电位滴定法测定氢氧化钠溶液浓度

电位滴定法测定氢氧化钠溶液浓度
电位滴定法测定氢氧化钠溶液浓度

实验四氢氧化钠溶液浓度的测定——电位滴定法

一、实验目的

1.学习酸碱电位滴定的原理与实验方法

2.学习组装电位滴定装置

3.学习电位滴定终点的确定方法

二、实验原理

本实验利用pH复合电极与被测溶液组成工作电池。在滴定过程中,由于滴定剂(盐酸)的加入,待测溶液氢离子的活度发生变化,引起了pH玻璃电极电位的变化,从而引起电池电动势的变化,在化学计量点附近产生电池电动势的突跃,可用作图法或计算法确定滴定终点。

三、仪器与试剂

1.精密酸度计2.电磁搅拌器3.滴定管4.移液管

5.HCl标准溶液(0.2016mol/L)6.NaOH试样

四、测定步骤

1.选择开关置于“mV”位置。

2.测量溶液温度,设定酸度计温度。

3.酸度计的校准(用pH=6.86的溶液)。

4.移取25.00mLNaOH试液于250mL烧杯中,稀释至约100mL,放入搅拌子,将烧杯放在电磁搅拌器上,插入电极,开启搅拌器,将溶液搅拌均匀。

5.停止搅拌,待读数稳定后记录起始电池电动势。

6.按记录表格中的数据要求,依次滴加HCl标准溶液,搅拌均匀后,停止搅拌,待电池电动势稳定后读取电池电动势值和滴定剂加入体积,并记录。

在滴定开始时,可以每加10mL、5mL HCl标准滴定溶液记一次读数,然后依次减少体积加入量如1.0mL、0.5mL后记录一次读数。在化学计量点附近(电

池电动势突跃前后1mL左右)每加0.1mL滴定剂记录一次读数,化学计量点后再每加0.5mL或1mL记录一次读数,直至电池电动势变化很小为止。

7.关闭仪器和搅拌器开关,清洗电极、滴定管和烧杯。

五、数据记录

六、计算NaOH溶液浓度

1.确定终点体积和电池电动势。

2.计算NaOH溶液浓度。

七、思考题

1.电位滴定法的特点是什么?

2.电池电动势滴定法确定终点有哪些方法?

3.本实验如果将选择开关置于“pH”位置,应如何记录实验数据,确定终点体积和电池电动势,计算NaOH溶液浓度?

电位法测定氯和碘

实验5 电位滴定法测定氯、碘离子浓度及AgI和AgCl的K sp 一、实验目的 1.掌握电位滴定法测量离子浓度的一般原理; 2.学会用电位滴定法测定难溶盐的溶度积常数。 二、方法原理 当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为: 如果与一参比电极组成电池可表示为: 进一步简化为: 式中包括和r(Ag+)常数项。银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。例如,卤素离子。 本实验利用卤素阴离子(I-、Cl-)与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。在终点时: 其中X-为Cl-、I-,代入终点时的滴定电池方程: 用该式即可计算出被滴定物质难溶盐的K sp。而式中K′和S值可利用第二终点之后过量的[Ag+]与E(电池)关系作图求得,由直线的截距确定K′,斜率确定S。 通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。 三、仪器设备与试剂材料 1.pH/mV计,电磁搅拌器。 2.银电极,双液接饱和甘汞电极。

3.硝酸银标准溶液,0.100mol?L-1:溶解8.5g AgNO3于500mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。准确称取1.461g基准NaCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。准确移取25.00mL NaCl标准溶液于锥形瓶中,加25mL水,加1mL15% K2CrO4,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点。根据NaCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。 4.Ba(NO3)2(固体)。 5.硝酸,6mol?L-1。 6.试样溶液(其中含Cl-和I-分别都为0.05mol?L-1左右)。 四、实验步骤 1.按图示安装仪器。 电位滴定装置 1-银电极;2-双盐桥饱和甘汞电极;3-滴定管;4-滴定池(100mL烧杯);5-搅拌子;6-磁力搅拌器。 2.用移液管取20.00mL的Cl-、I-混合试样溶液于100mL烧杯中,再加约30mL水,加几滴6mol?L-1硝酸和约0.5g Ba(NO3)2固体。将此烧杯放在磁力搅拌器上,放入搅拌磁子,然后将清洗后的银电极和参比电极插入溶液。滴定管应装在烧杯上方适当位置,便于滴定操作。 3.开动搅拌器,溶液应稳定而缓慢地转动。开始每次加入滴定剂1.0mL,待电位稳定后,读取其值和相应滴定剂体积记录在表格里。随着电位差的增大,减少每次加入滴定剂的量。当电位差值变化迅速,即接近滴定终点时,每次加入0.1mL滴定剂。第一终点过后,电位读数变化变缓,就增大每次加入滴定剂量,接近第二终点时,按前述操作进行。 4.重复测定两次。每次的电极、烧杯及搅拌磁子都要清洗干净。

