高中物理之平抛运动和斜面组合模型和应用

高中物理之平抛运动和斜面组合模型和应用
高中物理之平抛运动和斜面组合模型和应用

平抛运动和斜面组合模型及其应用

平抛运动可以分解为水平方向的匀速直

线运动和竖直方向的自由落体运动,其运动轨

迹和规律如图1所示,会应用速度和位移两

个矢量三角形反映的规律灵活的处理问题。设

速度方向与初速度方向的夹角为速度偏向角φ,位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。

一.斜面上的平抛运动问题

例1.(2006·)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v1从斜面顶端水平抛出,物体B在斜面

上距顶端L=15m处同时以速度v2沿斜面向下匀速运动,

经历时间t物体A和物体B在斜面上相遇,则下列各组

速度和时间中满足条件的是(sin37O=0.6,cos370=0.8,

g=10 m/s2)

A.v1=16 m/s,v2=15 m/s,t=3s

B .v 1=16 m/s ,v 2=16 m/s ,t =2s

C .v 1=20 m/s ,v 2=20 m/s ,t =3s

D .v 1=20m/s ,v 2=16 m/s ,t =2s

解析:设物体A 平抛落到斜面上的时间为t ,

由平抛运动规律得 t v x 0=,22

1gt y =

由位移矢量三角形关系得 x y =θtan 由以上三式解得g

v t θtan 20= 在时间t 的水平位移g v x θtan 220=;竖直位移g

v y θ220tan 2= 将题干数据代入得到3v 1=20t ,对照选项,只有C 正确。

将v 1=20 m/s ,t =3s 代入平抛公式,求出x ,y

A s ==75m ,

B s =v 2t =60m ,

15A B s s L m -==,满足题目所给已知条件。

结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行时间为

g

v t θtan 20=,水平位移为g v x θtan 220=,竖直位移g v y θ220tan 2=,均与初速度和斜面的倾角有关且分位移与初速度的平方成正比。

跟踪训练:

1.在例1中,题干条件不变,改变设问角度和题型。则v 1、 v 2应满足的关

系式为 。

温馨提示:由结论1得飞行时间为g

v t θtan 20=,由几何关系得

L t v v +=21cos θ

。联立以上两式化简得v 1、 v 2应满足的关系式为gL v v v 812152121+=。

2.如图3所示,AB 为斜面,BC 为水平面,从A 点以水平初速度v 向右抛

出一小球,其落点与A 的水平距离为1x ,从A 点以水平初速度v 3向右抛出一小

球,其落点与A 的水平距离为2x ,不计空气阻力,则

21x x 可能为( ) A.

31 B.51 C.91 D. 111 温馨提示:若两物体都落在斜平面上,由水平位移g

v x θtan 220=得,9

120220121==v v x x ,即选项C 正确。若两物体都落在水平面上,由水平位移g y v x 20=得,3

1020121==v v x x ,即选项A 正确。若第一球落在斜面上,第二球落在水平面上(如图4所示),

21x x 不会小于91,但一定小于31,故选项B 对D 错。所以本题正确选项为ABC 。

3.(2003·)如图5所示,一高度为h =0.2m 的水平面在A 点处与一倾角为

θ=30°的斜面连接,一小球以v 0=5m/s 的速度在平面上向右运动。求小球从

A 点运动到地面所需的时间(平面与斜面均光滑,取g =10m/s 2)。某同学对此题的解法为:小球沿斜面运动,则20sin 2

1sin t g t v h ?+=θθ,由此可求得落地的时间t 。问:你同意上述解法吗?若同意,求出所需的时间;若不同意,则说明

理由并求出你认为正确的结果。

温馨提示:不同意。小球离开平面后,其重力与初速度垂直,故小球做平抛

运动而不是沿斜面运动。

物体能否落到斜面上,用假设法计算判断。假设物体平抛能落在斜面上,利

用其竖直分运动特点,由竖直位移g v y θ220tan 2=得,3

5=y m>h =0.2m 。故小球不会落在斜面上。所以小球下落时间为t=g

h 2=0.2s 。 4.将一质量为m 的小球以初速度v 0从倾角为θ的斜坡顶向外水平抛出,并

落在斜坡上,那么当小球击中斜坡时重力做功的功率是( )

A .θcot 0mgv

B .θtan 0mgv

C .θcot 20mgv

D .θtan 20mgv

温馨提示:由结论1中的飞行时间为g

v t θtan 20=和功率的计算式gt mg v mg p y ?=?=,得=p θtan 20mgv 。故正确的选项为C 。

拓展创新:如图6中的a 是研究小球在斜面上平抛运动的实验装置,每次

将小球从弧型轨道同一位置静止释放,并逐渐改变斜面与水平地面之间的夹角

θ,获得不同的射程x ,最后作出了如图6中的b 所示的x -tan θ图象,

2/10s m g =。则:

(1)由图b 可知,小球在斜面顶端水平抛出时的初速度v 0= 。

实验中发现θ超过60°后,小球将不会掉落在斜面上,则斜面的长度l m 。

(2)若最后得到的图象如图6中的c 所示,则可能的原因是(写出一个)

温馨提示:(1)由结论1物体的水平位移为g v x θtan 220=知,图象b 中直线的斜率g

v k 202=,解得v 0=1m/s 。由几何关系得斜面的长度θ

θθcos tan cos k x l ===0.7m (23m ) (2)图象b 中直线的斜率g

v k 202=可知,平抛运动的初速度变大,即释放位置变高或释放时有初速度。

例2.(2008·全国)如图7所示,一物体自倾角为θ的固定斜面顶端沿水

平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角φ满足( )

A.tan φ=sin θ

B. tan φ=cos θ

C. tan φ=tan θ

D. tan φ=2tan θ

解析:设平抛运动的初速度为0v ,如图所示,由速度矢量三角形关系得0

0tan v gt v v y

==φ 由位移矢量三角形关系得02tan v gt x y ==

θ,由以上两关系式得θφtan 2tan =。故选项D 正确。

结论2:物体自倾角为θ的固定斜面抛出,若落在斜面上,末速度与初速度的夹角φ满足tan 2tan ?θ=。

跟踪训练:

5.如图8所示从倾角为θ的足够长的斜面上的A 点,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为1v ,球落到斜面上前一瞬间的速度方向与斜面的夹角为1α,第二次初速度为2v ,球落在斜面上前一瞬间的速度方向与斜面间的夹角为2α,若12v v >,则1α、2α的大小关系是 。

温馨提示:如图9所示,由结论2可知,θθαtan 2)tan(=+, 解得θθα-=)tan 2arctan(

即α仅与θ有关,故有21αα=

点评:由此可以得出,物体自倾角为θ的固定斜面抛出,以不同初速度平抛的物体落在斜面上各点的速度是互相平行的推论。

6.如图10所示,AB 为足够长斜面,BC 为水平面,从A 点以3m/s 的初速度水平向右抛出一小球,落在斜面上的动能为1E ,再从A 点以5m/s 的初速度水平向右抛出该小球,落在斜面上的动能为2E 。不计空气阻力,则21E E 为( )

高中物理之平抛运动和斜面组合模型及其应用

平抛运动和斜面组合模型及其应用 平抛运动可以分解为水平方向的匀 速直线运动和竖直方向的自由落体运 动,其运动轨迹和规律如图1所示,会 应用速度和位移两个矢量三角形反映 的规律灵活的处理问题。设速度方向与初速度方向的夹角为速度偏向角φ,位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。 一.斜面上的平抛运动问题 例1.(2006·上海)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v 1从斜面顶端水 平抛出,物体B在斜面上距顶端L=15m处同时以 速度v2沿斜面向下匀速运动,经历时间t物体A 和物体B在斜面上相遇,则下列各组速度和时间

中满足条件的是(sin37O =,cos370=,g =10 m/s 2) A .v 1=16 m/s ,v 2=15 m/s ,t =3s B .v 1=16 m/s ,v 2=16 m/s ,t =2s C .v 1=20 m/s ,v 2=20 m/s ,t =3s D .v 1=20m/s ,v 2=16 m/s ,t =2s 解析:设物体A 平抛落到斜面上的时间为t , 由平抛运动规律得 t v x 0=,22 1gt y = 由位移矢量三角形关系得 x y =θtan 由以上三式解得g v t θ tan 20= 在时间t 内的水平位移g v x θtan 220=;竖直位移g v y θ 220tan 2= 将题干数据代入得到3v 1=20t ,对照选项,只有C 正确。 将v 1=20 m/s ,t =3s 代入平抛公式,求出x ,y A s ==75m , B s =v 2t =60m , 15A B s s L m -==,满足题目所给已知条件。 结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行

高一物理 平抛运动研究 典型例题精析

平抛运动研究典型例题精析 [例题1] 如图5-6(A)所示,MN为一竖直墙面,图中x轴与MN垂直.距墙面L的A点固定一点光源.现从A点把一小球以水平速度向墙面抛出,则小球在墙面上的影子运动应是 [] A.自由落体运动 B.变加速直线运动 C.匀速直线运动 D.无法判定

