北京中考数学新定义压轴题素材1

北京中考数学新定义压轴题素材1
北京中考数学新定义压轴题素材1

北京中考数学压轴题素材

3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:

(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于

A .n

B .n +1

C .n -1

D .2

n 答案:D

4、若)(n f 为*)(12

N n n ∈+的各位数字之和,如:1971142

=+,17791=++,则

17

)14(=f ;记

=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则 ____

答案:5

6、一个计算装置有一个入口A 和一输出运算结果的出口B ,将自然数列{}(1)n n ≥中的各数依次输入A 口,从B 口得到输出的数列{}n a ,结果表明:①从A 口输入1n =时,从B 口得11

3

a =

;②当2n ≥时,从A 口输入n ,从B 口得到的结果n a 是将前一结果1n a -先乘以自然数列{}n 中的第1n -个奇数,再除以自然数列{}n a 中的第1n +个奇数。试问:

(1) 从A 口输入2和3时,从B 口分别得到什么数?

(2) 从A 口输入100时,从B 口得到什么数?并说明理由。 解(1)2111515a a =?÷=

3213735

a a =?÷= (2)先用累乖法得*1

()(21)(21)

n a n N n n =

∈-+

得10011

(21001)(21001)39999

a ==?-?+

7、在△ABC 中,),(),0,2(),0,2(y x A C B -,给出△ABC 满足的条件,就能得到动点A 的轨迹方程,下表给出了一些条件及方程:

则满足条件①、②、③的轨迹方程分别为 (用代号

1C 、2C 、3C 填入) 答案:213C C C

8、已知两个函数)(x f 和)(x g 的定义域和值域都是集合{1,2,3},其定义如下表.

填写下列)]([x f g 的表格,其三个数依次为

A. 3,1,2 B . 2,1,3

C. 1,2,3

D. 3,2,1

答案:

D

9、

C

(“·”和“-”仍为通常的乘法和减法)

B. 1

C. 6

D.

12

10、

[x ]表示不大于x

x 的取值范围是_____________ 答案:2

13、在算式“2×□+1×□=30”的两个口中,分别填入两个自然数,使它们的倒数之和最小,

则这两个数应分别为

和 . 答案:9,12.

14、如图为一几何体的的展开图,其中ABCD 是边长 为6的正方形,SD=PD =6,CR=SC ,AQ=AP ,点S, D,A,Q 及P,D,C,R 共线,沿图中虚线将它们折叠起来, 使P ,Q ,R ,S 四点重合,则需要 个这样的 几何体,可以拼成一个棱长为6的正方体。 答案:3

15、用水清洗一堆蔬菜上残留的农药的效果假定如下:用x 单位量的水清洗一次以后,蔬菜上残留的农药量与这次清洗前残留的农药量之比..为2

1

()1f x x =+. (Ⅰ)试解释(0)f 的实际意义;

(Ⅱ)现有a (a >0)单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次.哪种方案清洗后蔬菜上残留的农药比较少?请说明理由. 答案:解:(I )f (0)=1.表示没有用水清洗时,蔬菜上的农药量没有变化.……………2' (Ⅱ)设清洗前蔬菜上的农药量为1,那么用a 单位量的水清洗1次后.残留的农药量

为 W 1=1×f (a )=

2

11

a +;……………………………………………………………………4' 又如果用2a 单位量的水清洗1次,残留的农药量为1×f (2a )=2)2

(11

a +,

此后再用2

a

单位量的水清洗1次后,残留的农药量为

W 2=2)2(11a +·f (2a )=[2

)2

(11a +]2

=22)4(16a +.……………………………8' 由于W 1-W 2=211

a

+-22)4(16a +=2

2222)4)(1()8(a a a a ++-,………………………9' 故当a >22时,W 1>W 2,此时,把a 单位量的水平均分成2份后,清洗两次,残留的农药量较少;当a =22时,W 1=W 2,此时,两种清洗方式效果相同;当a <22时,W 1

16、直角坐标系中横坐标、纵坐标均为整数的点称为格点,如果函数f(x)的图象恰好通过k(k ∈N*)个格点,则称函数f(x)为k 阶格点函数。下列函数:

① f(x)=sinx ; ②f(x)=π(x -1)2

+3; ③;)3

1()(x

x f = ④x x f 6.0log )(=,

其中是一阶格点函数的有 . 答案:①②④

0点到6点,

),

甲乙丙

(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(

3)4点到6点不进水不出水。则一定不确定的论断是 (把你认为是符合题意的论断序号都填上)。

答案:(2)(3)

19、2005年底,某地区经济调查队对本地区居民收入情况进行抽样调查,抽取1000户,按

本地区在“十一五”规划中明确

提出要缩小贫富差距,到2010年

要实现一个美好的愿景,由右边圆图显示,则中等收入家庭的数

量在原有的基础要增加的百分比和低收入家庭的数量在原有的基

础要降低的百分比分别为 ( B )

A.25% , 27.5% B.62.5% , 57.9% C.25% , 57.9% D.