电位滴定法测定硫酸铜槽液中氯离子含量

滴定水份应用报告A-T-CN(sh)- 电位滴定法测定电镀铜槽液中氯离子含量应用领域:电镀 关键词 氯离子/809/银电极 摘要 Ag电极经电镀上Ag2S(或AgCl)后用于强酸性环境下氯离子的滴定分析 样品 硫酸铜槽液 试剂 - 滴定剂:AgNO3溶液c=0.1mol/L - 氯化钠(AR) - 5mol/L 硝酸溶液 - D.I. 水 仪器及附件 Titrando 809 2.809.0010 801 Stirrer 2.801.0010 800 Dosino 2.800.0010 Dosing unit 6.3032.220 Electrode with Ag2S coating 6.0430.100 Electrode cable 6.2104.020 分析 0.1mol/L AgNO3标定 滴定参数 Parameters DETU >titration parameters meas.pt.density 4 Dos.rate max.ml/min signal drift 50 mV/min Min waiting time 0s Max waiting time 26s temperature 25.0 °C >stop conditions stop V 10ml Stop measured value off stop EP 1 Stop after EP 1.5ml Potentiometric Evaluation EP Criterion 5 EP Recognition Greatest 分析步骤 取100ml干燥烧杯,准确称取约0.04g 经烘干处理的氯化钠,分别加入60ml DI水中、1ml 硝酸溶液,用0.1mol/L AgNO3溶液滴定至电位突跃点。 计算 AgNO3(mol/L) =Sample size×1000/58.44/EP1 样品测试 滴定参数 Parameters DETU >titration parameters meas.pt.density 2 Dos.rate max.ml/min signal drift 20 mV/min Min waiting time 0s Max waiting time 38s temperature 25.0 °C >stop conditions stop V 10ml Stop measured value off stop EP 1 Stop after EP 1.5ml Potentiometric Evaluation EP Criterion 5 EP Recognition Greatest 分析步骤 将0.1mol/L AgNO3用容量瓶定量稀释10倍待用。 取100ml干燥烧杯,准确移取10ml硫酸铜槽液样品,加入50ml DI水中和1ml 硝酸溶液,用0.01mol/L AgNO3溶液滴定至电位突跃点。 计算 Cl(mg/L)=EP *C39*35.5/Sample size' 1000 C39: 稀释后AgNO3浓度本次分析为0.01001mol/L) 分析结果

氢氧化钠标准溶液

氢氧化钠标准溶液浓度测量不确定度评定报告 编制:付学飞 审核:王淑芳 批准:许百红 京博农化科技股份有限公司分析检测中心 2011-8-2

氢氧化钠标准溶液浓度测量不确定度评定报告 1目的 评定0.5mol/L 氢氧化钠标准溶液浓度测量的不确定度 2依据标准 《化学试剂标准滴定溶液的制备》GB /T 601-2002 3试验条件 1) 设备名称:分析天平 设备型号:AE-240 设备编号:CARC0007 测量范围:0-200g 准确度等级或示值误差:±0.0001g 分辨率或最小分度值:0.0001g 2) 玻璃仪器名称: 50ml 碱式滴定管 准确度等级:A 级 最大允许误差±0.05ml 最小分度值:0.01ml 3) 工作基准试剂名称名称:基准邻苯二甲酸氢钾 3.2 检测环境条件:温度——25℃ 湿度—— 50% 3.3标准溶液编号:20110712 4过程描述与数学模型 4.1配制过程 称取110g 氢氧化钠溶于100ml 无二氧化碳的水中,注入聚乙烯容器中,密闭放置至溶液清亮,用塑料管量取上层清液,用无二氧化碳的水稀释至1000ml 。 4.2标定过程 称取于105-110℃下用电烘箱箱至干燥的工作基准试剂邻苯二甲酸氢钾3.6g ,加无二氧化碳的水溶解,加入两滴酚酞指示液(10g/L ),用配制好的氢氧化钠滴定溶液滴定至浅粉色。并保持30s ,同时做空白试验。 氢氧化钠标准滴定溶液的浓度[])(NaOH c ,数值以mol/L 表示,按照下式计算 M V V m NaOH C ?-?=)(1000)(21 式中:m ——邻苯二甲酸氢钾的质量分数的准确值,g ; V 1——滴定消耗氢氧化钠滴定溶液的体积,ml ; V 2——空白试验耗用的氢氧化钠滴定溶液的体积,ml ;

电位滴定法试题库(填空题)

电位滴定法试题库(填空题) 1.正负离子都可以由扩散通过界面的电位称为__扩散电位; __, 它没有__强制性和_选择_____性, 而渗透膜, 只能让某种离子通过, 造成相界面上电荷分布不均, 产生双电层,形成___选择;- Donnan ____电位。; 2.用氟离子选择电极的标准曲线法测定试液中F-浓度时, 对较复杂的试液需要加入总离子强度调节剂(TISAB)试剂, 其目的有第一_维持试样与标准试液有恒定的离子活度_______;第二__使试液在离子选择电极适合的pH范围内,避免H+或OH-干扰_______;第三__使被测离子释放成为可检测的游离离子 _________。 3.用直读法测定试液的pH值, 其操作定义可用式_______来表示。用pH玻璃电极测定酸度时, 测定强酸溶液时, 测得的pH比实际数值___偏高____, 这种现象称为 ___酸差___。测定强碱时, 测得的pH值比实际数值___偏低__, 这种现象称为_____钠差_____。 4.由LaF 单晶片制成的氟离子选择电极, 晶体中__F-___是电荷的传递者, ___ 3 La3+_是固定在膜相中不参与电荷的传递, 内参比电极是______ Ag|AgCl ___, 内参比电极由_____0.1mol/LNaCl和0.1mol/LNaF溶液______组成。 5.在电化学分析方法中, 由于测量电池的参数不同而分成各种方法:测量电动势为_电位分析法_;测量电流随电压变化的是_伏安法_,其中若使用_滴汞_电极的则称为极谱法_;测量电阻的方法称为_电导分析法_;测量电量的方法称为_库仑分析法__。 6.电位法测量常以___待测试液_______作为电池的电解质溶液, 浸入两个电极, 一个是指示电极, 另一个是参比电极, 在零电流条件下, 测量所组成的原电池___电动势____。