[思路点拨] 小球抛出后为平抛运动,在图中x方向上为匀速直线运动,在y方向上为自由落体运动.故不少同学选择(A)项,而实际上该答案是错误的.问题在于我们研究的并不是小球在竖直方向上的运动,而是在点光源照射下小球在墙上影子的运动. [解题过程] 设小球从A点抛出后经过时间t,其位置B坐标为(x,y),连接AB并延长交墙面于C(x′,y′).显然C点就是此时刻小球影子的位置(如图5-6(B)所示). 令AB与x轴夹角为α,则 依几何关系,影子位置y′=L·tanα.故 令 gL/2v0=k,则y′=k·t. 即影子纵坐标y′与时间t是正比例关系,所以该运动为匀速直线运动,应选(C)项.

[小结] (1)要认真审清题意:本题所研究的是“点光源照射下小球影子的运动”,否则会差之毫厘,谬之千里. (2)对选择题的分析判断,切莫主观猜测,要做到弃之有理,选之有据.对于需做出定量研究的问题,最好的方法就是将物理图景利用数学语言表达出来,例如在本题中就是写出位移随时间的函数关系. [例题2] 如图5-7所示,M和N是两块相互平行的光滑竖直弹性板.两板之间的距离为L,高度为H.现从M板的顶端O以垂直板面的水平速度v0抛出一个小球.小球在飞行中与M板和N板,分别在A点和B点相碰,并最终在两板间的中点C处落地.求: (1)小球抛出的速度v0与L和H之间满足的关系; (2)OA、AB、BC在竖直方向上距离之比. [思路点拨] 根据平抛运动规律,建立小球在MN之间的运动图景是本题关键之一.小球被水平抛出后,如果没有板面N的作用,其运动轨迹应如

平抛运动与斜面、曲面结合的问题

原创作品 严禁盗用 第 1 页 共 3 页 平抛运动与斜面、曲面结合的问题 高考试题呈现方式及命题趋势 纵观近几年的高考试题,平抛运动考点的题型大多数不是单纯考查平抛运动而是平抛运动与斜面、曲面结合的问题,这类问题题型灵活多变,综合性强,既可考查基础又可考查能力,因此收到命题专家的青睐,在历年高考试题中属于高频高点。 求解思路 解答平抛试题,首先要掌握平抛运动的规律和特点,同时也要明确联系平抛的两个分运动数量关系的桥梁,除时间t 外,还有两个参量:速度偏角α,tan y x v v α=位移偏角θ,tan y x θ= 两者关系:tan 2tan αθ=。平抛运动与斜面、曲面结合的问题, 命题者用意用于考查学生能否寻找一定的几何图形中几何角的关系,考查学生运用数学知识解决物理问题的能力。 知识准备 结论:做平抛运动的物体经时间t 后,其速度t v 与水平方向的夹角为α(速度偏角),位移s 与水平方向的夹角为θ(位移偏角),则有tan 2tan αθ= 证明:速度偏角0 tan y x v gt v v α== 位移偏角2001112tan tan 22 gt y gt x v t v θα==== 即:tan 2tan αθ= 说明:以上结论对于做平抛运动的物体在任意时刻此式都成立,与物体运动速度大小,运动时间等外界因素无关! 试题分类归纳 一、抛点和落点都在斜面上 存在以下规律: (1)位移与水平方向的夹角就为斜面的倾角 (2)物体的运动时间与初速度成正比;由20012tan gt y gt x v t v θ===,知02tan v t g θ=,0v 确定时t 就确定了。 (3)物体落在斜面上时的速度方向平行; (4)当物体的速度方向与斜面平行时,物体离斜面的距离最远。

高中物理 斜面模型-word文档 1

斜面模型训练 1、(2021·湖南省长郡中学高三上学期开学摸底)如图所示,倾角为θ的斜面体A固定在电梯里的水平地板上,电梯静止时在斜面体A上轻轻放上一个小斜劈B,斜劈B的上表面水平,下列说法正确的是() A. 若斜劈B恰好静止在斜面体A上,则当电梯匀加速上升时,斜劈B将相对斜面体A加速下滑 B. 若斜劈B恰好静止在斜面体A上,则在斜劈B上再放上一个物块C时,斜劈B和物块C均能静止 C. 若斜劈B沿斜面匀加速下滑,则在斜劈B上再施加一个竖直向下的力时,斜劈B的加速度不变 D. 若斜劈B沿斜面匀加速下滑,则在斜劈B上再放上一个物块C时(斜劈B、物块C相对静止),斜劈B的加速度变大 2.、如图所示,质量为m的物体A在沿斜面向上的拉力F作用下沿斜面匀速下滑,此过程中斜面体B仍静止,斜面体的质量为M, 则以下说法正确的是( ) A. 水平地面对斜面体无摩擦力 B. 水平地面对斜面体有水平向左的摩擦力 C. 水平地面对斜面体支持力为(m+M)g D.物体A受的摩擦力小于F 3、如下图所示,物体B叠放在物体A上,A,B的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则( ) A.A、B间没有静摩擦力 B.A受到B的静摩擦力方向沿斜面向上 C.A受到斜面的滑动摩擦力大小为2mgsinθ

