高产纤维素酶菌株原生质体制备及再生条件

高产纤维素酶菌株原生质体制备及再生条件
高产纤维素酶菌株原生质体制备及再生条件

拟南芥原生质体制备转化方法整理

溶液配制 1、纤维素酶解液:

2、PEG4000溶液(一次配置可以保存五天,但是最好现用现配,每个样品需100μl PEG4000溶液,可根据实验样品量调整溶液配置总量)

3、W5 溶液 4、MM G溶液

5、WI溶液 拟南芥原生质体制备转化方法整理 一、土培室播种种植的拟南芥。 二、生长良好情况下在未开花前用于取材叶片制备原生质体。 三、剪取中部生长良好的叶片用刀片切成0.5 -1 mm宽的叶条。 四、将切好叶条掷入预先配置好的酶解液中(每5-10 ml酶解液大约需10-20片叶子)。并用镊子帮助使叶子完全浸入酶解液。

五、用真空泵于黑暗中抽30分钟。(此时可配制PEG4000溶液,200和1000 ul 枪头去尖使操作时吸打缓和。) 六、在室温中无须摇动继续黑暗条件下酶解至少3个小时。当酶解液变绿时轻轻摇晃培养皿促使原生质体释放出来。(此时预冷一定量W5溶液) 七、显微镜下检查溶液中的原生质体,拟南芥叶肉原生质体大小大约30-50 um。 八、在过滤除去未溶解的叶片前用等量的W5溶液稀释含有原生质体的酶液。 九、先用W5溶液润湿35-75 um的尼龙膜或60-100目筛子,然后用它过滤含有原生质体的酶解液。 十、用30毫升的圆底离心管100g,1-2分钟离心沉淀原生质体。尽量去除上清然后用10ml 冰上预冷的W5溶液轻柔重悬原生质体。 十一、在冰上静至原生质体30分钟。 以下操作在室温23℃下进行

十二、100g离心八至十分钟使原生质体沉淀在管底。在不碰触原生质体沉淀的情况下尽量去除W5溶液。然后用适量MMG溶液(1m)重悬原生质体,使之最终浓度在2X105个/ml。 十三、加入10 ul DNA(10-20微克约5-10kb的质粒DNA)至2ml离心管中。 十四、加入100 ul原生质体(2x104个),轻柔混合。 十五、加入110 ul PEG溶液,轻柔拍打离心管完全混合(每次大约可以转化6-10个样品)。 十六、诱导转化混合物5-15分钟(转化时间视实验情况而定,要表达量更高也许需要更高转化时间)。 十七、室温下用400-440 ul W5溶液稀释转化混合液,然后轻柔颠倒摇动离心管使之混合完好以终止转化反应。 十八、室温下用台式离心机100g离心2分钟然后去除上清。再加入1ml W5溶液悬浮清洗一次,100g离心两分钟去上清。

产纤维素酶菌株的筛选及其酶活的测定模板

本科开放项目 题目:产纤维素酶菌株的筛选及其酶活的测定 学生姓名: 指导教师: 学院: 专业班级: 2016年3月

产纤维素酶菌株的筛选及其酶活的测定 摘要 纤维素作为植物光合作用的主要多糖类产物,是高等植物细胞壁的主要成分,是公认的自然界数量最丰富、最廉价的可再生有机物质资源。据估计,纤维素生成量每年高达1000亿吨。我国每年农作物秸秆总产量为7亿吨左右,仅农业生产中形成的农作物残渣(如稻草、玉米秸、麦秸等),每年就有5亿吨之多。纤维素的降解是自然界碳素循环的中心环节。但由于纤维素的结构特点,对纤维素的利用仍然非常有限。目前仅有20%的纤维素物质被开发利用,大量的纤维素物质因无法分解利用而废弃,不仅造成资源浪费,而且污染环境。随着人口数量的不断增长和人民生活水平的不断提高,能源危机、食物短缺、环境污染等问题日益严重,寻找利用可再生资源、节省粮食、减少环境污染的有效途径显得日趋重要。采用微生物技术处理秸秆是当前研究最多的一种秸秆处理方法,纤维素酶能将天然纤维素降解,生成纤维素分子链、纤维二糖和葡萄糖,然而目前制约纤维素材料转化为乙醇并实现产业化的关键因素之一是纤维素酶效率低下,从而造成生产成本过高。因此,筛选具有高活性纤维素酶的秸秆降解微生物菌株以及相关研究是当前研究的热点和难点。 关键词:纤维素降解高活性纤维素酶微生物菌株

目录 第1章绪论 (1) 1.1 实验原理 (1) 1.2 实验仪器及试剂 (1) 1.2.1 实验材料 (1) 1.2.2 实验仪器 (1) 1.2.3 培养基 (2) 第2章实验步骤 (3) 2.1 采样培养 (3) 2.2 初筛 (3) 2.3 复筛 (3) 2.4 酶活的测定 (3) 2.4.1原理 (3) 2.4.2溶液配制 (3) 2.4.3实验步骤 (4) 第3章实验结果 (6) 3.1 标准曲线的绘制 (6) 3.2 菌株复筛结果 (6) 3.3 测定纤维素酶活力结果 (7) 结束语 (8) 参考文献 (9)