实验--氢氧化钠标准溶液的配制与标定

实验 氢氧化钠标准溶液的配制与标定 一、实验目的 1、掌握氢氧化钠滴定液的配制和标定方法。 2、巩固用递减法称量固体物质。 3、熟悉滴定操作并掌握滴定终点的判断。 4、本实验需4学时。 二、仪器与试剂 仪器:分析天平、台秤、滴定管(50mL )、玻棒、量筒、试剂瓶(1000mL )、电炉、表面皿、称量瓶、锥形瓶 试剂:固体NaOH 、基准邻苯二甲酸氢钾、纯化水、酚酞指示剂 三、原理与方法 NaOH 易吸收空气中CO 2而生成Na 2CO 3,反应式为: 2NaOH + CO 2 = Na 2CO 3 + H 2O 由于Na 2CO 3在饱和NaOH 溶液中不溶解,因此将NaOH 制成饱和溶液,其含量约52%(w/w ),相对密度为1.56。待Na 2CO 3沉待淀后,量取一定量的上清液,稀释至一定体积,即可。用来配制NaOH 的纯化水,应加热煮沸放冷,除去水中CO 2。 标定NaOH 的基准物质有草酸(H 2C 2O 4·2H 2O )、苯甲酸(C 7H 6O 2)、邻苯二甲酸氢钾(KH C 8H 4O 4)等。通常用邻苯二甲酸氢钾标定NaOH 滴定液,标定反应如下: 计量点时,生成的弱酸强碱盐水解,溶液为碱性,采用酚酞作指示剂。按下式计算NaOH 滴定液的浓度: 3104 484 48?= O H KHC NaOH O H KHC NaOH M V m c 四、实验内容 1、NaOH 溶液的配制 (1)NaOH 饱和溶液的配制:用台称称取120g NaOH 固体,倒入装有100mL 纯水的烧杯中,搅拌使之溶解成饱和溶液。贮于塑料瓶中,静置数日,澄清后备用。 (2)NaOH 滴定溶液的配制(0.1mol/L ):取澄清的饱和NaOH 溶液2.8mL ,置于1000 mL 试剂瓶中,加新煮沸的冷纯化水500 mL ,摇匀密塞,贴上标签,备用。 2、NaOH 溶液的标定 用递减法精密称取在105~110℃干燥至恒重的基准物邻苯二甲酸氢钾3份,每份约0.5g ,

电位滴定法测定钴

电位滴定法测定钴 2008-8-22 10:38:04 中国选矿技术网浏览 480 次收藏我来说两句在氨性溶液中,加入一定量的铁氰化钾,将钴(Ⅱ)氧化为钴(Ⅲ),过量的铁氰化钾用硫酸钴溶液滴定,按电位法确定终点。其反应式如下: Co2++Fe(CN)63-→Co3++Fe(CN)64- 镍、锌、铜(Ⅱ)和砷(Ⅴ)对本法无干扰。 铁(Ⅱ)和砷(Ⅱ)干扰测定,可在分解试样时,氧化至高价而消除其影响。 空气中的氧能把钴(Ⅱ)氧化成钴(Ⅲ),大量铁的存在能加速这一反应。为防止生成大量氢氧化铁而吸附钴,须加入柠檬酸铵络合铁。一次加入过量的铁氰化钾,用返滴定法可消除空气的影响。 锰(Ⅱ)在氨性溶液中被铁氰化钾氧化为锰(Ⅲ),因此当锰(Ⅱ)存在时,本法测得的结果系钴、锰含量。应预先用硝酸—氯酸钾将锰分离后,再用电位滴定法测定钴。或在含氟化物的酸性溶液中,用高锰酸钾预先滴定锰(Ⅱ)为锰(Ⅲ),由于氟化物与锰(Ⅲ)生成稳定的络合物,所以反应能定量的进行。然后再在氨性溶液中用铁氰化钾测定钴。 有的资料认为可加入甘油和六偏磷酸钠以消除铁、空气中的氧及一定量锰的干扰,钴含量在10毫克以上时,10毫克以下的锰不影响测定。 有机物对电位滴定有严重干扰,应在分解试样时,用高氯酸除去。 本法适用于含1%以上钴的测定。 一、试剂 混合溶液 100克硫酸铵和60克柠檬酸铵溶解于500毫升水中,加入氨水500毫升,混匀。 钴标准溶液称取纯金属钴克,置于250毫升烧杯中,加1∶1硝酸30毫升,加热溶解完全后,加1∶1硫酸10~15毫升,继续加热蒸发至剩少许硫酸。冷却后,加水20~

30毫升,加热溶解。冷至室温,移入500毫升容量瓶中,用水稀释至刻度,摇匀。此溶液每毫升含3毫克钴。 硫酸钴溶液约称取硫酸钴(CoSO4·7H2O)14克,溶解于水中并稀释至1000毫升,混匀。此溶液每毫升约含3毫克钴。 铁氰化钾标准溶液约称取铁氰化钾克,溶于水中,用水稀释至1000毫升,混匀,贮存于棕色瓶中。 标定:准确吸取钴标准溶液20毫升,置于250毫升烧杯中,加水20毫升、混合溶液50毫升,准确加入铁氰化钾标准溶液25毫升,然后按分析手续进行滴定。求出铁氰化钾标准溶液对钴的滴定度。 T=W/V-KV1 式中 T—铁氰化钾标准溶液对钴的滴定度(克/毫升); W—吸取钴标准溶液含钴量(克); V—加入铁氰化钾标准溶液毫升数; K—每毫升硫酸钴溶液相当于铁氰化钾标准溶液的毫升数; V1—滴定消耗硫酸钴溶液毫升数。 K值的确定:准确吸取铁氰化钾标准溶液20毫升,置于250毫升烧杯中,加水25毫升、混合溶液50毫升,然后按分析手续进行滴定。 K=吸取铁氰化钾标准溶液毫升数/滴定消耗硫酸钴溶液毫升数 二、分析手续 称取1~2克试样(钴含量在10~60毫克为宜),置于250毫升烧杯中,加盐酸15毫升,加热数分钟。加硝酸10毫升,继续加热至试样分解完全(如有黑色残渣,可加克氟化铵助溶)。蒸发至小体积,加入1∶1硫酸10毫升,加热蒸至冒三氧化硫白烟。取下稍冷,加水并煮沸至可溶性盐类溶解,冷却,用水稀释至50毫升。加混合溶液50毫升,准确加入20~25毫升铁氰化钾标准溶液,然后用硫酸钴溶液滴定至电位突跃。以铂电极为指示电极,钨电极为参比电极。 Co%=100(V-KV1)T/G