D .A 与B 间的动摩擦因数μ=tanθ 4、(2021·辽宁省渤大附中育明高中高三上学期第一次联考)如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A 点,竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心,已知在同一时刻a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点;c 球由C 点自由下落到M 点,则( ) A. a 球最先到达M 点 B. b 球最先到达M 点 C. c 球最先到达M 点 D. b 球和c 球都可能最先到达M 点 5、(2021·河北省保定市高三上学期摸底测试)小物块从一固定斜面底端以初速度0v 冲上斜面,如图所示,已知小物块与斜面间动摩擦因数为0.5,斜面足够长,倾角为37?,重力加速度为g 。则小物块在斜面上运动的时间为(cos370.8?=,sin370.6?=)( ) A. 0 2v g B. 03v g C. 0 (51) v g + D. 0 (61) v g + 6、如图所示,用一根细线系住重力为G ,半径为R 的球,其与倾角为α的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O 固定不动,斜面劈缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是( ) A .细绳对球的拉力先减小后增大 B .细绳对球的拉力先增大后减小 C .细绳对球的拉力一直增大 D .细绳对球的拉力最小值等于Gsinα

(完整)高中物理平抛运动经典例题

1. 利用平抛运动的推论求解 推论1:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 证明:设平抛运动的初速度为,经时间后的水平位移为,如图10所示,D为末速度反向延长线与水平分位移的交点。根据平抛运动规律有 水平方向位移 竖直方向和 由图可知,与相似,则 联立以上各式可得 该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。 图10 [例1] 如图11所示,与水平面的夹角为的直角三角形木块固定在地面上,有一质点以初速度从三角形木块的顶点上水平抛出,求在运动过程中该质点距斜面的最远距离。 图11 解析:当质点做平抛运动的末速度方向平行于斜面时,质点距斜面的距离最远,此时末速度的方向与初速度方向成角。如图12所示,图中A为末速度的反向延长线与水平位移的交点,AB即为所求的最远距离。根据平抛运动规律有 ,和 由上述推论3知 据图9中几何关系得 由以上各式解得 即质点距斜面的最远距离为

图12 推论2:平抛运动的物体经时间后,其速度与水平方向的夹角为,位移与水平方向的夹角为,则有 证明:如图13,设平抛运动的初速度为,经时间后到达A点的水平位移为、速度为,如图所示,根据平抛运动规律和几何关系: 在速度三角形中 在位移三角形中 由上面两式可得 图13 [例2] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

(完整版)平抛运动的典型例题

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是( C )A.从飞机上看,物体静止 B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动 D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内( BD ) A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C ) A.甲先抛出球B.先抛出球 C.同时抛出两球D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方 向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A . B . C . D . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角 满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2 ),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

高中物理模型-斜面模型

模型组合讲解——斜面模型 康世界 [模型概述] 斜面模型是中学物理中最常见的模型之一,各级各类考题都会出现,设计的内容有力学、电学等。相关方法有整体与隔离法、极值法、极限法等,是属于考查学生分析、推理能力的模型之一。 [模型讲解] 一. 利用正交分解法处理斜面上的平衡问题 例1. 相距为20cm 的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为?=37θ,现在导轨上放一质量为330g 的金属棒ab ,它与导轨间动摩擦系数为50.0=μ,整个装置处于磁感应强度B=2T 的竖直向上的匀强磁场中,导轨所接电源电动势为15V ,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取2 /10s m g =,为保持金属棒ab 处于静止状态,求: (1)ab 中通入的最大电流强度为多少? (2)ab 中通入的最小电流强度为多少? 解析:导体棒ab 在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。

