形结合,让抽象的数量关系、思考思路形象地外显了,非常直观,易于中下学生理解。

在教学实践中,这样的例子多不胜数。数形结合,其实质是将抽象的数学语言与直观的图形联系起来,使抽象思维和形象思维结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,揭示数和形之间的内在联系,实现抽象概念和具体形象、表象之间的转化,发展学生的思维。数形结合是学生建构知识的一个拐杖,有了这根拐杖,学生们才能走得更稳、更好。

浅谈小学数形结合思想

浅谈小学数形结合思想方法 摘要:数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,本文介绍相关概念并结合人教版小学数学教材,初步整理了数形结合思想方法在各教学领域的渗透与应用,提出培养数形结合思想方法的策略。 关键词:小学数学;数形结合 1.数形结合思想方法的概念 数形结合思想就是通过数和形之间的对应关系和互相转化来解决问题的思想方法。1数形结合既是一种重要的数学思想,又是一种常用的数学方法,在小学数学教学与解决问题中广泛应用,包含“以形助数”和“以数解形”两个方面:前者借助形的直观性来阐明抽象的数之间的关系;后者是利用数的精确性、规范性与严密性来阐明形的某些属性。数形结合思想方法使数与形两种信息互相转换并且优势互补,从而能够将复杂的问题简单化,抽象的问题具体化。2 2.数形结合思想在各个学习领域的渗透与应用 小学数学分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”这四个学习领域,数形结合思想在这四个领域中都得到了广泛的应用。我通过对教材的分析,初步整理了数形结合思想方法在各教学领域的渗透与应用。 2.1数形结合思想方法在“数与代数”知识领域中的渗透与应用 数是十分抽象的,教材在编排上充分利用了数形结合,帮助孩子理解数的含义。如,一年级上册1~5的认识这一课时: 教材的内容与目标体现以下两方面:(1)体会“形”的直观性。借助各种实物图作为直观工具,帮助学生理解数字的含义。(2)了解可以用数来描述几何图形。通过让学生用相应数量的小棒摆一摆图形的过程,引导学生数一数,增强用数的量化来描述形,让学生初步感受数中有形、形中有数的思想。 除此之外,在加减法的计算学习中,利用画图来直观呈现各种信息,帮助学生分析数量关系;在乘法口诀的学习中,利用各种图形(点子图、数轴、表格)帮助学生理解乘法的意义和口诀的推导;在分数的学习中,为了让学生能够理解分数的含义,教材运用了大量的图形作为直观手段;在小数的学习中,利用尺子、线段、正方形等直观手段帮助学生理解小数的意义与性质;在方程的学习中,利用天平图作为直观手段,理解等式的性质,利用画线段图帮助学生理解数量关系……可以说,数形结合思想在“数与代数”的学习中无处不在,应用十分广泛。 2.2数形结合思想方法在“图形与几何”知识领域中的渗透与应用 1王永春.小学数学与数学思想方法[M].上海:华东师范大学出版社,2014:65. 2毕保洪,贺家兰.数形结合思想的应用[J].中学教与学,2017,1:15-16.

数形结合思想论文

渗透数形结合思想,提高学生的数形结合能力 初教数学 1112班范杰凯 0407311081 内容提要:数形结合思想是一种重要的数学思想之一,可以通过“以形助数”、“以数赋形”使某些抽象的数学问题直观化、生动化,变抽象思维为形象思维,体现了转化的思想,化归的思想,有助于把握数学问题的本质。因此,在高中数学教学中应注重运用数形结合思想,提高学生的思维能力和数学素养。本文结合自己的教学实践,阐述了如何使用教材对数形结合思想进行有效渗透,使学生逐步提高数形结合的能力。 关键词:数形结合思想转化化归 正文: 新课标指出“使学生获得必要的数学基础知识和基本技能”是高中数学课程的目标之一。我国著名的数学家华罗庚先生曾用“数缺形时少直观,形离数时难入微,数形结合百般好,隔裂分家万事休”形象生动的阐述了数形结合的意义。以下结合自己的教学实践,分别从引导学生直观感受基本的数学概念,亲身探究定理、结论产生的背景及应用等方面渗透数形结合思想,逐步提高学生的数形结合的能力。 在解决数学问题时,根据问题的条件和结论,使数的问题借助形去观察,而形的问题借助数去思考,采用这种“数形结合”来解决问题的策略,我们称之为“数形结合的思想方法”。它的主要特点:数形问题解决;或形数问题解决。也就是说:“以形助数”、“以数赋形”两种处理问题的途径,这本身体现了转化的思想,化归的思想。数形结合的基本思路是:根据数的结构特征,构造出与之相适应的几何图形,并利用图形的特性和规律,揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种结合,寻找解题思路,使问题得到解决。 一、借助直观图示,理解抽象概念,研究函数的性质,直观体会数形结合思想 在初中学生对函数已有了初步的认识,但对用集合语言描述函数的概念,用代数方法研究函数的单调性、奇偶性等性质还是感到困难,因此在教学中采取用数形结合思想让学生借助直观图示理解抽象概念,自己动手画函数的图象,研究函数的性质。