20、一个三位数abc称为“凹数”,如果该三位数同时满足a>b且b<c,那么所有不同的三位“凹数”的个数是_____________________.

答案:三位“凹数”可分两类:一类是aba,共有2

10

C=45,另一类是abc,a≠c,共有

23

10

C=240,故共有45+240=285个

23、定义运算x※y=

?

?

?

>

)

(

)

(

y

x

y

y

x

x

,若|m-1|※m=|m-1|,则m的取值范围是

2

1

m 26、对任意实数y

x,,定义运算cxy

by

ax

y

x+

+

=

*,其中c

b

a,

,为常数,等号右边的运算是通常意义的加、乘运算。现已知

6

3

*

2,4

2

*1=

=,且有一个非零实数m,使得对任意实数x,都有x

m

x=

*,则=

m5。

28、我国男足运动员转会至海外俱乐部常会成为体育媒体关注的热点新闻。05年8月,在

上海申花俱乐部队员杜威确认转会至苏超凯尔特人俱乐部之前,各种媒体就两俱乐部对于杜威的转会费协商过程纷纷“爆料”:

媒体A:“……, 凯尔特人俱乐部出价已从80万英镑提高到了120万欧元。”

媒体B:“……, 凯尔特人俱乐部出价从120万欧元提高到了100万美元,同时增加了不少附加条件。”

媒体C:“……, 凯尔特人俱乐部出价从130万美元提高到了120万欧元。”

请根据表中提供的汇率信息(由于短时间内国际货币的汇率变化不大,我们假定比值为定值),我们可以发现只有媒体C(填入媒体的字母编号)的报道真实性强一些。

30、在R上定义运算△:x△y=x(1 -y) 若不等式(x-a)△(x+a)<1,对任意实数x恒成立,则

实数a的取值范围是)

2

3

,

2

1

(-。

32、用锤子以均匀的力敲击铁钉入木板。随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子长度后一次为前一次的()*

1

N

k

k

∈。已知一个铁钉受击3次后全部

进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的

7

4

,请从这个实事中提炼

出一个不等式组是

?

?

?

??

?

?

+

+

<

+

1

7

4

7

4

7

4

1

7

4

7

4

2

k

k

k

37、先阅读下列不等式的证法,再解决后面的问题:

已知R

a

a∈

2

1

,,1

2

1

=

+a

a,求证

2

1

2

2

2

1

+a

a,

证明:构造函数2

2

2

1

)

(

)

(

)

(a

x

a

x

x

f-

+

-

=

2

2

2

1

2

2

2

2

1

2

1

22

2

)

(2

2

)

(a

a

x

x

a

a

x

a

a

x

x

f+

+

-

=

+

+

+

-

=

因为对一切x?R,恒有)

(x

f≥0,所以)

(8

42

2

2

1

a

a+

-

=

?≤0,

从而得

2

1

2

2

2

1

+a

a,

(1)若R a a a n ∈,,,21 ,121=+++n a a a ,请写出上述结论的推广式;

(2)参考上述解法,对你推广的结论加以证明。 解:(1)若R a a a n ∈,,,21 ,121=+++n a a a ,

求证:n

n a a a 12

2221≥

+++ (4¢)

(2)证明:构造函数2

2221)()()()(n a x a x a x x f -++-+-= (6¢)

2

2221212)(2n n a a a x a a a nx +++++++-= (9¢)

2

222122n a a a x nx ++++-= (11¢)

因为对一切x ?R ,都有)(x f ≥0,所以△=)(442

2221n a a a n +++- ≤0, 从而证得:n

n a a a 12

2221≥

+++ . (14¢)

44、已知点列B 1(1,y 1)、B 2(2,y 2)、…、B n (n,y n )(n ∈N ) 顺次为一次函数1214

1+=

x y 图象上的点,

点列A 1(x 1,0)、A 2(x 2,0)、…、A n (x n ,0)(n ∈N )

顺次为x 轴正半轴上的点,其中x 1=a (0<a <1),

对于任意n ∈N ,点A n 、B n 、A n+1构成以 B n 为顶点的等腰三角形。 ⑴求{y n }的通项公式,且证明{y n }是等差数列; ⑵试判断x n+2-x n 是否为同一常数(不必证明)

⑶在上述等腰三角形A n B n A n+1中,是否存在直角三角形?若有,求出此时a 值;若不存在, 请说明理由。

解:(1)12141n n y +=(n ?N),y n+1-y n =41

,∴{y n }为等差数列 (4¢)

(2)x n+1-x n =2为常数 (6¢) ∴x 1,x 3,x 5,…,x 2n-1及x 2,x 4,x 6,,…,x 2n 都是公差为2的等差

数列,

∴x 2n-1=x 1+2(n-1)=2n-2+a ,x 2n =x 2+2(n-1)=2-a+2n-2=2n-a , ∴x n =??