(1 )ab 中通入最大电流强度时受力分析如图2,此时最大静摩擦力N f F F μ=沿斜面向下,建立直角坐标系,由ab 平衡可知,x 方向: )sin cos (sin cos max θθμθ θμ+=+=N N N F F F F y 方向:)sin (cos sin cos θμθθμθ-=-=N N N F F F mg 由以上各式联立解得: A BL F I L BI F N mg F 5.16,6.6sin cos sin cos max max max max max ====-+=有θ μθθθμ (2)通入最小电流时,ab 受力分析如图3所示,此时静摩擦力N f F F ''μ=,方向沿斜面向上,建立直角坐标系,由平衡有: x 方向:)cos (sin 'cos 'sin 'min θμθθμθ-=-=N N N F F F F y 方向:)cos sin ('cos 'sin 'θθμθθμ+=+=N N N F F F mg 联立两式解得:N mg F 6.0cos sin cos sin min =+-=θ θμθμθ 由A BL F I L BI F 5.1,min min min min === 评点:此例题考查的知识点有:(1)受力分析——平衡条件的确定;(2)临界条件分析的能力;(3)直流电路知识的应用;(4)正交分解法。 说明:正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算来解决矢量运算。正交分解法在求解不在一条直线上的多个力的合力时显示出了较大的优越性。建立坐标系时,一般选共点力作用线的交点为坐标轴的原点,并尽可能使较多的力落在坐标

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 , 所以Q点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有 同理 则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。 取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有 ?① ?② 当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离 当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为

例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s ) 分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m . 解:由位置关系得 1202.6s s s =+- 物体平抛运动的时间 0.7t s '= 由以上三式可得 例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大? 解:小球运动是合运动,小球在水平方向作匀速直线运动,有 0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有 2 12 L at = ② 根据牛顿第二定律列方程 sin mg ma θ= ③ 由①,②,③式解得s v v == 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37?变成53?,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用. 解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知: 由以上两式解得017.1/v m s = 9 7 t s = 物体在这1s 内下落的高度 例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;

与斜面有关的平抛运动

与斜面有关的平抛运动 1.如图,从斜面上的点以速度υ0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,己知AB=75m , a=37°,不计空气阻力,下列说确的是 A.物体的位移大小为75m B.物体飞行的时间为6s C.物体的初速度v 0大小为20m/s D.物体在B 点的速度大小为30m/s 【答案】AC 【解析】 试题分析:由图可知,物体的位移大小为75m ,选项A 正确;物体飞行的时间为 s s g s t 310 6 .0752sin 2=??== α,选项B 错误;物体的初速度v 0大小为s m t s v /2037cos 0==o ,选项C 正确;物体在B 点的速度大小为 s m s m gt v v /1310/)310(20)(2222 0=?+=+=,选项D 错误;故选AC. 考点:平抛运动的规律. 2.如图所示,斜面与水平面夹角,在斜面上空A 点水平抛出两个小球a 、b ,初速度分别为v a 、v b ,a 球落在斜面上的N 点,而AN 恰好垂直于斜面,而b 球恰好垂直打到斜面上M 点,则( ) A .a 、b 两球水平位移之比2v a :v b B .a 、b 两球水平位移之比2v a 2 :v b 2 C .a 、b 两球下落的高度之比4v a 2 :v b 2 D .a 、b 两球下落的高度之比2v a 2 :v b 2 【答案】BC 【解析】 试题分析:a 球落在N 点,位移与斜面垂直,则位移与水平方向的夹角为90°-θ,设此时的速度方向与水平方向的夹角为α,则tan α=2tan (90°-θ),b 球速度方向与斜面垂直,速度与水平方向的夹角为90°-θ,可知: 2yb ya b a v v v v = ,解得: 2ya a yb b v v v v =,根据2 2y v h g =,

柱体模型在流体中的应用

柱体模型在流体中的应用 吴中区木渎第三中学陈丽金 一、柱体模型的提出 在中学物理中,有一些实际问题与流体有关。由于流体具有流动性、连续性等特点,在求解以流体为物理情景的问题时,只要抓住流体的特点,建立柱体模型,则往往可以使问题简单化,甚至格式化。 二、柱体模型 设S为与流体流动方向垂直的某一截面 的面积,则在△t时间内,流过这一截面的 流体的体积可看成一个小个圆柱体,如图1 所示柱体的棱长为v o△t,体积为V=Sv o△t,v o△t 质量为△m=ρSv o△t。图1 三、柱体模型的应用 例1、水力采煤就是利用从高压水枪喷出来的强力水柱冲击煤层而使煤层破裂。设所用水枪的直径为d,水速为v o,水的密度为ρ,水柱垂直地冲击到竖直煤壁上后沿竖直煤壁流下,求水柱施于煤层上的冲力大小。 解析:设在△t时间内射到煤层上的水的质量为△m,以S表示水柱的截面积,则△m=ρSv o△t=ρ·πd2/4·v o△t 这部分水经△t时间,其水平方向的动量有△m v o变为零,设煤层对水的作用力为F,以水速方向为正方向,根据动量定理,有 F△t = 0-△m v o 则F=-πd2ρv o2/4 根据牛顿第三定律,水柱对煤层的作用力为F’=-F=πd2ρv2/4 例2、风能是一种清洁能源,高原地区可利用风能发电。某地的平均风速是5.0m/s,已知空气的密度是1.2kg/m3,此地有一风车,它的车叶转动时形成半径为20m的圆面,假如这个风车能将此圆圈内10%的气流动能转变成电能,这个风车平均每秒内发出的电能是