氢氧化钠标准溶液的配制完整版

氢氧化钠标准溶液的配 制 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

验四氢氧化钠标准溶液的配制和标定 一、目的 1、配制0.1mol/L 氢氧化钠溶液 2、氢氧化钠溶液的标定 二、材料 仪器:碱式滴定管(50ml )、容量瓶、锥形瓶、分析天平、台秤。 试剂:邻苯二甲酸氢钾(基准试剂)、氢氧化钠固体(A.R )酚酞指示剂:1g 酚酞溶于适量乙醇中,再稀释至100mL 。 三、实验原理 NaOH 有很强的吸水性和吸收空气中的CO 2,因而,市售NaOH 中常含有Na 2CO 3。 反应方程式:2NaOH+CO 2→Na 2CO 3+H 2O 由于碳酸钠的存在,对指示剂的使用影响较大,应设法除去。 除去Na 2CO 3最通常的方法是将NaOH 先配成饱和溶液(约52%,W/W ),由于Na 2CO 3在饱和NaOH 溶液中几乎不溶解,会慢慢沉淀出来,因此,可用饱和氢氧化钠溶液,配制不含Na 2CO 3的NaOH 溶液。待Na 2CO 3沉淀后,可吸取一定量的上清液,稀释至所需浓度即可。此外,用来配制NaOH 溶液的蒸馏水,也应加热煮沸放冷,除去其中的CO 2。 标定碱溶液的基准物质很多,常用的有草酸(H 2C 2O 42H 2O )、苯甲酸(C 6H 5COOH )和邻苯二甲酸氢钾(C 6H 4COOHCOOK )等。最常用的是邻苯二甲酸氢钾,滴定反应如下: C 6H 4COOHCOOK+NaOH →C 6H 4COONaCOOK+H 2O 计量点时由于弱酸盐的水解,溶液呈弱碱性,应采用酚酞作为指示剂。 四、操作步骤 1、0.1mol/LNaOH 标准溶液的配制 用小烧杯在台秤上称取120g 固体NaOH ,加100mL 水,振摇使之溶解成饱和溶液,冷却后注入聚乙烯塑料瓶中,密闭,放置数日,澄清后备用。准确吸取上述溶液的上层清液5.6mL 到1000毫升无二氧化碳的蒸馏水中(可以煮沸),摇匀,贴上标签。 2、0.1mol/LNaOH 标准溶液的标定 将基准邻苯二甲酸氢钾加入干燥的称量瓶内,于105-110℃烘至恒重,用减量法准确称取邻苯二甲酸氢钾约0.6000克,置于250mL 锥形瓶中,加50mL 无CO2蒸馏水,温热使之溶解,冷却,加酚酞指示剂2-3滴,用欲标定的0.1mol/LNaOH 溶液滴定,直到溶液呈粉红色,半分钟不褪色。平行滴定三次。同时做空白试验(滴定除了标定物——邻苯二甲酸氢钾以外的水)。 五、结果结算 NaOH 标准溶液浓度计算公式: m/M C NaOH = (V 2-V 1) 式中:m---邻苯二甲酸氢钾的质量,g V 1---氢氧化钠标准滴定溶液在滴定管中初读数,mL V 2---氢氧化钠标准滴定溶液在滴定管中末读数,mL 邻苯二甲酸氢钾的摩尔质量=204.2g/mol

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 1 / 1 电位滴定法测定水中氯离子的含量 一 实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二 实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst 方程E = E θ- RT/nF lgC Cl- ,滴定过程中, Cl - + Ag + = AgCl ↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL )来确定滴定终点(AgNO 3标准溶液的体积)。 三 仪器和试剂 酸度计(mv 计),磁力搅拌器,转子。KNO 3甘汞参比电极,银电极,滴定管,烧杯(电解池),0.05mol·L -1NaCl ,0.05mol·L -1AgNO 3,KNO 3固体 四 实验内容和步骤 1 0.05mol·L -1AgNO 3标准溶液的标定 准确移取0.05mol.L -1NaCl 标准溶液10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。 开启酸度计,开关调在mv 位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO 3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL ),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO 3标准溶液(0.5-0.2mL ),并记录电位变化,直至继续加入AgNO 3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO 3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样10.00mL 于烧杯中,加蒸馏水20mL ,KNO 3固体2g ,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO 3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO 3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的含量(mol·L -1)。 实验过程中的注意事项:1参比电极所装电解液应为饱和KNO 3溶液。 2甘汞电极比银电极略低些,有利于提高灵敏度。 3读数应在相对稳定后再读数,若数据一直变化,可考虑读数时降低转子的转数。 问题:实验中KNO 3的作用? 终点滴定剂体积的确定方法有哪几种?

电位滴定法测定非洲铜钴矿中钴

电位滴定法测定非洲铜钴矿中钴 我国是一个钴资源严重缺乏的国家,近年来随着经济的快速发展对钴的需求越来越大。国内钴企业的原料很大一部分来自非洲的铜钴矿,钴作为其中重要的有价金属元素,准确测定其含量至关重要。 标签:电位滴定法;测定;非洲铜钴矿中钴;应用 刚果(金)铜钴矿带闻名于世,横跨非洲大陆中部的刚果(金)与赞比亚的“非洲铜带”内已知矿床中含有1.4亿t铜和600万t钴金属,其中刚果(金)段的铜钴矿床含铜高达5800万t,含钴高达460万t,分别占“非洲銅带”铜、钴资源储量的41%和77%。 常量钴的测定方法有EDTA滴定法、亚硝酸钴钾重量法、亚硝基红盐分光光度法和电位滴定法等。EDTA滴定法适合于共存干扰组分少的样品,非洲铜钴矿除了铜、钴以外,钙、镁、铁、锰、铝等元素含量也不少,这些元素对EDTA滴定法的干扰很大;亚硝酸钴钾重量法分析流程长,对操作者操作熟练程度要求较高,不易掌握,在日常工作中很少采用;分光光度法则主要应用于较低含量钴的测定;而电位滴定法测定钴量,测定范围宽,分析精度高,干扰小,比较适合非洲铜钴矿中钴的测定。 一、检测依据 在氨性溶液中,铁氰化钾能将钴(Ⅱ)氧化为钴(Ⅲ),按电位法确定终点。其反应式如下: Co2++Fe(CN)63-→Co3++Fe(CN)64- 镍、锌、铜(Ⅱ)和砷(Ⅲ)对本法无干扰。铁(Ⅱ)和砷(Ⅱ)干扰测定,可在分解试样时,氧化至高价而消除其影响。空气中的氧能把钴(Ⅱ)氧化成钴(Ⅲ),大量铁的存在能加速这一反应。为防止生成大量氢氧化铁而吸附钴,须加入柠檬酸铵络合铁。锰(Ⅱ)在氨性溶液中被铁氰化钾氧化为锰(Ⅲ),因此当锰(Ⅱ)存在时,本法测得的结果系钴、锰合量。应预先用硝酸—氯酸钾将锰分离后,再用电位滴定法测定钴。 本法适用于含1%以上钴的测定。 二、试剂 1、混合溶液:将100克氯化铵和60克柠檬酸铵溶解于500毫升水中,加入氨水500毫升,混匀。 2、钴标准溶液:称取纯金属钴1.0000克,置于250毫升烧杯中,加1∶1