?-+当n为偶数

a,-n ,当n为奇数1,a n (10¢) (3)要使A n B n A n+1为直角三形,则 |A n A n+1|=2n B y =2(1214+n )Tx n+1-x n =2(1214

+n ) 当n 为奇数时,x n+1=n+1-a ,x n =n+a-1,∴x n+1-x n =2(1-a).

T2(1-a)=2(1214+n ) Ta=41211

n -(n 为奇数,0<a <1) (*)

取n=1,得a=32,取n=3,得a=61

,若n ≥5,则(*)无解; (14¢) 当偶数时,x n+1=n+a ,x n =n-a ,∴x n+1-x n =2a.

∴2a=2(1214+n )Ta=1214

+n (n 为偶数,0<a <1) (*¢),取n=2,得a=127

, 若n ≥4,则(*¢)无解.

综上可知,存在直角三形,此时a 的值为32

、6

1、127

. (18¢)

45、⑴证明:当a >1时,不等式23

a 12a 13a a +>+

成立。

⑵要使上述不等式23

a 12a 13a a +>+

成立,能否将条件“a >1”适当放宽?若能,请放

宽条件并简述理由;若不能,也请说明理由。

⑶请你根据⑴、⑵的证明,试写出一个类似的更为一般的结论,且给予证明。 解:(1)证:1)-1)(a -(a -a -a 5a 1

a

12a 133

23=+,∵a >1,∴1)-1)(a -(a 5a 13>0,

∴原不等式成立 (6¢)

(2)∵a-1与a 5

-1同号对任何a >0且a 11恒成立,∴上述不等式的条件可放宽 为a >0且a 11 (9¢)

(3)根据(1)(2)的证明,可推知:若a >0且a 11,m >n >0,则有n m a 1n a 1m a a +>+(12¢)

证:左式-右式=1)-1)(a -(a 1)-(a -1)-(a

a -a -a n m n -m a 1n -m a 1n

-m n

a 1a 1n

m

m m n m +==+

(14¢)

若a >1,则由m >n >0Ta m-n >0,a m+n

>0T不等式成立;

若0<a <1,则由m >n >0T0<a m-n <1, 0<a m+n

<1T不等式成立.(16¢)

46、为了保证信息安全传输,有一种称为秘密密钥密码系统,其加密、解密原理如下图:

明文 密文 密文

明文, 现在加密密钥为y=log a (x+2),如下所示:明文“6”通过加密后得到密文“3”, 再发送,接受方通过解密密钥解密得明文“6”,问“接受方接到密文”4“,则解密 后得到明文为 14 。

47、规定a △b=b a ab ++,a, b +∈R ,若1△k=3,则函数f(x)=k △x 的值域为 (1,+¥ )

48、同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低; 反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语 言描述为:若有限数列n a a a ,,,21 满足n a a a ≤≤≤ 21,则 (结论用数学式子表示).

)1(2121n m n

a a a m a a a n

m <≤+++≤+++ 和

)1(2121n m n

a a a m n a a a n

n m m <≤+++≥-+++++

加密密钥密码 发送 解密密钥密码

50、定义一种运算“*”,对于N n ∈,满足以下运算性质:

① 12*2=;② 3)2*2(2*)22(+=+n n 。则2*2004的数值为_____3004_____。

54、如图,一个计算装置有两个数据输入口Ⅰ、Ⅱ与一个运算结果输出口Ⅲ,当Ⅰ、Ⅱ分别

输入正整数n m ,时,输出结果记为),(n m f ,且计算装置运算原理如下: ① 若Ⅰ、Ⅱ分别输入1,则1)1,1(=f ;②若Ⅰ输入固定的正整数, Ⅱ输入的正整数增大1,则输出结果比原来增大3;③若Ⅱ输入1, Ⅰ输入正整数增大1,则输出结果为原来3倍。 试求:

(1))1,(m f 的表达式)(N m ∈;(2)),(n m f 的表达式),(N n m ∈; (3)若Ⅰ、Ⅱ都输入正整数n ,则输出结果),(n n f 能否为2005?

若能,求出相应的n ;若不能,则请说明理由。 解:(1)()()()()11

2

31,13

1,231,131,--===-=-=m m f m f m f m f

(2

()()()()()()133131,232,31,,1-+=-+==?+-=+-=-n n m f n m f n m f n m f m

(3)

()()133,1-+=-n n n f n ,∵()20057471837,76<=+=f ,

()200522082138,87>=+=f

∴),(n n f 输出结果不可能为2005。

55、对数列{}n a ,规定{}n a ?为数列{}n a 的一阶差分数列,其中)(1N n a a a n n n ∈-=?+。 对自然数k ,规定

{}

n

k

a ?为

{}

n a 的k 阶差分数列,其中

)(1111n k n k n k n k a a a a --+-??=?-?=?。

(1)已知数列{}n a 的通项公式),(2N n n n a n ∈+=,试判断{}n a ?,{}

n a 2

?是否为等差

或等比数列,为什么?