多少? 解析:风车是一种能截获流动的空气所具有的动能并将叶片迎风扫掠面积内的一部分动能转化为有用机械能(再转化为电能)的装置。 设S为与空气流动方向垂直的车叶转动时形成的圆面,在单位时间内穿过风车的动能P s= mv o2/2 =ρSv o3/2 =πr2ρv o3/ 2 则这个风车平均每秒发出的电能为 P电= η·P s =ηπr2ρv o3/ 2= 9.42KW 例3、某地拟建一水电站代替原有年发电12.5万千瓦的火电厂。设平均流量为Qm3/s,水流落差为H,发电效率为η。则坝高至少要多少? 解析:取△t时间内下落的水为研究对象,这部分水的质量为 △m=ρQ△t 当这部分水下落H高度时,单位时间内减少的重力势能为 P s=ρQ g H 则单位时间内的发电量为 P = η·P s =ηρQ g H 故坝高即水流落差 H= P/ηρQ g =1.25×104/(ηQ) 例4、为了诊断病人的心脏功能和动脉中血液粘滞情况,需要测量血管中血液的流速与流量。如图为电磁流量计示意图。将血管置于磁感应强度为B的匀强磁场中,测得血管两侧ab电压为U和血管直径为D,求血液在血管中的流量Q为多少? 解析:血液是带电体,当血液以速率v在血管中定向流动时,在△t时间内流过血管某一截面S的血液量为V,则 V = Sv△t =πD2v△t /4 又血管两侧电压U满足 U = BDv 故血液在血管中的流量

高中物理重要方法典型模型突破9-模型专题(1) - 斜面模型

专题九模型专题(1)斜面模型 【模型解读】 在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维 斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。物体之间可以细绳相连,也可以弹簧相连。求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。 图示或释义 与斜面相关的滑块运动问题 规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变 (2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (3)μ

平抛运动的典型例题分类汇编

平抛运动典型例题 一:平抛运动“撞球”问题——判断两球运动的时间是否相同(h 是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 1、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在 空中相遇,则必须 ( ) A .甲先抛出球 B .先抛出球 C .同时抛出两球 D .使两球质量相等 2、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h ,将甲乙两球分别以v 1.v 2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( ) A .同时抛出,且v 1< v 2 B .甲后抛出,且v 1> v 2 C .甲先抛出,且v 1> v 2 D .甲先抛出,且v 1< v 2 二:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 3、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( ) A . B . C . D . 4、作平抛运动的物体,在水平方向通过的最大距离取决于( ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 5、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( )

A.tanφ=sinθ B. tanφ=cosθ

C. tan φ=tan θ D. tan φ=2tan θ 6、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求: (1)物体的水平射程 (2)物体落地时速度大小 ②建立等量关系解题 7、如图所示,一条小河两岸的高度差是h ,河宽是高度差的4倍,一辆摩托车(可看作质点)以v 0=20m/s 的水平速度向河对岸飞出,恰好越过小河。若g=10m/s 2,求: (1)摩托车在空中的飞行时间 (2)小河的宽度 8、如图所示,一小球从距水平地面h 高处,以初速度v 0水平抛出。 (1)求小球落地点距抛出点的水平位移 (2)若其他条件不变,只用增大抛出点高度的方法使小球落地点到抛出点的水平位移增大到原来的2培,求抛出点距地面的高度。(不计空气阻力) 9、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. 10、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为 ,求第二次抛球的初速度是多少? 三:平抛运动位移相等问题——建立位移等量关系,进而导出运动时间(t )

平抛运动常见题型

(一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。

(二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 [例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过m h25 =,摩托车的速度至少要 .1 x5 =的壕沟,沟面对面比A处低m 有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为