从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌 作者:王春学号:11101680 摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株. 1 材料与方法 1.1 培养基 1.1.1 平板培养基 (1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7. 2.(2)纯几丁质培养基:胶体 几丁质 5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2 摇瓶培养基 (1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂 1.2 菌株的分离 1.2.1 菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h. 1.2.2 菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养. 1.3 菌种的鉴定 1.3.1 细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r?min-1)10min,取上层清液分装后,置4℃下保存备用. 1.3.2 16SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’. 1.3.3 聚合酶链反应(PCR)检测 PCR反应体系为20μL,二次蒸馏水1 2.6μL,10倍扩增缓冲液2.0μL,25mmol?L-1Mg2+1.6μL,各2.5mmol?L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol?L-1引物各1.0μL,DNA模板1.0μL,5GU?L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min. 1.3.4 扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR 扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果. 1.3.5 序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到

高效产纤维素酶菌株ZJW-6发酵条件优化

高效产纤维素酶菌株ZJW-6发酵条件优化 摘要:在筛选出纤维素酶高产菌株的基础上,对纤维素酶高产菌株ZJW-6采用单因素试验进行不同条件下的液体发酵培养,使用DNS法对发酵后的菌悬液进行酶活力测定从而获得其最优发酵条件?结果表明,菌株ZJW-6产纤维素酶的最优发酵条件是以蛋白胨+(NH4)2SO4为氮源培养基,在30 ℃?pH 6下振荡培养48 h? 关键词:纤维素分解菌;发酵条件;纤维素酶;酶活力 Research on the Optimum Fermentation Conditions of High-Yield Cellulolytic Enzymes Strain ZJW-6 Abstract: The optimum fermentation conditions of high-yield cellulolytic enzymes strain ZJW-6 were studied in this paper. The strain was cultured under different liquid fermentation conditions and enzymes activity of bacteria suspension was determined using DNS method. The results showed that the optimum fermentation conditions of ZJW-6 was as follows: peptone and (NH4)2SO4 as nitrogen source, shaking for 48h at 30℃ and pH 6. Key words: cellulose-decomposing microorganisms; fermentation conditions; cellulose; enzyme activity 纤维素酶是指能降解纤维素生成纤维素二糖和葡萄糖等小分子物质的一组酶的总称?随着人们对纤维素酶研究的深入,纤维素酶在食品?饲料?环境保护?能源和资源开发等各个领域中发挥着越来越大的作用,因而引起了全世界的关注,其研究也取得了很大进展?但是纤维素酶的生产仍然存在着酶活力低?生产周期长等问题,大大限制了其大规模工业化生产[1]?对高产纤维素酶菌株ZJW-6采用单因素试验法进行不同条件下的液体发酵培养,使用DNS法对发酵后的菌悬液进行酶活力测定从而获得最优发酵条件,旨在为其工业化发酵生产打下基础? 1 材料与方法 1.1 材料 1.1.1 菌种菌种为邢台学院生物化学系微生物实验室筛选并保存的产纤维素酶菌株? 1.1.2 培养基液体培养基:羧甲基纤维素钠10.0 g/L,蛋白胨10.0 g/L,磷酸二氢钾1.0 g/L,硫酸铵0.2 g/L,氯化钠10.0 g/L,去离子水1 000 mL,pH 7.0[2]?

产纤维素酶菌种的研究开题报告

一、研究的目的及其意义 1.意义:能源危机这个时代沉重不可避免的话题以及同样重要的环境污染问题需要更加重视。纤维素乙醇作为新的清洁能源的一支,正在备受瞩目的开发研究之中。当前获得的纤维素酶的活性偏低,满足不了工业化生产的要求。虽然微生物可以直接降解天然的纤维素原料,但是,已知的纤维素酶却不能直接高效的降解结晶纤维素。如何快速有效地获得高活性的纤维素酶及产酶菌株成为了研究的热点之一。本实验利用刚果红脱色圈法,从多种含降解纤维素的自然环境中,得到高纤维素酶的细菌,进一步进行紫外诱变处理,获得酶活显著提高且具有遗传稳定性的菌株,最后通过单因素优化实验,初步确定较优的培养条件。这对利用木质纤维素原料的发酵制备燃料乙醇,解决当今世界所面临的环境污染、资源和能源危机等问题具有一定的现实意义。 2.目的 ①了解产纤维素酶微生物分离的基本原理和方法; ②掌握筛选原则与操作方法; ③掌握纤维素酶活力检测原理与方法; ④掌握诱变育种原理与紫外诱变的操作方法; ⑤掌握优化方法; ⑥掌握发酵罐的基本操作; ⑦了解正交分析方法。 二、国内外的研究现状和发展趋势 据估计,通过植物的光合作用,地球上每年合成的植物量约达1.8*1011t,其中有一半是纤维素物质[1,3],我国每年农作物稻秆?产量达6xl08t之多,利用微生物产生的纤维素酶,将这些闲置的纤维素资源水解转化,则可以在能源、词料、食品、纺织、造纸等方面得以有效利用[4,6],不仅可以减少因堆弃和焚烧对环境带来的污染,还将带来的巨大的经济效益和社会价值。 能源危机和环境污染的凸显,使得可再生清洁能源之一的生物质乙醇的进一步研发迫在眉睫。虽然国内外对于发酵工艺和代谢工程的研究较为广泛,但是目前取得的进展仍然存在较大的不足。一方面,人类获得的纤维素酶酶活力偏低,且不能直接高效降解天然结晶的木质纤维素。另一方面,自然界的大量微生物却可以直接快速的利用天然的木质纤维素来迅速繁衍。筛选并获得高活性的纤维素酶及其菌种,对于纤维素乙醇的研究具有重要意义。 三、研究的主要任务 1.调查并充分查阅资料; 2.设计实验方案; 3.样品的采集与处理; 4.实验操作的准备; 5.详细的实验流程;