(2)若数列{}n a 首项11=a ,且满足)(212N n a a a n

n n n ∈-=+?-?+,求数列{}n a 的

通项公式。

(3)对(2)中数列{}n a ,是否存在等差数列{}n b ,使得n

n

n n n n a C b C b C b =+++ 2211对一切自然N n ∈都成立?若存在,求数列{}n b 的通项公式;若不存在,则请说明理由。

解:(1)()()()

22112

2

1+=+-+++=-=?+n n n n n a a a n n n ,∴{}n a ?是首项为4,

公差为2的等差数列。

()()2222122

=+-++=?n n a n

∴{}

n a 2

?是首项为2,公差为0的等差数列;也是首项为2,公比为1的等比数列。

(2)n n n n a a a 212-=+?-?+,即n

n n n n a a a a 211-=+?-?-?++,即

n n n a a 2=-?,∴n n n a a 221+=+

∵11=a ,∴12224?==a ,2

32312?==a ,3

42432?==a ,猜想:

12-?=n n n a

证明:ⅰ)当1=n 时,0

1211?==a ;

ⅱ)假设k n =时,1

2-?=k k k a

1+=k n 时,()()1

11212222-++?+=+?=+=k k k k k k k k a a 结论也

成立

∴由ⅰ)、ⅱ)可知,12-?=n n n a

(3)n n n n n n a C b C b C b =+++ 2211,即 122112-?=+++n n n n n n n C b C b C b ∵()

1

112111013212321------?=++++=++++n n n n n n n n n n n n C C C C n nC C C C ∴存在等差数列{}n b ,n b n =,使得n n

n n n n a C b C b C b =+++ 2211对一切自然

N n ∈都成立。

56、对于在区间[m ,n ]上有意义的两个函数f (x )与g (x ),如果对任意x ∈[m ,n ]均有| f (x ) – g (x ) |≤1,则称f (x )与g (x )在[m ,n ]上是接近的,否则称f (x )与g (x )在[m ,

n ]上是非接近的,现有两个函数f 1(x ) = log a (x – 3a )与f 2 (x ) = log a

a

x -1

(a > 0,a ≠1),给定区间[a + 2,a + 3].

(1)若f 1(x )与f 2 (x )在给定区间[a + 2,a + 3]上都有意义,求a 的取值范围; (2)讨论f 1(x )与f 2 (x )在给定区间[a + 2,a + 3]上是否是接近的? 解:(1)要使f 1 (x )与f 2 (x )有意义,则有

a x a a a x a x 3100

3>???

?

??≠>>->-且

要使f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上有意义, 等价于真数的最小值大于0 即???

?

???≠><-+>-+1010032031

a a a a a a a 且 (2)f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上是接近的

?| f 1 (x ) – f 2 (x )|≤1

?a

x a x a a ---1

log )3(log ≤1

?|log a [(x – 3a )(x – a )]|≤1 ?a ≤(x – 2a )2 – a 2≤

a

1 对于任意x ∈[a + 2,a + 3]恒成立

设h (x ) = (x – 2a )2 – a 2

,x ∈[a + 2,a + 3] 且其对称轴x = 2a < 2在区间[a + 2,a + 3]的左边 ???

??++???

????)3( 1

)2( )( 1)( max min a h a a h a x h a x h a ?????+-??????--?0 19265

4 69 144 a a a a a a

a ????

??

?+-?12579 12579 54 a a a 或 12

57

9 0-

57

9 0-

当12

57

9 -< a < 1时,f 1 (x )与f 2 (x )在给定区间[a + 2,a + 3]上是非接近的.

58、歌德巴赫(Goldbach .C .德.1690—1764)曾研究过“所有形如

1

)1(1

++m n (m ,n

≤ ≤ ≤ ≤

≤ ≤ ≤

≥ ≥ ≥ ≥ ≥ ≤

为正整数)的分数之和”问题.为了便于表述,引入记号:

∑∑∞=∞

=++111)

1(1n m m n =)212121(432???++++)31

3131(4

32???++++┅ +))1(1

)1(1)1(1(

4

32???++++++n n n +┅ 写出你对此问题的研究结论: ∑∑∞=∞

=++11

1

)1(1

n m m n =1 (用数学符号表示).

59、集合P ={1,3,5,7,9,┅,2n -1,┅}(n ∈N *),若a ∈P ,b ∈P 时,

a b ∈P ,则运算 可能是( D )

(A )加法; (B )除法; (C )减法; (D )乘法.

60、min{1s ,2s ,┅,n s },max{1s ,2s ,┅,n s }分别表示实数1s ,2s ,┅,n s 中的最小者和最大者.

(1)作出函数)(x f =|x +3|+2|x -1|(x ∈R )的图像;

(2)在求函数)(x f =|x +3|+2|x -1|(x ∈R )的最小值时,有如下结论:

min )(x f =min{)3(-f ,)1(f }=4.请说明此结论成立的理由; (3)仿照(2)中的结论,讨论当1a ,2a ,┅,n a 为实数时,

函数)(x f =||11x x a -+||22x x a -+┅+||n n x x a -(x ∈R ,1x <2x <┅<n x ∈R )的最值.