第四章 电位分析法习题解答

第四章电位分析法 1.M1| M1n+|| M2m+| M2在上述电池的图解表示式中,规定左边的电极为( ) (1) 正极(2) 参比电极(3) 阴极(4) 阳极 解:(4) 2. 下列强电解质溶液在无限稀释时的摩尔电导λ∞/S·m2·mol-1分别为: λ∞(NH4Cl)=1.499×10-2,λ∞(NaOH)=2.487×10-2,λ∞(NaCl)=1.265×10-2。所以NH3·H2O 溶液的λ∞(NH4OH) /S·m2·mol-1为( ) (1) 2.721×10-2(2) 2.253×10-2(3) 9.88 ×10-2(4) 1.243×10-2 解:(1) 3.钾离子选择电极的选择性系数为,当用该电极测浓度为 1.0×10-5mol/L K+,浓度为 1.0×10-2mol/L Mg溶液时,由Mg引起的K+测定误差为( ) (1) 0.00018% (2) 1.34% (3) 1.8% (4) 3.6% 解:(3) 4. 利用选择性系数可以估计干扰离子带来的误差,若,干扰离子的浓度为0.1mol/L,被测离子的浓度为0.2mol/L,其百分误差为(i、j均为一价离子)( ) (1) 2.5 (2) 5 (3) 10 (4) 20 解:(1) 5.下列说法中正确的是:

晶体膜碘离子选择电极的电位( ) (1) 随试液中银离子浓度的增高向正方向变化 (2) 随试液中碘离子浓度的增高向正方向变化 (3) 与试液中银离子的浓度无关 (4) 与试液中氰离子的浓度无关 解:(1) 6.玻璃膜钠离子选择电极对氢离子的电位选择性系数为100,当钠电极用于测定1×10-5mol/L Na+时,要满足测定的相对误差小于1%,则试液的pH 应当控制在大于( ) (1) 3 (2) 5 (3) 7 (4) 9 解:(4) 7.离子选择电极的电位选择性系数可用于( ) (1) 估计电极的检测限 (2) 估计共存离子的干扰程度 (3) 校正方法误差 (4) 计算电极的响应斜率 解:(2) 8.在电位滴定中,以?E/?V-V(?为电位,V为滴定剂体积)作图绘制滴定曲线, 滴定终点为:( ) (1) 曲线的最大斜率(最正值)点 (2) 曲线的最小斜率(最负值)点 (3) 曲线的斜率为零时的点

电位滴定法测定水中氯离子的含量

电位滴定法测定水中氯离子的含量 一实验目的:学习电位滴定法的基本原理和操作技术 掌握了解氯离子的测定过程和现象 二实验原理 利用滴定分析中化学计量点附近的突跃,以一对适当的电极对监测滴定过程中的电位变化,从而确定滴定终点,并由此求得待测组分的含量的方法称为电位滴定法。本实验根据Nerst方程E = Eθ- RT/nF lgC Cl- ,滴定过程中,Cl- + Ag+ = AgCl↓,使得氯离子浓度降低,电位发生改变,接近化学计量点时,氯离子浓度发生突变,电位相应发生突变,而后继续加入滴定剂,溶液电位变化幅度减缓。以突变时滴定剂的消耗体积(mL)来确定滴定终点(AgNO3标准溶液的体积)。 三仪器和试剂 酸度计(mv计),磁力搅拌器,转子。KNO3甘汞参比电极,银电极,滴定管,烧杯(电解池),·L-1NaCl,·L-1AgNO3,KNO3固体 四实验内容和步骤 1 ·L-1AgNO3标准溶液的标定 准确移取标准溶液于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。 开启酸度计,开关调在mv位置,加入滴定剂,记录溶液电位随滴定剂的体积变化情况。随着AgNO3标准溶液的滴入,电位读数将不断变化,读数间隔可先大些(1-2mL),至一定量后,电位读数变化较大,则预示临近终点,此时应逐滴加入AgNO3标准溶液(),并记录电位变化,直至继续加入AgNO3标准溶液后电位变化不再明显为止。做E(mv)-V(mL)曲线,求得终点时所消耗AgNO3标准溶液的确切体积。 2水中氯离子含量的测定 准确移取水样于烧杯中,加蒸馏水20mL,KNO3固体2g,搅拌均匀。加入滴定剂,记录溶液电位随滴定剂的体积变化情况。同标定的步骤,做E(mv)-V(mL)曲线,求出与水样中氯离子反应至终点所消耗的AgNO3标准溶液的确切体积。 五数据处理 根据实验数据做E(mv)-V(mL)曲线,从两个图中获得终点所消耗的AgNO3标准溶液体积,从而根据物质反应平衡公式C Cl-V Cl-=V Ag+C Ag+计算求出水中氯离子的