从土壤里筛选产纤维素酶细菌的步骤

从土壤中分离产几丁质酶的真菌 摘要:几丁质是自然界中储量仅次于纤维素的生物多聚体,它广泛存在于真菌、硅藻、节肢动物和原生动物等生物体中,是绝大多数真菌细胞壁的结构物质,同时还是昆虫中肠围食膜的主要成分[1].几丁质酶(Chitinase,EC3.4.1.14)[2]可催化水解几丁质的β21,4糖苷键生成N2乙酰2D2氨基葡萄糖(NAG),它在植物病虫害,尤其是对真菌病的防治方面,以及在几丁质废物的转化和利用等方面都具有重要作用,其研究受到人们的广泛重视.通过几丁质作为碳源,从土壤中筛选产几丁质酶菌株. 1材料与方法 1.1培养基 1.1.1平板培养基(1)细菌几丁质培养基(分离用):蛋白胨10g,K2HPO40.7g,MgSO40.5g,KH2PO40.3g,胶体几丁质5.0g,琼脂15~20g,蒸馏水1L,pH值为7. 2.(2)纯几丁质培养基:胶体 几丁质5.0g,KNO31.0g,NaCl0.5g,K2HPO40.5g,MgSO40.5g,FeSO40.01g,琼脂20g,蒸馏水1L,pH值为7.2.1.1.2摇瓶培养基(1)种子培养基(LB培养基):蛋白胨10g,酵母膏5g,NaCl10g,蒸馏水1L,pH值为7.0.(2)发酵培养基:用细菌几丁质培养基(分离用),但不加琼脂 1.2菌株的分离 1.2.1菌株初步分离从生产几丁质的工厂排污沟附近土壤采集土样,经过烘干及风化干燥,置于60目分样筛过筛,备用.称取1g土样放入加有9mL无菌水的离心管,分别稀释制成10-1,10-2,10-3,10-4,10-5,10-6不同稀释倍数的土壤溶液.从10-3,10-4,10-5,10-6不同稀度倍数的4管土壤稀释液中各吸取0.1mL,接种在纯几丁质培养基和细菌几丁质培养基的平板上,用涂布棒涂布均匀,在30℃下培养72h. 1.2.2菌种的二次筛选从第1次稀释涂布的平板中挑取可以产生透明圈的菌落,再一次通过稀释涂布的方法,将其接种于纯几丁质平板和细菌几丁质平板上,培养72h,以取得纯菌落平板.从第2次筛选的纯菌平板上选取水解圈直径与菌落直径比最大的菌种,将其接种于50mL的LB种子培养基上,12h后以2%的接种量接于100mL的细菌几丁质发酵培养基中,在30℃下进行扩大培养. 1.3菌种的鉴定 1.3.1细菌染色体DNA提取从新培养产几个质酶活性高的革兰氏阴性细菌平板上,挑取一环菌落至加有500μLTE缓冲液的1.5mL微量离心管中,混匀后沸水浴1.5min,迅速低温离心(12000r?min-1)10min,取上层清液分装后,置4℃下保存备用. 1.3.216SrDNA引物根据16SrDNA的结构,应用B2/B3做引物,该引物扩增片段包含V8和V9两个高变区,扩增产物大小为1050bp(basepair,碱基对)左右.这两个引物序列为B2:5’2ACGGGCGGTGTGTAC23’;B3:5’2CCTACGGGAGGCAGCAG23’. 1.3.3聚合酶链反应(PCR)检测PCR反应体系为20μL,二次蒸馏水1 2.6μL,10倍扩增缓冲液2.0μL,25mmol?L-1Mg2+1.6μL,各2.5mmol?L-1的脱氧核苷三磷酸(dNTP)0.4μL,20μmol?L-1引物各1.0μL,DNA模板1.0μL,5GU?L-1Taq酶0.4μL.PCR循环:94℃预变性5min,94℃变性60s,50℃退火60s,72℃延伸90s,循环30次,并在72℃后延伸15min. 1.3.4扩增产物的电泳分析用1倍的TAE缓冲液配制质量分数为1%琼脂糖凝胶.取PCR扩增产物10μL,加2μL溴酚蓝指示剂,混匀后加样,于100V下电泳1.5h,紫外灯下观察电泳结果. 1.3.5序列测定与分析将观察到的PCR产物切胶,用胶回收试剂盒回收后,连接到

高产纤维素酶菌株的诱变育种

湖南农业大学课程论文 学院:生物科学技术学院班级: 姓名:学号: 课程论文题目:纤维素酶高产菌株的诱变育种 课程名称:工业微生物育种学 评阅成绩: 评阅意见: 成绩评定教师签名: 日期:年月日