解:(1)图略;

(2)当x ∈(-∞,-3)时,)(x f 是减函数,

当x ∈[-3,1)时,)(x f 是减函数, 当x ∈[1,+∞)时,)(x f 是增函数,

∴min )(x f =min{)3(-f ,)1(f }=4.

(3)当1a +2a +┅+n a <0时,max )(x f =max{)(1x f ,)(2x f ,┅,)(n x f };

当1a +2a +┅+n a >0时,min )(x f =min{)(1x f ,)(2x f ,┅,)(n x f }; 当1a +2a +┅+n a =0时,min )(x f =min{)(1x f ,)(n x f },

max )(x f =max{)(1x f ,)(n x f }.

61、在4×□+9×□=60的两个□中,分别填入两自然数,使它们的倒数和最小,应分别填上 和 。 答案:设两数为x 、y ,即4x +9y =60,又

60)94()11(11y x y x y x ++=+=)9413(601x

y

y x ++ ≥12

5

)1213(601=

+?,等于当且仅当x y y x 94=,且4x +9y =60,即x =6且y =4时成立,故应分别有6、4。

62、我们把平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度

相同)称为斜坐标系.平面上任意一点

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

中考数学压轴题100题精选【含答案】

中考数学压轴题100题精选【含答案】 【001 】如图,已知抛物线 2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若O C O B =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1 个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由;

中考数学压轴题精选 含详细答案

目 录 1.5 因动点产生的梯形问题 例1 2012年上海市松江中考模拟第24题 例2 2012年衢州市中考第24题 例3 2011年北京市海淀区中考模拟第24题 例4 2011年义乌市中考第24题 例5 2010年杭州市中考第24题 例6 2010年上海市奉贤区中考模拟第24题 例7 2009年广州市中考第25题 1.5 因动点产生的梯形问题 例1 2012年上海市松江区中考模拟第24题 已知直线y =3x -3分别与x 轴、y 轴交于点A ,B ,抛物线y =ax 2+2x +c 经过点A ,B . (1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标; (2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形. ①求点D 的坐标; ②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若7 3 tan =∠DPE ,求四边形BDEP 的面积. 图1 动感体验 请打开几何画板文件名“12松江24”,拖动点P 向右运动,可以体验到,D 、P 间的垂直距离等于7保持不变,∠DPE 与∠PDH 保持相等.

请打开超级画板文件名“12松江24”, 拖动点P 向右运动,可以体验到,D 、P 间的垂直距离等于7保持不变,∠DPE 与∠PDH 保持相等,tan 0.43DPE ∠≈,四边形BDEP 的面积为24. 思路点拨 1.这道题的最大障碍是画图,A 、B 、C 、D 四个点必须画准确,其实抛物线不必画出,画出对称轴就可以了. 2.抛物线向右平移,不变的是顶点的纵坐标,不变的是D 、P 两点间的垂直距离等于7. 3.已知∠DPE 的正切值中的7的几何意义就是D 、P 两点间的垂直距离等于7,那么点P 向右平移到直线x =3时,就停止平移. 满分解答 (1)直线y =3x -3与x 轴的交点为A (1,0),与y 轴的交点为B (0,-3). 将A (1,0)、B (0,-3)分别代入y =ax 2+2x +c , 得20,3.a c c ++=?? =-? 解得1, 3.a c =?? =-? 所以抛物线的表达式为y =x 2+2x -3. 对称轴为直线x =-1,顶点为(-1,-4). (2)①如图2,点B 关于直线l 的对称点C 的坐标为(-2,-3). 因为CD //AB ,设直线CD 的解析式为y =3x +b , 代入点C (-2,-3),可得b =3. 所以点D 的坐标为(0,3). ②过点P 作PH ⊥y 轴,垂足为H ,那么∠PDH =∠DPE . 由7 3 tan = ∠DPE ,得3tan 7PH PDH DH ∠==. 而DH =7,所以PH =3. 因此点E 的坐标为(3,6). 所以1()242 BDEP S BD EP PH =+?=梯形. 图2 图3 考点伸展 第(2)①用几何法求点D 的坐标更简便: 因为CD //AB ,所以∠CDB =∠ABO .

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

(完整版)2017中考数学压轴题解题技巧

中考数学压轴题解题技巧 解中考数学压轴题秘诀(一) 数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第22题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y =f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第23题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想: 纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。 2、以直线或抛物线知识为载体,运用函数与方程思想: 直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。 3、利用条件或结论的多变性,运用分类讨论的思想: 分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。 4、综合多个知识点,运用等价转换思想: 任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

2018北京市中考数学试题(含答案解析版)