电位滴定法测定银

No. 61 应用报告 应用范围: 贵金属检测, 电镀 电位滴定法测定银 摘要 本报告阐述用电位滴定法测定纯银、银合金及银镀液中银含量。样品硝酸消解后, 用溴化钾滴定,以银电极(AgBr涂层)为指示电极。 仪器与附件 ?Titrino系列702或 794或798或799 ? 2.728.0040 磁力搅拌器 ? 6.3014.223交换单元 ? 6.0430.100 Ag Titrode带AgBr涂层(配6.2104.020电极电缆) 试剂 ?滴定剂:溴化钾溶液,c(KBr) = 0.1 mol/L ?硝酸,w(HNO3) = 65% ?保护胶体:2%聚乙烯醇水溶液。如Merck No.114266(溶于热蒸馏水中) 溴化钾溶液标定 消解必须在通风柜中进行!!! 称取500mg纯银(称量准确度0.02mg),在玻璃烧杯中用20ml硝酸(65%)溶 解,加热沸腾除去氮氧化物,冷却后加蒸馏水至约250 ml,然后加入5ml保护胶 体,用溴化钾溶液(c(KBr) = 0.1 mol/L)滴定。预加体积40ml。 计算 理论消耗值=样品重量,mg/10.7868 滴定度=理论消耗值/实际消耗值(EP1) 滴定度在滴定仪上以公共变量C30存储。

样品前处理 A)纯银和银合金 消解必须在通风柜中进行!!! 称取约含500mg银的样品,称量准确度0.02mg,在玻璃烧杯中用20ml硝酸 (65%)溶解,加热沸腾除去氮氧化物,冷却后加蒸馏水至约250 ml。 B)银镀液 消解必须在通风柜中进行!!! 根据银含量,移取1.0-10.0 ml镀液到玻璃烧杯中,用蒸馏水稀释至约50 ml。小心 加入5-10ml硝酸,加热沸腾至体积减半,冷却补充蒸馏水至约100 ml。 分析方法 在经过前处理的样品溶液中加入5 ml保护胶体。用溴化钾溶液(c(KBr) = 0.1 mol/L)滴定,预加体积为40ml(银镀液样品无须预加)。 计算 1ml c(KBr) = 0.1 mol/L=10.7868 mg Ag 纯银/银合金 ‰ Ag =EP1*C30*C01*C02/C00 银镀液 g/L Ag =EP1*C30*C01/C00 EP1=终点滴定剂消耗体积,mL C00=样品重量,mg 或样品体积,mL) C01=10.7868 C02=1000(‰换算系数) C30=滴定度 备注 ?加入保护胶体可防止AgBr凝聚,避免包夹及电极表面上附着沉淀。 ?Ag-Titrode电极已镀AgBr。用户可按应用报告No.25更新涂层。 ?纯银和银合金的测定精度为<1‰(通常>0.5‰)。

实验三 氢氧化钠标准溶液的配制和标定

实验三氢氧化钠标准溶液的配制和标定 一、实验目的 1.掌握NaOH标准溶液的配制和标定。 2.掌握碱式滴定管的使用,掌握酚酞指示剂的滴定终点的判断。 二、实验原理 NaOH有很强的吸水性和吸收空气中的CO2,因而,市售NaOH中常含有Na2CO3。 反应方程式: 2NaOH + CO2→ Na2CO3 + H2O 由于碳酸钠的存在,对指示剂的使用影响较大,应设法除去。 除去Na2CO3最通常的方法是将NaOH先配成饱和溶液(约52%,W/W),由于Na2CO3在饱和NaOH溶液中几乎不溶解,会慢慢沉淀出来,因此,可用饱和氢氧化钠溶液,配制不含Na2CO3的NaOH溶液。待Na2CO3沉淀后,可吸取一定量的上清液,稀释至所需浓度即可。此外,用来配制NaOH溶液的蒸馏水,也应加热煮沸放冷,除去其中的CO2。 标定碱溶液的基准物质很多,常用的有草酸(H2C2O4?2H2O)、苯甲酸(C6H5COOH)和邻苯二甲酸氢钾(C6H4COOHCOOK)等。最常用的是邻苯二甲酸氢钾,滴定反应如下: C6H4COOHCOOK + NaOH → C6H4COONaCOOK + H2O 计量点时由于弱酸盐的水解,溶液呈弱碱性,应采用酚酞作为指示剂。 三、仪器和试剂 仪器:碱式滴定管(50ml)、容量瓶、锥形瓶、分析天平、台秤。 试剂:邻苯二甲酸氢钾(基准试剂)、氢氧化钠固体(A.R)、10g/L酚酞指示剂:1g 酚酞溶于适量乙醇中,再稀释至100mL。 四、操作步骤 1.0.1mol/L NaOH标准溶液的配制 用小烧杯在台秤上称取120g固体NaOH,加100mL水,振摇使之溶解成饱和溶液,冷却后注入聚乙烯塑料瓶中,密闭,放置数日,澄清后备用。 准确吸取上述溶液的上层清液5.6mL到1000毫升无二氧化碳的蒸馏水中,摇匀,贴上标签。 2.0.1mol/L NaOH标准溶液的标定 将基准邻苯二甲酸氢钾加入干燥的称量瓶内,于105-110℃烘至恒重,用减量法准确称取邻苯二甲酸氢钾约0.6000克,置于250 mL锥形瓶中,加50 mL无CO2蒸馏水,温热使之溶解,冷却,加酚酞指示剂2-3滴,用欲标定的0.1mol/L NaOH溶液滴定,直到溶液呈粉红色,半分钟不褪色。同时做空白试验。 五、结果结算 NaOH标准溶液浓度计算公式: m C NaOH = (V1-V2)× 0.2042 式中:m---邻苯二甲酸氢钾的质量,g V1---氢氧化钠标准滴定溶液用量,mL

电位滴定法标准操作规程

电位滴定检查法标准操作规程 文件修订历史 分发给:质量控制部、质量保证部 下一次审核时间:

目录 页码 1. 目的 (03) 2. 适用范围 (03) 3. 责任 (03) 4. 内容 (03) 5. 参考文献 (04) 6. 涉及的文件 (05) 7. 附件 (05)

1. 目的 建立电位滴定法标准操作规程,保证电位滴定法的正确操作。 电位滴定法。 化验员执行本操作规程,化验室主任负责监督本规程正确执行。 4.1简述 电位滴定法在《中国药典》2010年版附录ⅦA中主要用于容量分析确定终点或帮助确定终点。它对一些尚无合适指示剂确定终点的容量分析和一些虽然有指示剂确定终点、但终点时颜色变化复杂,难以描述终点颜色的方法非常适合。此外对观察终点很不方便的外指示剂法和某些必须过量滴定液才能指示终点到达的容量分析方法,采用电位能使结果更加准确。由于该方法设备简单,精密度高,所以《中国药典》有很多重氮化滴定法和一些非水溶液滴定法都采用它们判断终点。还有一些巴比妥类药物,为了提高方法的准确度也多采用电位法指示终点。《中国药典》中电位滴定法明确规定了滴定方法和电极系统,以及终点的确认和计算,测定电位的仪器常用通常的pH计或专用的电位滴定仪。 4.2仪器与器具 电位滴定仪,滴定杯,电极 4.3操作方法 按《中国药典》品种规定,称取样品,加溶剂溶解后置烧杯中,放于电磁搅拌器上。按规定方法选择电极系统,并将电极冲洗干净,用滤纸吸干水,将电极连于测定仪上并浸入供试液中,搅匀,调整仪器电极电位至规定值作为零点,然后自滴定管中分次滴加规定的滴定液,

同时记录滴定液读数和电位数值。开始时,每次可加人较多量,搅拌均匀,记录。至将近终点时则应每次加少量,搅拌,记录。至突跃点已过,仍应继续滴加几次滴定液,并记录滴定液读数和电位。终点的确定可以采用E-V曲线法,即以电位值和滴定液毫升数为纵、横座标,曲线的转折部分即为滴定终点。或以△E/△V,即间隔两次的电位差和加入滴定液的体积差之比为纵座标,以滴定体积(V)为横座标,绘制△E/△V-V曲线,并以△E/△V的极大值为滴定终点。如使用自动电位滴定仪,可在滴定前预先设好滴定终点的电位,当滴定液电极电位达到预设电位时,仪器将自动关闭滴定液或自动指示消耗滴定液的毫升数,按规定进行计算。电位滴定法的测定与化学容量分析方法的要求相同,均应同时做双份平行试验。 4.4注意事项 4.4.1电位滴定法主要用于中和、沉淀、氧化还原和非水溶液滴定,但必须选择使用适宜的指示电极,而且必须根据电极的性质进行充分的清洁处理,化学反应必须能按化学当量进行,而且进行的速度足够迅速且无副反应发生。 4.4.1中和滴定时常用玻璃电极为指示电极。强酸强碱滴定时,突跃明显准确性高,弱酸与弱碱滴定的突跃小,离解常数愈大突跃幅度愈大,终点愈明显。 4.4.1沉淀法滴定时常用银电极,它们的突跃幅度大小与溶度积有关,溶度积愈小的突跃幅度愈大,另外还须注意沉淀的吸附作用和影响。 4.4.1氧化还原滴定法常用铂电极为指示电极,滴定突跃幅度的大小与两个电极的电极 电位差值有关,差值愈大,突跃幅度愈大。 4.4.1非水溶液滴定,《中国药典》收载的主要是中和法,电极系统采用玻璃电极和饱和甘汞电极,非水溶液滴定时所用的甘汞电极盐桥内不能放饱和氯化钾水溶液,而应放饱和氯化钾的无水乙醇溶液或硝酸钾的无水乙醇溶液。 《中国药典》2010年版附录Ⅶ A 《中国药品检验标准操作规范》2010版电位滴定法与永停滴定法

粗制铜钴原料化学分析方法 第1部分:钴量的测定 电位滴定法实验报告(钴锰合滴减锰)(华友)

粗制铜钴原料化学分析方法第1部分:钴量的测定 电位滴定法 (钴锰合滴减锰) 实验报告 浙江华友钴业股份有限公司 xxxx 2017.5

本文研究建立了电位滴定法(钴锰合滴减锰)测定粗制铜钴原料中钴量的分析方法,选择了分析条件;考察了共存元素对测定钴的影响,实现了电位滴定法对粗制铜钴原料中钴量的测定。方法分析结果准确度高、精密度好,满足粗制铜钴原料中钴量的测定要求。 1 实验部分 1.1 仪器 自动电位滴定仪,附搅拌装置。 与仪器匹配的氧化还原电极。 1.2试剂 氟化氢铵。 氯化铵。 柠檬酸铵。 盐酸(ρ1.19 g/mL)。 硝酸(ρ1.42 g/mL)。 高氯酸(ρ1.67 g/mL)。 氨水(ρ 0.90 g/mL)。 硫酸(1+1)。 盐酸(1+1)。 氨水-氯化铵-柠檬酸铵混合溶液:350 mL氨水、62.5 g氯化铵、50 g柠檬酸铵溶于水并稀释至1000 mL。 锰标准溶液[ρMn = 1.000 mg/mL]:准确称取1.0000 g金属锰(w Mn≥ 99.95 %),缓缓加入20 mL硝酸(1+1),边加边摇动,待剧烈反应停止后,低温加热至完全溶解,取下冷却,用水清洗表面皿及烧杯壁,冷却后移入1000 mL容量瓶中,以水定容。此溶液1 mL含1 mg 锰。 铜标准溶液[ρCu = 10.000 mg/mL]:称取5.0000 g金属铜(w Cu≥99.95 %),置于400 mL 烧杯中,加入30 mL硝酸(1+1),盖上表面皿,低温溶解,蒸至小体积,冷却后移入500 mL容量瓶中,以水定容。此溶液1 mL含10 mg铜。