纤维素酶高产菌株的诱变育种 ( ) 【摘要】纤维素酶是一种重要的工业酶制剂,是一种复合酶,它将纤维素及类似物水解成葡萄糖。近年来,对产纤维素酶菌株的鉴定、诱变育种、筛选等方面取得了长足的进展。本文对这些研究进展进行了归纳和总结. 【关键词】产纤维素酶菌株;纤维素酶;筛选;诱变育种 Mutation Breeding of Cellulase High-yield Strain TAO Mi-lin (College of Biological Science and Technology, Hunan Agriculture University, Hunan 410128) 【Abstract】Cellulase is a kind of complex enzyme. Due to the ability of hydrolyzing cellulose or the similarity of cellulose into glucose. A great effort has been made until now on the research such as identification, mutation breeding and filter of cellulose-producing strain. This paper focused a brief induction and summary on advancing about these aspects. 【Key words】cellulose-producing strain ; cellulase ; filter ; mutation breeding 随着石化燃料由短缺变枯竭,能源是人类面临的共同问题。寻找新的能量来源关系到经济的可持续发展乃至人类的生存问题。纤维素与石化燃料不同,它是一种可再生的资源。地球上每年光合作用可产生大于100亿吨的植物干物质,其中一半以上是纤维素和半纤维素。另外,人类活动产生的废弃物中也含有大量的纤维素,如农业废物( 稻草、稻壳、麦杆、花生壳、玉米芯、棉籽壳、甘蔗渣等)、食品加工废物(果皮、果渣等)、木材废物(木屑、树皮)以及城市废弃物(40%~60% 固体废物是垃圾和废纸)等。如果能有效地利用生物转化技术将这些纤维素转化成简单糖,再发酵产生乙醇等能源物质,不仅可以变废为宝,而且还可以避免由于化石燃料燃烧所带来的环境污染,更重要的是可以缓解或解决石化能源短缺乃至枯竭所带来世界性能源危机。纤维素酶的特异性高,反应条件比较温和,可避免化学转化所导致的环境污染等,是将这些纤维素物质转化成简单糖的关键。因此,在再生能源利用方面具有很广阔的应用前景。另外,自然界中细菌、真菌、某些无脊椎动物,直至高等植物中都有纤维素酶的存在,因此,纤维素酶的研究还具有普遍的生态意义。 1、纤维素酶 纤维素酶最早由Seilliere于1906年研究发现,我国约从20世纪70年代开始纤维素酶的研究,且已被正式批准为饲料添加剂在动物生产中应用。 1.1 纤维素酶的结构 不同来源的纤维素酶理化性质不相同,纤维素酶分子一般由球状的催化结构域(CD)、连接桥(Linker)和纤维素结合结构域(CBD)3部分组成。纤维素酶是由葡聚糖内切酶(endo-1,4-β-D-glucanases,EC3.2.1.4,简称EG)、葡聚糖外切酶

高产纤维素酶黑曲霉菌株的化学诱变选育

湖北农业科学2009年(责任编辑郑威) mineral forming elements [C ].Amsterdam :Elsevier ,1979. 253-292.[6] NEALSON K H.The microbial manganese cycle [A ]. KRUMBEIN W E.Microbial geochemistry [C ].Oxford :Blackwell Scientific Publications ,1983.191-221.[7] TEBO B M ,BARGAR J R ,CLEMENT B G ,et al.Bio-genic manganese oxides :properties and mechanisms of forma-tion [J ].Annu.Rev.Eath.Planet Sci ,2004,32:287-328. [8]田美娟,邵宗泽.深海抗锰细菌的分离鉴定[J ].厦门大学学报 (自然科学版),2006,45(2):272-276. [9] SOLOMON E I ,SUNDARAM U M ,MACHONKIN T E.Multicopper oxidases and oxygenases [J ]. Chem Rev , 1996,96:2563-2605. [10] TONER B ,FAKRA S ,VILLALOBOS M ,et al.Spatially Resolved Characterization of Biogenic Manganese Oxide Pro-duction within a Bacterial Biofilm [J ].Appl Environ Micro-biol ,2005,71(3):1300-1310. 第48卷第1期 2009年1月 湖北农业科学 H ubei A gricultural S ciences Vol.48No.1 Jan .,2009 收稿日期:2008-10-18 基金项目:鲁东大学基金项目(20053305) 作者简介:冯培勇(1977-),男,山东日照人,硕士,主要从事微生物产酶的研究工作,(电话)132********(电子信箱)fengpeiyong2004@yahoo.com.cn 。 纤维素是广泛存在于自然界中的一种由许多葡萄糖基组成的大分子物质,可被存在于微生物中的纤维素酶所降解。纤维素酶指的是降解纤维素酶生成葡萄糖的一组酶的总称。目前认为,完全降解纤维素至少需要3种功能不同且互补的纤维素酶组分,即内切葡聚糖酶(C1酶或EG )、外切葡聚糖酶(Cx 酶或CBH )、β-葡萄糖苷酶(简称βG )[1]。纤维素酶的应用随着工业的发展而日趋广泛,不仅能用于生产葡萄糖、酿酒、饲料工业、纺织行业、环卫污物的处理、农产品加工及生物工程等方面[2],而且可用于服装加工行业[3]。由于野生型菌种的纤维素酶 活力不高,因此,利用各种诱变手段选育高产纤维素酶生产菌一直是国内外研究的热点。本研究通过化学诱变剂NTG 、硫酸二乙酯和LiCl 对一株黑曲霉菌株进诱变,获得了纤维素酶活性显著提高且遗传性状稳定的突变株。 1 材料与方法 1.1材料 1.1.1出发菌株黑曲霉(Aspergillus niger F1), 本实验室分离保存。 1.1.2 培养基 ①斜面培养基(PDA 培养基):马铃 高产纤维素酶黑曲霉菌株的化学诱变选育 冯培勇,宿红艳,张 丽,王艳华 (鲁东大学生命科学学院,山东烟台 264025) 摘要:以1株黑曲霉(Aspergillus niger F1)为出发菌株,经过亚硝基胍、硫酸二乙酯和氯化锂诱变处理,选育出1株纤维素酶高产菌株L1。在适宜条件下,其产CMCase 活力为出发菌株的150.2%。关键词:纤维素酶;化学诱变;黑曲霉中图分类号:Q933 文献标识码:A 文章编号:0439-8114(2009)01-0088-03 Breeding of High-Yield Cellulase Aspergillus niger Mutated by Chemicals FENG Pei-yong ,SU Hong-yan ,ZHANG li ,WANG Yan-hua (College of Life Science ,Ludong University Yantai 264025,Shandong ,China ) Abstract :A strain ,Aspergillus niger F1,was used as starting strain and mutated by NTG ,DES and LiCl.The strain named L1was bred which could produce high-yield cellulase.Under suitable conditions ,its CMCase activity was 150.2%of the starting strain. Key words :cellulase ;chemical mutatation ;Aspergillus niger !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