2018年北京市高级中等学校招生考试 数学试卷 一、选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有..一个。 1. 下列几何体中,是圆柱的为 2. 实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是 (A )>4a (B )>0b c ? (C )>0ac (D )>0c a + 3. 方程式?? ?=?=?14 833 y x y x 的解为 (A )???=?=21y x (B )????==21y x (C )???=?=12y x (D )? ???==12y x 4. 被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST 的反射面总面积相当于35个标准足球场的总面积。已知每个标准足球场的面积为7140m 2,则FAST 的反射面总面积约为 (A )231014.7m ? (B )241014.7m ? (C )2510 5.2m ? (D )26105.2m ? 5. 若正多边形的一个外角是o 60,则该正多边形的内角和为 (A )o 360 (B )o 540 (C )o 720 (D )o 900 6. 如果32=?b a ,那么代数式b a a b a b a ????? ? ???+222的值为 (A )3 (B )32 (C )33 (D )34 7. 跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系 ()02≠=+=a c bx ax y 。下图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型 和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

[全]中考数学创新型与新定义型压轴题解析

中考数学创新型与新定义型压轴题解析 近年来,各地中考数学试题不断呈现出新颖、灵活的特征,特别是在压轴题中,更富有挑战性和创新理念。 本节例举两例,分析在解决此类问题过程中的思路与方法。 一、几何综合探究类阅读理解问题 【例题1】如图1,对角线互相垂直的四边形叫做垂美四边形。 (1)概念理解:如图2,在四边形ABCD 中,AB = AD , CB = CD , 问四边形ABCD 是垂美四边形吗?请说明理由; (2)性质探究:如图1,四边形ABCD 的对角线AC、BD 交于点O,AC⊥BD。 试证明:AB2 + CD2 = AD2 + BC2; (3)解决问题:如图3,分别以Rt△ACB 的直角边AC 和斜边AB 为边向外作正方形ACFG 和正方形ABDE,连接CE、BG、GE。 已知AC = 4 , AB = 5 , 求GE 的长。

【解析】 (1)四边形ABCD 是垂美四边形。 理由如下: ∵AB = AD , ∴点A 在线段BD 的垂直平分线上, ∵CB = CD , ∴点C 在线段BD 的垂直平分线上, ∴直线AC 是线段BD 的垂直平分线, ∴AC⊥BD,即四边形ABCD 是垂美四边形;(2)如图1, ∵AC⊥BD,

∴∠AOD = ∠AOB = ∠BOC = ∠COD = 90°, 由勾股定理得: AB2 + CD2 = AO2 + BO2 + DO2 + CO2 = AD2 + BC2,(3)如图3,连接CG、BE, ∵∠CAG = ∠BAE = 90°, ∴∠CAG + ∠BAC = ∠BAE + ∠BAC,即∠GAB = ∠CAE,在△GAB 和△CAE 中, AG = AC , ∠GAB = ∠CAE,AB = AE, ∴△GAB ≌△CAE(SAS), ∴∠ABG = ∠AEC,又∠AEC + ∠AME = 90°, ∴∠ABG + ∠AME = 90°,即CE⊥BG, ∴四边形CGEB 是垂美四边形, 由(2)得,CG2 + BE2 = CB2 + GE2,

最新全国各地中考数学解答题压轴题解析2

全国各地中考数学解答题压轴题解析2

2011年全国各地中考数学解答题压轴题解析(2) 1.(湖南长沙10分)如图,在平面直角坐标系中,已知 点A(0,2),点P是x轴上一动点,以线段AP为一边, 在其一侧作等边三角线APQ。当点P运动到原点O处时, 记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 【答案】解:(1)过点B作BC⊥y轴于点C, ∵A(0,2),△AOB为等边三角形, ∴AB=OB=2,∠BAO=60°, ∴BC=3,OC=AC=1。即B( 3 1,)。 (2)不失一般性,当点P在x轴上运动(P不与O重合)时, ∵∠PAQ==∠OAB=60°,∴∠PAO=∠QAB, 在△APO和△AQB中,∵AP=AQ,∠PAO=∠QAB,AO=AB,∴△APO≌△AQB总成立。 ∴∠ABQ=∠AOP=90°总成立。 ∴当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值90°。 (3)由(2)可知,点Q总在过点B且与AB垂直的直线上, ∴AO与BQ不平行。

①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB∥OQ ,四边形AOQB 即是梯形, 当AB∥OQ 时,∠BQO=90°,∠BOQ=∠ABO=60°。 又OB=OA=2,可求得BQ=3。 由(2)可知,△APO≌△AQB ,∴OP=BQ=3, ∴此时P 的坐标为(3 0-, )。 ②当点P 在x 轴正半轴上时,点Q 在点B 的上方, 此时,若AQ∥OB ,四边形AOQB 即是梯形, 当AQ∥OB 时,∠ABQ=90°,∠QAB=∠ABO=60°。 又AB= 2,可求得BQ=23, 由(2)可知,△APO≌△AQB ,∴OP=BQ=23, ∴此时P 的坐标为(23 0, )。 综上所述,P 的坐标为(3 0-, )或(23 0,)。 【考点】等边三角形的性质,坐标与图形性质;全等三角形的判定和性质,勾股定理,梯形的判定。 【分析】(1)根据题意作辅助线过点B 作BC⊥y 轴于点C ,根据等边三角形的性质即可求出点B 的坐标。 (2)根据∠PAQ═∠OAB=60°,可知∠PAO=∠QAB ,得出△APO≌△AQB 总成立,得出当点P 在x 轴上运动(P 不与Q 重合)时,∠ABQ 为定值90°。 (3)根据点P 在x 的正半轴还是负半轴两种情况讨论,再根据全等三角形的性质即可得出结果。 2.(湖南永州10分)探究问题:

2019北京中考数学压轴题的9种出题形式

2019北京中考数学压轴题的9种出题形式 中考数学压轴题主要有以下几种形式: 线段、角的计算与证明问题 中考的解答题一般是分两到三部分的。第一部分基本上都是一些 简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分 的中难题了。对这些题轻松掌握的意义不但仅在于获得分数,更重要 的是对于整个做题过程中士气,军心的影响。 图形位置关系 中学数学当中,图形位置关系主要包括点、线、三角形、矩形/ 正方形以及圆这么几类图形之间的关系。在中考中会包含在函数,坐 标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。 动态几何 从历年中考来看,动态问题经常作为压轴题目出现,得分率也是 最低的。动态问题一般分两类,一类是代数综合方面,在坐标系中有 动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考 生的综合分析水平实行考察。所以说,动态问题是中考数学当中的重 中之重,只有完全掌握,才有机会拼高分。 一元二次方程与二次函数 在这个类问题当中,尤以涉及的动态几何问题最为艰难。几何问 题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一 道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙 的方法,但是对考生的计算水平以及代数功底有了比较高的要求。中 考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多 种其他知识点辅助的形式出现的。一元二次方程与二次函数问题当中,

纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后 面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识 点结合。 多种函数交叉综合问题 初中数学所涉及的函数就一次函数,反比例函数以及二次函数。 这类题目本身并不会太难,很少作为压轴题出现,一般都是作为一道 中档次题目来考察考生对于一次函数以及反比例函数的掌握。所以在 中考中面对这类问题,一定要做到避免失分。 列方程(组)解应用题 在中考中,有一类题目说难不难,说不难又难,有的时候三两下 就有了思路,有的时候苦思冥想很久也没有想法,这就是列方程或方 程组解应用题。方程能够说是初中数学当中最重要的部分,所以也是 中考中必考内容。从近年来的中考来看,结合时事热点考的比较多, 所以还需要考生有一些生活经验。实际考试中,这类题目几乎要么得 全分,要么一分不得,但是也就那么几种题型,所以考生只需多练多 掌握各个题类,总结出一些定式,就能够从容应对了。 动态几何与函数问题 整体说来,代几综合题大概有两个侧重,第一个是侧重几何方面,利用几何图形的性质结合代数知识来考察。而另一个则是侧重代数方面,几何性质仅仅一个引入点,更多的考察了考生的计算功夫。但是 这两种侧重也没有很严格的分野,很多题型都很类似。其中通过图中 已给几何图形构建函数是重点考察对象。做这类题时一定要有“减少 复杂性”“增大灵活性”的主体思想。 几何图形的归纳、猜想问题 中考增大了对考生归纳,总结,猜想这方面水平的考察,但是因 为数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题 来出。对于这类归纳总结问题来说,思考的方法是最重要的。

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

中考数学压轴题(最新整理)百度文库

一、中考数学压轴题 1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P . (1)当BP = 时,△MBP ~△DCP ; (2)当⊙P 与正方形ABCD 的边相切时,求BP 的长; (3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围. 2.如图,已知抛物线()2 y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点, 直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-. (1)求抛物线的解析式; (2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值; (3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由. 3.已知抛物线217 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,

直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形. 4.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13. (1)求直线AD 和BC 之间的距离; (2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形? (3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由. 5.如图,在菱形ABCD 中,AB a ,60ABC ∠=?,过点A 作AE BC ⊥,垂足为E , AF CD ⊥,垂足为F . (1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由; (2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由; ②若1 2,(33)2 ADH a S == +,求sin GAB ∠的值. 6.问题提出 (1)如图①,在ABC 中,2,6,135AB AC BAC ==∠=,求ABC 的面积. 问题探究

中考数学《压轴题》专题训练含答案解析

压轴题 1、已知,在平行四边形O ABC 中,O A=5,AB =4,∠OCA=90°,动点P 从O 点出发沿射线OA 方向以每秒2个单位的速度移动,同时动点Q从A 点出发沿射线AB 方向以每秒1个单位的速度移动.设移动的时间为t秒. (1)求直线AC 的解析式; (2)试求出当t 为何值时,△O AC 与△PAQ 相似; (3)若⊙P 的半径为 58,⊙Q 的半径为2 3 ;当⊙P 与对角线AC 相切时,判断⊙Q 与直线AC 、B C的位置关系,并求出Q 点坐标。 解:(1)42033 y x =- + (2)①当0≤t≤2.5时,P在O A上,若∠OAQ =90°时, 故此时△OA C与△PAQ 不可能相似. 当t>2.5时,①若∠APQ=90°,则△A PQ ∽△OCA , ∵t>2.5,∴ 符合条件. ②若∠A QP=90°,则△APQ ∽△∠OA C, ∵t>2.5,∴ 符合条件.