数学思想方法专题数形结合思想

数学思想方法专题:数形结合思想 【教学目标】 知识目标 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。 能力目标 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形结合的产物,这些都为我们提供了 “数形结合”的知识平台。 情感目标 在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。 【教学重难点】 重点:对数形结合思想方法的考查包含“以形助数”和“以数辅形”两个方面,代数问题几何化,几何问题代数化。 难点:一些概念和运算的几何意义及常见曲线的代数特征,关键在于恰当应用图形来体现数的几何意义,巧妙运用数的精确性和严密性,来揭示形的某些属性。 【考情分析】 在高考中,利用客观题的题型特点来考查数形结合的思想方法,突出考查考生将复杂的数量关系转化为直观的几何图形来解决问题的意识,而在解答题中对数形结合思想的考查是由“形”到“数”的转化为主。高考题对数形结合思想方法的考查,一方面是通过解析几何或平面向量考查一些几何问题,如何用代数方法来处理,另一方面,有一些代数问题则依靠几何图形的构造和分析辅助解决,历年来高考试卷中的许多试题都富有鲜明的几何意义,运用数形结合思想可迅速做出正确的判断。 【知识归纳】 数形结合思想包含“数形结合”和“形数结合”两方面,“数形结合”就是将代数的问题转化为图形形式的问题,利用图形形式解决问题;“形数结合”就是将图形的问题转化为代数的问题,利用代数的方法解决问题。 应用数形结合的思想,可实现以下类型的数与形的转化: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围,求零点的个数; (3)构建解析几何中的斜率、截距、距离等模型研究最值问题; (4)构建函数模型并结合其几何意义研究函数的最值问题、比较大小关系和证明不等式; (5)构建立体几何模型将代数问题几何化; (6)建立坐标关系,研究图形的确定形状、位置关系、性质等. 【考点例析】 题型1:数形结合思想在集合中的应用 例1.设平面点集{ } 22 1(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ??=--≥=-+-≤??? ? ,则B A ?所表示的平 面图形的面积为( D ) A . 34π B . 35π C . 47π D . 2 π

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

高中数学的数形结合思想方法-全(讲解+例题+巩固+测试)

数形结合的思想方法(1)---讲解篇 一、知识要点概述 数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。 数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 二、解题方法指导 1.转换数与形的三条途径: ①通过坐标系的建立,引入数量化静为动,以动求解。 ②转化,通过分析数与式的结构特点,把问题转化到另一个角度来考虑,如将转化为勾股定理或平面上两点间的距离等。 ③构造,比如构造一个几何图形,构造一个函数,构造一个图表等。 2.运用数形结合思想解题的三种类型及思维方法: ①“由形化数”:就是借助所给的图形,仔细观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。 ②“由数化形”:就是根据题设条件正确绘制相应的图形,使图形能充分反映出它们相应的数量关系,提示出数与式的本质特征。 ③“数形转换”:就是根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式 的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。 三、数形结合的思想方法的应用 (一)解析几何中的数形结合 解析几何问题往往综合许多知识点,在知识网络的交汇处命题,备受出题者的青睐,求解中常常通过数形结合的思想从动态的角度把抽象的数学语言与直观的几何图形结合起来,达到研究、解决问题的目的. 1. 与斜率有关的问题 【例1】已知:有向线段PQ的起点P与终点Q坐标分别为P(-1,1),Q(2,2).若直线l∶x+my+m=0

浅谈数形结合思想在小学数学中的应用

浅谈数形结合思想在小学数学中的应用 摘要 数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题, 利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形, 可以使抽象问题具体化,可以使复杂问题简单化。 关键词 数形结合、思想、应用 一、小学生都是从直观、形象的图形开始入门学习数学 从人类发展的历史来看,具体形象的事物是出现在抽象的符号、文字之前的,人类一开始用小石子,贝壳记下所发生的事情,慢慢的发展成为用形象的符号记事,后来出现了数字。这个过程和小学生学习数学过程有着很大的相似之处。低年级的小学生学习数学,也是从具体的物体开始识数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。这方面的例子有有很多,如低年级开始学习识数、学习找规律、学习乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出来。 此外,他们往往能在图形的操作或观察中学会收集与选择重要的信息内容;发现图形与数学知识之间的联系,并乐于用图形来表达数学关系。现在的小学课本中很多习题,已知条件不是用文字的形式给出,而是蕴藏在图形中,既是学生喜欢接受的形象,也培养了他们的观察能力和逻辑思维能力。 要让学生真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果教师只讲解几个典型习题并且学生会解题了,就认为学生领会了数形结合这一思想方法,这是一种片面的观点。平时要求学生认真上好每一堂课,学好新教材的系统知识,掌握各种图像特点,理解和把握各种几何图形的性质。教师讲题时,要引导学生根据问题的具体实际情况,多角度多方面的观察和理解问题,揭示问题的本质联系,利用“数”的准确澄清“形”的模糊,用“形”的直观了解“数”的计算,从而来解决问题。教学中要紧紧抓住数形转化的策略,通过多渠道来协调知识间的联系,激发学生学习兴趣,并及时总结数形结合在解题中运用的规律性,来训练学生的逻辑思维能力,并提高学生的理解能力和运用水平。 二、利用图形的直观,帮助学生理解数量之间的关系,提高学习效率 用数形结合策略表示题中量与量之间的关系,可以达到化繁为简、化难为易的目的。 “数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显其最本质的特征。它是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如:1、小学高年级中所学的,运用分数乘法、除法解决问题。引用人教版小学六年级上册数学书,第二章分数乘法,第二节解决问题,第20页,第二题。

相关文档
最新文档