细胞原生质体的制备

细胞原生质体的制备 —植物原生质体分离和活性鉴定 一、实验目的 1.学习植物细胞原生质体分离纯化的方法。 2.了解原生质体活性鉴定的原理。 3.了解植物原生质体分离、融合和培养的基本原理及其过程 二、实验原理 去掉植物细胞壁的方法可以是机械的人工操作,也可以利用酶解法。较早利用机械法制备原生质体的 酶解法分离原生质体是一个常用的技术,其原理是植物细胞壁主要由纤维素、半纤维素和果胶质组成,因而使用纤维素酶、半纤维素酶和果胶酶能降解细胞壁成分,除去细胞壁,即可得到原生质体。由于原生质体内部与外界环境之间仅隔一层薄薄的细胞膜,必须保持在渗透压平衡的溶液中才能保持其完整性。其次,还应当考虑取材、酶的种类和纯度、酶液的渗透压、酶解时间及温度等因素对分离原生质体的影响。 测定原生质体的活性有多种方法。荧光素双醋酸酯(FDA)染色是常用的一种方法,FAD 本身无荧光,无极性,可透过完整的原生质膜。一旦进入原生质体后,由于受到酯酶分解而产生具有荧光的极性物质荧光素。它不能自由出入原生质膜,因此有活力的细胞能产生荧光,无活力的原生质体不能分解FAD无荧光产生。 PEG作为一种高分子化合物,20~50%的浓度能对原生质体产生瞬间

冲击效应,原生质体很快发生收缩与粘连,随后用高Ca高pH法进行清洗.使原生质体融合得以完成。 PEG诱导融合的机理:PEG由于含有醚键而具负极性,与水、蛋白质和碳水化合物等一些正极化基团能形成氢键,当PEG分子足够长时,可阼为邻近原生质表面之间的分子桥而使之粘连。PEG也能连接Ca2+等阳离子,Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱.这样将引起电荷的紊乱和再分布.从而引起原生质体融合:高Ca高pH由于增加了质膜的流动性,因而也大大提高了融合频率,洗涤时的渗透压冲击对融合也可能起作用。 原生质体分离纯化或融合后,在适当的培养基上应用合适的培养方法,能够再生细胞壁,并启动细胞持续分裂,直至形成细胞团,长成愈伤组织或胚状体,再分化发育成苗。其中,选择合适的培养基及培养方法是原生质体培养中最基础也是最关键的环节。 三、实验用品 1.材料:绿豆,烟草幼苗叶片,油菜或菠菜或烟草等。 2.试剂: 酶解液(绿豆):1%(W/V) 纤维素酶,1% (W/V)果胶酶,0.7mol/L 甘露醇;10mmol/L CaCl,2.2H2O,0.7mmol/L KH2PO4,pH 6.8~ 7.0。 13%CPW洗涤液(绿豆):27.2mg/L KH2PO4,101.0 mg/L KNO3,

产纤维素酶细菌的筛选及培养

产纤维素酶细菌的筛选及培养 一、筛选步骤 1、菌种的采集 采集山上距湿润的表层10cm处的土壤样本40g左右,用研钵研成粉末称取1g样本加入灭菌的250mL锥形瓶中,加入99mL无菌水摇匀静置。 2、菌种初筛 (1)按照配方配制200mL CMC培养基,取1 X 250mL空锥形瓶和6 X 15mL试管,塞上棉塞并用报纸、棉线包扎,用报纸、棉线将试管包扎成一捆;取12套培养皿码齐包扎。将上述器材与培养基、无菌水121℃高压蒸汽灭菌20min。 (2)于无菌台上倒9个CMC培养基备用。 (3)另取6支15mL经灭菌的试管,用移液枪吸取土壤溶液(上清液)加入1号试管,加无菌水。混匀后吸取加入2号试管,重复上述操作,进行6次梯度稀释。 (4)待CMC培养基冷却后,在超净工作台分别吸取104、105、106倍稀释液于CMC 培养基上稀释涂布,每种稀释液涂布三份。 (5)将上述培养基置于37℃培养箱中培养24小时,标记菌落并记录各菌落形态(菌落高度、质地、颜色、气味、着生状态、边缘及表面纹理等)。 (6)配制200mL刚果红家别培养基,与三套培养皿一起121℃灭菌20min。 (7)在无菌操作台上倒3个鉴别培养基备用。 (8)将各菌落用牙签接种到冷却了的刚果红鉴别培养基上,37℃培养24h,挑选5株透明圈直径与菌落直径比最大的菌株进行摇瓶复筛。 3、菌种复筛 (1)配制500mL基础发酵培养基,分装到5只250mL的锥形瓶中,121℃高压蒸汽灭菌20min。