与斜面有关的平抛运动

与斜面有关的平抛运动

度之比 224:a b v v .故C 正确,D 错误.根据y v t g = 知, a 、 b 两球的运动时间之比为v a :2v b ,根据x=v 0t ,则水平位移之比为:x a :x b =v a 2:2v b 2.故B 正确,A 错误.故选:BC . 考点:平抛运动的规律. 3.如图所示,从倾角为θ的足够长的斜面顶端水平抛出一个小球,小球落在斜面上某处.关于小球落在斜面上时的速度方向与斜面的夹角α,下列说法正确的是 A .夹角α满足tan α=2tan ( B .夹角α与初速度大小无关 C .夹角α随着初速度增大而增大 D .夹角α一定小于90 【答案】BD 【解析】 试题分析:因为小球落到了斜面上,所以小球的位移与水平方向的夹角与斜面的倾角相同,故

有: 200 122gt y gt tan x v t v θ=== ,设速度与水平方向的夹角为β ,则0 2y v gt tan tan v v βθ== =,可知2tan tan βθ=,由于θ不 变,则β也不变.则小球落在斜面上时的速度与斜面的夹角:αβθ=-,保持不变.与初速度无关.因为平抛运动速度与水平方向的夹角不可能等于90度,则小球落在斜面上时的速度与斜面的夹角不可能等于90度,故BD 正确。 考点:考查了平抛运动规律的应用 4.如图所示,小球以v o 正对倾角为θ的斜面水平抛出,若小球到达斜面的位移最小,则飞行时间t 为(重力加速度为g )( ) A.0 2tan v g θ B.02tan v g θ C. 0tan v g θ D.0 tan v θ 【答案】A 【解析】

高中物理模型法解题——斜面问题模型

高中物理模型法解题模板 ————斜面问题模型 【模型概述】在每年各地的高考卷中几乎都有关于斜面模型的试题.我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图1-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图1-1甲 2.自由释放的滑块在斜面上(如图1-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图1-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M 对水平地面的静摩擦力依然为零. 图1-1乙 4.悬挂有物体的小车在斜面上滑行(如图2-2所示):

图1-2 (1)向下的加速度a =g sin θ时,悬绳稳定时将垂直于斜面; (2)向下的加速度a >g sin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <g sin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v 0平抛一小球(如图2-3所示): 图1-3 (1)落到斜面上的时间t =2v 0tan θg ; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过t c =v 0tan θg 小球距斜面最远,最大距离d =(v 0sin θ)22g cos θ . 6.如图1-4所示,当整体有向右的加速度a =g tan θ时,m 能在斜面上保持相对静止(斜面光滑). 图1-4 7.在如图1-5所示的物理模型中,当回路的总电阻恒定、导轨光滑时, ab 棒所能达到的稳定速度v m =mgR sin θB 2L 2 . 图1-5

平抛运动典型例题 (2)

平抛运动典型例题 1、平抛运动中,(除时间以外)所有物理量均由高度与初速度两方面决定。 v水平抛出,抛出点离地面的高度为h,阻力不计,求:(1)小球在例1、一小球以初速度 o 空中飞行的时间;(2)落地时速度;(3)水平射程;(4)小球的位移。 2、从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 例2、如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过x=5m 的壕沟,沟面对面比A处低h=1.25m,摩托车的速度至少要有多大? 3、平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 例3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其 运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须 A.甲先抛出球 B.先抛出球 C.同时抛出两球 D.使两球质量相等 例4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙 高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不 计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2 4、平抛运动轨迹问题——认准参考系 例5、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动5、平抛运动运动性质的理解——匀变速曲线运动(a→) 例6、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 6、平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系

高中物理模型:应用动量定理解决流体模型的冲击力问题

模型/题型:应用动量定理处理“流体模型”的冲击力问题 一、模型概述 1.研究对象:常常需要选取流体为研究对象,如水、空气等. 2.研究方法:隔离出一定形状的一部分流体作为研究对象,然后列式求解. 3.基本思路 (1)在极短时间Δt 内,取一小柱体作为研究对象. (2)求小柱体的体积ΔV =vS Δt (3)求小柱体质量Δm =ρΔV =ρvS Δt (4)求小柱体的动量变化Δp =v Δm =ρv 2 S Δt (5)应用动量定理F Δt =Δp 二、题型分类处理办法 模型一 流体类问题 通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ 建立“柱状”模型,沿流速v 的方向选取一段柱形流体,其横截面积为S 模型二 微粒类问题 三、典型例题 1.(2016·全国卷Ⅰ·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求: (1)喷泉单位时间内喷出的水的质量; (2)玩具在空中悬停时,其底面相对于喷口的高度. 答案 (1)ρv 0S (2)v 022g - M 2g 2ρ2v 02S 2