综上可知,当 时,△O AC 与△APQ 相似. (3)⊙Q 与直线AC、B C均相切,Q 点坐标为( 10 9 ,5 31) 。 2、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x轴,OC 所在的直线为y轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BD A沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标; (2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y轴上是否分别存在点M 、N ,使得四边形MNF E的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由. 解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠=, 2222125EF EB BF ∴=+=+=. 设点P 的坐标为(0)n ,,其中0n >, 顶点(1 2)F ,, ∴设抛物线解析式为2 (1)2(0)y a x a =-+≠. ①如图①,当EF PF =时,22 EF PF =,2 2 1(2)5n ∴+-=. 解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+.解得2a =. ∴抛物线的解析式为22(1)2y x =-+ (第2题)

北京初三数学中考压轴题

最值类 1.【2012?黔东南州】如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y 轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的 长,并求MN长的最大值. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的 面积最大?若存在,求m的值;若不存在,说明理由. 解答: (1)设抛物线的解析式为y=-x*2+2x+3 (2)设直线BC的解析式为y=a(x+1)(x-3)则a(0+1)(0-3)=3,a=-1∴抛物线的解析式 y=kx+b则有3k+b=0,b=3;k=-1,b=3故直线BC的解析式y=-x+3 已知点M的横坐标为m则M(m,-m+3)、N(m,-m*2+2m+3)∴故N=-m*2+2m+3-(-m+3)=-m*2+3m(0<m<3) (△3)∵S BNC=S△MNC+S△MNB=1/2MN(OD+DB)=1/2MN?OB ∴S BNC=1/2(△-m2+3m)?3=-3/2(m-3/2)×2+27/8(0<m<3) ∴当m=3/2时△BNC的面积最大,最大值为27/8 2.【2012?恩施州】如图,已知抛物线y=﹣x2+bx+c与一直线相 交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D. (1)抛物线及直线AC的函数关系式; (2)设点M(3,m),求使MN+MD的值最小时m的值; (3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的 任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由; (4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值. 带入A,C坐标到抛物线: -1-b+c=0 -4+2b+c=3 b=2,c=3,抛物线y=-x^2+2x+3 直线有两点更简单了根据A坐标,y=k(x+1),带入C坐标y=x+1 D(1,4),N(0,3) MN+MD如果构成三角形,肯定大于ND,但是如果M同ND共线,并且在线段N D上,那就最小了,当然由于M横坐标比N和D都大,这个假设不可能 由于M在直线x=3上面,所以考查D关于x=3的对称点D'(5,4),连接ND‘交于x=3的点就是取得最小值的M点。 B点坐标可以求出,E(m,m+1)的话,EF方程x=m,求出x=m与抛物线焦点,然后判断BD

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学压轴题精选含详细答案

目 录 2.1 由比例线段产生的函数关系问题 例1 2012年上海市徐汇区中考模拟第25题 例2 2012年连云港市中考第26题 例3 2010年上海市中考第25题 例1 2012年上海市徐汇区中考模拟第25题 在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点. (1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系; (2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域. 图1 图2 图3 动感体验 请打开几何画板文件名“12徐汇25”,拖动点O 在AB 上运动,观察△OMP 的三个顶点与对边的垂直平分线的位置关系,可以体验到,点O 和点P 可以落在对边的垂直平分线上,点M 不能. 请打开超级画板文件名“12徐汇25”, 分别点击“等腰”按钮的左部和中部,观察三个角度的大小,可得两种等腰的情形.点击“相切”按钮,可得y 关于x 的函数关系. 思路点拨 1.∠B 的三角比反复用到,注意对应关系,防止错乱. 2.分三种情况探究等腰△OMP ,各种情况都有各自特殊的位置关系,用几何说理的方法比较简单. 3.探求y 关于x 的函数关系式,作△OBN 的边OB 上的高,把△OBN 分割为两个具有公共直角边的直角三角形. 满分解答

(1) 在Rt △ABC 中,AC =6,53sin =B , 所以AB =10,BC =8. 过点M 作MD ⊥AB ,垂足为D . 在Rt △BMD 中,BM =2,3sin 5MD B BM ==,所以65 MD =. 因此MD >MP ,⊙M 与直线AB 相离. 图4 (2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况. ②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形. 在Rt △BOM 中,BM =2,4cos 5BO B BM ==,所以85BO =.此时425 OA =. ③如图6,当OM =OP 时,设底边MP 对应的高为OE . 在Rt △BOE 中,BE =32,4cos 5BE B BO ==,所以158BO =.此时658 OA =. 图5 图6 (3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y . 在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45 BF y =. 在Rt △ONF 中,4105 OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55 x y x y y +=--+. 整理,得2505040 x y x -=+.定义域为0<x <5. 图7 图8 考点伸展 第(2)题也可以这样思考: 如图8,在Rt △BMF 中,BM =2,65MF =,85 BF =.

相关文档
最新文档