(2)将初筛得到的菌株用接种环接种于液体培养基上(2环),37℃、150r/min 下培养2—3天,转入4℃冰箱保藏。 二、培养方法 1清洗实验器具 2灭菌 3配培养基(纤维素作唯一能量源的培养基) 4倒平板 +选择培养原菌(可能会用摇床) 5稀释菌样 6涂布平板或平板划线 7放入恒温箱(调制均适宜的温度)12-24h ,之后就可以收获细菌了 8观察记录(数量、分布等) 三、培养基种类及其组成 1、初筛 CMC培养基:CMC 5g、蛋白胨 1 g、FeSO4·7H2O 0.005 g、NaCl 0.25 g、琼脂粉10g 于1000mL锥形瓶中加蒸馏水至500mL、调节pH 7.2~7.6,加棉塞121℃灭菌20min。 刚果红培养基: (NH4)2S04 2 g,MgS04·7H20 0.5 g,K2HP04 1 g,NaCl 0.5 g,微晶纤维素2 g,刚果红0.4 g,琼脂20 g,加水至1000 mL。 无菌水:取1只1000mL的锥形瓶,各加水1000mL,加棉塞与CMC培养基一起灭菌20 min。另取1只250mL空锥形瓶、6支15mL试管和12套培养皿灭菌备用。 2、复筛 基础发酵培养基:羧甲基纤维素钠10g,蛋白胨10g,KH2PO419,MgSO4 0.29,Nacl 10g水1000mL,pH调至7,121℃灭菌20min

原生质体制备

1.影响原生质体数量和活力的因素 (1)细胞壁降解酶的种类和组合 不同植物种类或同一植物种的不同器官以及它们的培养细胞,由于它们的细胞壁结构组成不同,分解细胞壁所需的酶类也不同。例如,叶片及其培养细胞用纤维素酶和果胶酶,根尖细胞以果胶酶为主附加纤维素酶或粗制纤维素酶(Driselase酶),花粉母细胞和四分体期小孢子用蜗牛酶和胼胝质酶,成熟花粉用果胶酶和纤维素醇。 (2)渗造压稳定剂 用酶法降解细胞壁前,为防止原生质体的破坏,一般需先用高渗液处理细胞,使细胞处于微弱的质壁分离状态,有利于完整原生质体的释放。这种高渗液称为渗透压稳定剂。常用的滲透压稳定剂有甘露醇、山梨醇、蔗糖、葡萄糖、盐类(KCI、MgSO4.7H2O)等。在降解细胞壁时,渗透压稳定剂往往和酶制剂混合使用。滲透压稳定剂中,用得最多的是甘露醇,常用于烟草、胡萝ト、柑橘、蚕豆原生质体制备;蔗糖常用于烟草、月季等;山梨醇常用于油菜原生质体制备。滲透压稳定剂种类及浓度的选择应根据植物种类而异,例如胡萝ト用0.56mol /L甘露醇,月季用14%蔗糖,柑橘用0.8mol/L甘露醇,蚕豆用0.7mol/L甘露醇,烟草的四分体用7%熊糖,烟草的成熟花粉用13%甘露醇。 (3)质膜稳定剂 质膜稳定剂可以增加完整原生质体数量、防止质膜破坏,促进原生质体胞壁再生和细胞分裂形成细胞团。如在分离烟草原生质体时,在酶液中加人入葡聚糖硫酸钾,一旦洗净确液进行培养,原生质体很快长壁并持续细胞分裂形成细胞团。而未加葡聚糖硫酸钾的对照,原生质体经一周培养即解体。常用的原生质膜稳定剂有葡聚糖硫酸钾、MES、氯化钙、磷酸二氢钾等。 (4)pH的影响 分离原生质体时,酶液的pH是值得注意的问题。因为降解酶的活力和细胞活力最适pH是不一致的低pH时(<4.5),酶的活力强,原生质体分离速度快,但细胞活力差,破坏的细胞较多;pH偏高时,酶活力差,原生质体分离速度慢,完整的原生质体数目较多。分离原生质体时,酶液的pH因植物种类不同而有差异,如胡萝ト为5.5、月季为5.5~6.0、烟草为5.4~5.8、柑橘为5.6、蚕豆为5.6~5.7。 (5)温度影响 制备生质体时,一般在26土1℃条件下酶解。 (6)植物材料的生理状态 一般应选择植物体细胞分裂旺盛的部分进行取材。采用那些颗粒细小、疏松易碎的胚性愈伤组织和由其建立的胚性悬浮细胞系,更容易获得高质量的原生质体。要得到良好的供体材料,必要时应对材料进行预处理及预培养。 2.植物原生质体的纯化 材料经过一段时间的酶解后,需要将酶解混合物中破碎的原生质体、未去壁的细胞、细胞器及其他碎片去除出去。纯化原生质体的常用方法有过滤、离心、飘浮法,在实际操作中一般联合运用这三种方法。 1)过滤法用滤网过滤酶解混合物,滤去未被酶解的细胞、细胞团及组织块 2)离心法利用比重原理,在具有一定渗透压的溶液中,先进行过滤然后低速离心,使纯净完整的原生质体沉积于离心管底部。 3)飘浮法采用比原生质体比重大的高渗溶液(如蔗糖、Ficoll溶液),使原生质体漂浮在溶液表面。