解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt ① 喷出水柱质量Δm =ρΔV ② 其中ΔV 为水柱体积,满足ΔV =ΔlS ③ 由①②③可得:喷泉单位时间内喷出的水的质量为 Δm Δt =ρv 0S (2)设玩具底板相对于喷口的高度为h 由玩具受力平衡得F 冲=Mg ④ 其中,F 冲为水柱对玩具底板的作用力 由牛顿第三定律:F 压=F 冲 ⑤ 其中,F 压为玩具底板对水柱的作用力,设v ′为水柱到达玩具底面时的速度 由运动学公式:v ′2-v 02 =-2gh ⑥ 在很短Δt 时间内,冲击玩具的水柱的质量为Δm Δm =ρv 0S Δt ⑦ 由题意可知,在竖直方向上,对该部分水柱应用动量定理 (F 压+Δmg )Δt =Δmv ′ ⑧ 由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为 F 压Δt =Δmv ′ ⑨ 由④⑤⑥⑦⑨可得h = v 022g -M 2 g 2ρ2v 02S 2 2.如图所示,由喷泉中喷出的水柱,把一个质量为M 的垃圾桶倒顶在空中,水以速率v0、恒定 的质量增率(即单位时间喷出的质量)Δm Δt 从地下射向空中.求垃圾桶可停留的最大高度.(设水柱喷 到桶底后以相同的速率反弹) 答案 h =v 022g -M 2 g 8(Δt Δm )2 解析 设垃圾桶可停留的最大高度为h ,并设水柱到达h 高处的速度为vt ,则 v 2-v 02 =-2gh 得v 2=v 02 -2gh 由动量定理得,在极短时间Δt 内,水受到的冲量为 FΔt=2(Δm Δt ·Δt)v 解得F =2Δm Δt ·vt=2Δm Δt v 02 -2gh 据题意有F =Mg 联立解得h =v 022g -M 2 g 8(Δt Δm )2 3. 有一宇宙飞船,它的正面面积S = 0.98m2,以v = 2×103 m/s 的速度飞入一宇宙微粒尘区,此尘区每立方米空间有一个微粒,微粒的平均质量m = 2×10﹣7 kg ,要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒与飞船外壳碰撞后附于飞船上)。 答案 0.78N 解析 选在时间△t 内与飞船碰撞的微粒为研究对象,其质量应等于底面积为S ,高为v △t 的圆柱体内微粒的质量 M=mSv △t ,初动量为0,末动量为mv 。 设飞船对微粒的作用力为F ,由动量定理得:F ?△t=Mv ﹣0 则 F===mSv 2 ; 根据牛顿第三定律可知,微粒对飞船的撞击力大小也等于mSv 2 ,则飞船要保持原速度匀速飞行牵引力应增加F ′ =F=mSv 2 ;

高中物理斜面模型教学文稿

学习资料 仅供学习与参考 斜面模型 在每年各地的高考卷中几乎都有关于斜面模型的试题.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上匀速下滑时,m 与M 之间的动摩擦因数μ=gtan θ. 2.自由释放的滑块在斜面上: (1)静止或匀速下滑时,斜面M 对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上匀速下滑时,M 对水平地面的静摩擦力为 零,这一过程中再在m 上加上任何方向的作用力,(在m 停止前)M 对 水平地面的静摩擦力依然为零(见一轮书中的方法概述). 4.悬挂有物体的小车在斜面上滑行 (1)向下的加速度a =gsin θ时,悬绳稳定时将垂直于斜面; (2)向下的加 速度a >gsin θ时,悬绳稳定时将偏离垂直方向向上; (3)向下的加速度a <gsin θ时,悬绳将偏离垂直方向向下. 5.在倾角为θ的斜面上以速度v0平抛一小球(如图9-3所示): (1)落到斜面上的时间g v t θtan 20=; (2)落到斜面上时,速度的方向与水平方向的夹角α恒定,且tan α=2tan θ,与初速度无关; (3)经过g v t θtan 0=小球距斜面最远,最大距离θθcos 2)sin (20g v d =. 6.当整体有向右的加速度a =gtan θ时,m 能在斜面上保持相对静止. 7.在如图9-5所示的物理模型中,当回路的总电阻恒定、导轨光滑 时,ab 棒所能达到的稳定速度22sin L B mgR V m θ= 8.如图9-6所示,当各接触面均光滑时,在小球从斜面顶端滑下的 过程中,斜面后退的位移s =m/(m +M) L . 题型一:考察物体在斜面上的受力问题 例1一质量为m 的物块恰好静止在倾角为θ的斜面上.现对物块施加一个竖 直向下的恒力F ,如图所示.则物块( ) A .沿斜面加速下滑 B .仍处于静止状态 C .受到的摩擦力不变 D .受到的 合外力增大 答案A

相关文档
最新文档