1班3组微生物自主实验论文—高产纤维素酶菌株的分离与酶活性检测

高产纤维素酶菌株的分离与酶活性检测 一班3组 摘要:本组实验通过从土壤中取样并经过选择培养和梯度稀释,将所得样品进行纯化培养 后染色鉴别,之后挑取菌落进行涂布培养,即可分离出高产纤维素酶菌株。为确定分离得到 的是纤维素分解菌,还需要进行发酵产纤维素酶实验,我组采用液体发酵法。我组培养基在 培养过程中有菌落生长,后来观察到产生透明圈的菌落,经过分离纯化,进一步筛选出了单 菌落,然后又进行了镜检,最后通过液体发酵,检验了纤维素酶的活性。 关键词:高产纤维素酶菌株、分离、酶活性检测 1.研究方法: 1.1实验材料及用具 土壤、滤纸、刚果红染料、试管、培养皿、玻璃棒、烧杯、酒精灯、称量纸、天平、揺瓶、 摇床、胶头滴管、接种环、接种针、酒精棉球、无菌操作台、离心管、高速离心机、牛津杯 培养基、鉴别培养基、液体发酵法所需培养基 1.2实验方法 1.2.1高产纤维素酶菌株的分离 (1)土壤取样:在富含纤维素的环境中土壤取样,比如取树林中多年落叶形成的腐殖土。 (2)制备选择培养基: 纤维素钠 5g NaNO3 1g KCl 0.5g Na2HPO4·7H2O 1.2g KH2PO4 0.9g MgSO4 ·7H2O 0.5g酵母膏 1.0g 溶解后, 蒸馏水定容至1000mL (3)制备鉴别培养基: 纤维素钠 5g NaNO3 1g KCl 0.5g Na2HPO4·7H2O 1.2g KH2PO4 0.9g MgSO4 ·7H2O 0.5g酵母膏 1.0g 琼脂 20g 刚果红 0.2g 溶解后,蒸馏水定容至1000mL (4)选择培养:称取土样20 g,在无菌条件下加入装有30 mL培养基的摇瓶中。将摇瓶置于 摇床上,在30 ℃下振荡培养1~2 d,至培养基变混浊。吸取一定的培养液(约5 mL),转 移至另一瓶新鲜的选择培养基中,以同样的方法培养到培养液变浑浊。 (5)梯度稀释:按照前面的稀释操作方法,将选择培养后的培养基进行等比稀释10~1000000 倍。 (6)将样品涂布到鉴别纤维素分解菌的培养基上:制备鉴别培养基后涂布平板,将稀释度为 104~106的菌悬液各取0.1ml涂布到平板培养基上,30℃倒置培养。 (7)纯化培养:在产生明显的透明圈的菌落,挑取并接种到纤维素分解菌的选择培养基上, 在300C- 370C培养,可获得纯化培养。 1.2.2纤维素酶活力鉴定 (1)发酵培养:取上鉴别培养基长出的单菌落,在无菌环境中将菌株接种到液体培养基中, 然后摇床发酵培养24h。 (2)纤维素酶液获取:取发酵液2ml加入离心管,共加4支,高速离心5min后取出,上清液 即为欲获取的酶液。 (3)酶活性检测:将所取酶液加入到插有牛津杯的鉴别培养基中的牛津杯中,然后30度左右, 放置24h,观察透明圈大小,透明圈越大,说明酶活力越高。

水稻原生质体制备及转化方法

原生质体制备及转化 1.去皮的日本晴种子在75%的酒精中消毒1 min。然后用 2.5%的次氯酸钠消毒20 min。用无菌水洗至少5次,然后在1/2 MS培养基上,12 h光照(大约150umol m-1 s-1)十二小时黑暗,26 ℃培养7-10天,提前一天烧好去尖的黄蓝枪头备用。 2.取40-60棵水稻幼苗的茎和叶鞘的绿色组织。 3.将一捆水稻植株(大概10棵幼苗)用剃刀一起切成大约0.5 mm的小段。 4.将小片段立刻放进0.6 M的甘露醇中,黑暗中放置10 min。 5.用100目钢制滤网去掉甘露醇,将小片段放在加入15mL酶液的25mL锥形瓶中, (1.5% Cellulase RS,0.75% Macerozyme R-10,0.6 M甘露醇,pH5.7的10mM MES,10mM CaCl2,0.1% BSA),28℃摇床中轻轻摇晃(50rpm),黑暗孵育4-6 h。 6.此时配置40%的PEG4000,酶消化后,分三次加入等体积15mL的W5溶液(154 mM NaCl,125mM CaCl2,5 mM KCl,pH 5.7的2mM MES)。用手充分摇晃10s。 7.用400目钢制滤网过滤得到原生质体在圆底管中。 8.80g离心(升降速度设为1档)5min,缓慢吸走上清液。 9.沿壁缓慢加入4mL W5溶液,轻轻悬浮,再离心80g,5min,弃上清 10.沿壁缓慢加入4mL Mmg溶液,离心80g,5min,弃上清 11.再加Mmg溶液,补至每个样品100μl原生质体 12.分装2mL离心管,每100μl原生质体,加入20μl质粒和120μl新鲜制备的 40%的PEG4000,混匀 13.28℃避光静置转化20--25min 14.加1.5 mL W5溶液混匀,80g离心3min,弃上清。 15.重复步骤14 16.加2mL W5溶液重悬,轻轻混匀,移到细胞培养板,锡箔纸包裹避光28℃避 光静置培养15-20小时 17.培养完成后,将培养板中沉淀的原生质体轻轻混匀,吸到2 mL离心管中,80g 离心3min,弃上清,保留100μl上清液 18.共聚焦显微镜观察拍照 配制溶液方法:

植物组织培养 第十章 原生质体培养

第十章原生质体培养 ?教学目的与要求: ?深入了解植物细胞结构功能与细胞全能性表达的关系,掌握原生质体的分离以 及培养过程中渗透压和激素的调控原理与技术。 第一节、原生质体研究概况 一、原生质体的概念 ?原生质体(p r o t o p l a s t):指除去细胞壁的细胞或是说一个被质膜所包围的裸露 细胞。 二、原生质体研究进展 ?据统计,目前已有49个科,146个属的320多种植物经原生质体培养得到了再 生植株(1993)。其趋势仍以农作物和经济作物为主,但从一年生向多年生、草本向木本、高等植物向低等植物扩展。 三、原生质体研究的意义 ?1、除去了细胞壁为植物细胞之间的融合扫平了障碍,同时叶为制造新杂种开辟 了道路。2、原生质体可摄入外源D N A,细胞器、细菌或病毒颗粒,这些特性与植物全能性相结合为高等植物的遗传饰变打下基础。3、获得细胞无性系和选育突变体的优良起始材料。 第二节、原生质体的制备 1、用于分离原生质体的材料准备 ?无菌试管苗叶片 ?上胚轴和子叶 ?培养细胞 2、酶处理 ?原生质体分离常用的商品酶 ?纤维素酶类 ?果胶酶类 ?半纤维素酶 酶溶剂及其渗透压 ?酶溶剂:原生质体培养基或特殊配制。 ?渗透压调节剂:葡萄糖、甘露醇、山梨醇等。 ?酶浓度及酶解时间 ?酶解时间 ?酶浓度酶解温度 3、原生质体的收集和纯化 ?飘浮法:常用的飘浮剂有蔗糖、P e r c o l l、F i c o l l。 ?P e r c o l l是一种包有乙烯吡咯烷酮的硅胶颗粒。渗透压很低(<20m o s m/k g H2O), 粘度也很小,可形成高达1.3g/m l密度,采用预先形成的密度梯度时可在低离心力(200~1000g)于数分至数十分钟内达到满意的细胞分离结果。由于P e r c o l l 扩散常数低,所形成的梯度十分稳定。此外,P e r c o l l不穿透生物膜,对细胞无毒害,因此广泛用于分离细胞、亚细胞成分、细菌及病毒,还可将受损细胞及其碎片与完好的活细胞分离。

产纤维素酶菌种的筛选与优化

实验一产纤维素酶菌种的分离与初筛 实验二产纤维素酶菌种的复筛与保藏 实验三酶活测定与传代保藏 实验四产纤维素酶菌种的紫外诱变育种 实验五产纤维素酶菌种的产酶条件优化 实验六产纤维素酶菌种的产酶条件优化的结果分析

实验一产纤维素酶菌种的分离与初步鉴定 一、实验目的 1.了解产纤维素酶微生物分离的基本原理;2.掌握产纤维素酶微生物分离的操作方法。 二、实验原理自然界中存在大量的纤维素类物质,同时存在着很多能分解纤维素类物质的生物,小到细菌、放线菌、真菌,大到一些食草类昆虫与动物。这些生物与绿色植物一起构成了这个世 界的碳循环。在发酵堆肥中,存在着大量的,耐高温的纤维素分解菌株,但多半都为混合分解,菌种需要: 1. 内切型葡萄糖苷酶(endo-1,4- ^D-glucanase,EC3.3.1.4,简称EBG),也称Cx 酶、CMC 酶、EG。这类酶作用于纤维素分子内部的非结晶区,随机识别并水解3-1,4-糖苷键,将长链纤维素分子截短,产生大量非还原性末端的小分子纤维素; 2. 外切型葡萄糖苷酶(exo-1,4- 3D-glucanase,EC 3.2.1.91 ),也称C1酶、微晶纤维素酶、 纤维二糖水解酶(Cellobiohydrolase, 简称CBH),这类酶从纤维素长链的非还原性末端水解3-1,4-糖苷键,每次切下纤维二糖分子; 3. B-葡萄糖苷酶(^glucosidase, EC3.2.21,简称BG)又称纤维二糖酶,它能水解纤维二 糖以及短链的纤维寡糖生产葡萄糖,对纤维二糖和纤维三糖的水解很快。随着葡萄糖聚合酶的增加水解速度下降,这种酶的专一性比较差。 只有三种酶的协同作用,才能较好的分解纤维素。就单菌落而言,霉菌如木霉、曲霉和青霉的总体酶活性较高,产量大,故在畜牧业和饲料工业中的应用的纤维素酶主要是真菌纤维素酶。 本实验以羟甲基纤维素钠为唯一碳源的培养基作为筛选培养基, 只有能够水解纤维素成单糖并加以利用的微生物才能在筛选培养基上生长, 利用筛选培养基分离产纤维素酶的微生物。 以羧甲基纤维素钠(CMC-Na )为唯一碳源,通过微生物分解利用CMC-Na ,分离出能产纤维素酶的菌种; 刚果红是一种酸性染料,可与纤维素反应形成红色复合物。 三、实验仪器及试剂 1. 材料土样取自学校校门口小树林5—20cm深处; 2 .仪器试管、烧杯、移液管、平板、锥形瓶、玻璃珠、电磁炉、电子称、量筒、培养皿、酒精灯、移液枪、接种环、高压灭菌锅等; 3 .培养基(1)筛选培养基(500ml) CMC-Na 10g 、(NH4)2SO4 1.4 g 、MgSO4 0.3g KH 2PO4 2g 、MnSO4 1.6mg 、FeSO4 5mg ZnSO 4 2.5mg 、CoCl2 2.0mg 琼脂20g PH7.0 (2)保藏培养基(500ml) CMC-Na 15g 、MgSO4 0.5g 、K2HPO4 1.5g 、酵母粉10g NaCl 5g 、蛋白胨15g、琼脂20g、刚果红PH7.0 四、实验步骤 1. 土样采集取自学校校门口小树林5—20cm深处; 2. 实验器材灭菌:平板、移液管的包扎及灭菌; 3. 无菌水的制备:

相关文档
最新文档