铁标准溶液[ρFe = 10.000 mg/mL]:称取7.1485 g 三氧化二铁(基准),置于500 mL 烧杯中,加入30 mL 盐酸(1+1),盖上表面皿,低温溶解,冷却后移入500 mL 容量瓶中,以水定容。此溶液1 mL 含10 mg 铁。 钴标准溶液[ρCo = 1.000 mg/mL]:称取1.0000 g 金属钴(w Co ≥ 99.98 %),缓缓加入15 mL 硝酸(1+1),边加边摇动,待剧烈反应停止后,低温加热至完全溶解,取下冷却,用水清洗表面皿及烧杯壁,冷却后移入1000 mL 容量瓶中,以水定容。此溶液1 mL 含1 mg 钴。 钴标准滴定溶液[ρCo = 3.000 mg/mL]:称取3.0000 g 金属钴(w Co ≥ 99.98 %),缓缓加入20 mL 硝酸(1+1),边加边摇动,待剧烈反应停止后,低温加热至完全溶解,取下冷却,用水清洗表面皿及烧杯壁,加热溶解盐类,冷却后移入1000 mL 容量瓶中,以水定容。此溶液1 mL 含3 mg 钴。 钴标准溶液[ρCo = 10.000 mg/mL]:称取10.000 g 金属钴(w Co ≥ 99.98 %),缓缓加入50 mL 硝酸(1+1),边加边摇动,待剧烈反应停止后,低温加热至完全溶解,取下冷却,用水清洗表面皿及烧杯壁,加热溶解盐类,冷却后移入1000 mL 容量瓶中,以水定容。此溶液1 mL 含10 mg 钴。 钴标准溶液[ρCo = 20.000 mg/mL]:称取20.000 g 金属钴(w Co ≥ 99.98 %),缓缓加入100 mL 硝酸(1+1),边加边摇动,待剧烈反应停止后,低温加热至完全溶解,取下冷却,用水清洗表面皿及烧杯壁,加热溶解盐类,冷却后移入1000 mL 容量瓶中,以水定容。此溶液1 mL 含20 mg 钴。 铁氰化钾标准溶液(ρ[K 3Fe(CN)6]=17 g/L ): 配制:称取17 g 铁氰化钾,加水溶解,过滤后移入1000 mL 棕色容量瓶中,以水定容。 标定:准确移取与试料测定相同体积的铁氰化钾标准溶液于250 mL 烧杯中,加入80 mL 氨水-氯化铵-柠檬酸铵混合溶液,混匀,在自动电位滴定仪上,插入电极,不断搅拌下用钴标准滴定溶液滴定至电位突跃即为终点。 按下式计算铁氰化钾标准溶液对钴标准滴定溶液的滴定系数: 2 1 V V K …………………………………(1) 式中: K —— 滴定系数,单位体积的铁氰化钾标准溶液消耗钴标准滴定溶液的体积数; V 1 ——滴定所消耗钴标准溶液的体积,单位为毫升(mL );

试验:氢氧化钠标准溶液的配制与标定

--- 实验氢氧化钠标准溶液的配制与标定 一、实验目的 、掌握氢氧化钠标准溶液的配制和标定方法。1 2、巩固用减量法称量固体物质。 3、熟悉滴定操作并掌握滴定终点的判断。 8 学时。4、本实验需 二、仪器与试剂 )、玻棒、胶头滴管、量筒、容仪器:分析天平、托盘天平、烧杯、碱式滴定管(50mL )、称量瓶、锥形瓶量瓶(1000 mL 、基准邻苯二甲酸氢钾、蒸馏水、酚酞指示剂三、原理NaOH 试剂:固体与方法 ,=Na2CO3 + H2O而生成NaOH 易吸收空气中CO2 Na2CO3,反应式为:2NaOH + CO2

溶液需要标定。因此配制的NaOH )KH C8H4O4)、苯甲酸(C7H6O2)、邻苯二甲酸氢钾(2H2O 标定NaOH 的基准物质有草酸(H2C2O4·滴定液,标定反应如下:等。通常用邻苯二甲酸氢钾标定NaOH 计量点时,生成的弱酸强碱盐水解,溶液为碱性,采用酚酞作指示剂。按下式计算NaOH 滴定液的浓度: m KHC 8 H 4O4 3c10NaOH MV KHC NaOH H O 4 8 4 c(NaOH):NaOH 标准溶液的浓度,mol/L ;式中m :邻苯二甲酸氢钾的质量,g; V :滴定消耗NaOH 标准溶液的体积,mL; M(KHC 8H4O4):KHC8 H4O4 的摩尔质量,204.2 g/mol。 四、实验步骤 1、配制0.1 mol/L 的NaOH 标准溶液

用托盘天平准确称取4.5 g NaOH 固体,加入到预先盛有300 mL 蒸馏水的烧杯中,搅拌 1000 mL 容量瓶中,用蒸馏水洗涤烧杯和冷却至室温,用玻璃棒引流,将烧杯中的溶液加入 2 cm 2~3 玻璃棒次,把洗涤后的水也加入容量瓶中,振荡;向容量瓶中加蒸馏水至离刻度线 --- --- 左右,改用胶头滴管滴加至刻度线,盖上瓶塞,摇匀,贴上标签注明“0.1 mol/L氢氧化钠溶液”, 放置待标定。 2、标定0.1 mol/L 的NaOH 标准溶液 称取已于105℃烘干至恒重的邻苯二甲酸氢钾0.5 ( 0±.02) g,称准至0.0001g,放入250 mL 锥形瓶中,加入约50 mL 蒸馏水使其溶解,加酚酞指示液

电位滴定法测氯化银的Ksp 备注版

电位滴定法测定AgCl的K sp 一、实验目的 1.掌握电位滴定法测量离子浓度的一般原理; 2.学会用电位滴定法测定难溶盐的溶度积常数。 二、实验原理 当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为: (α代表活度,当溶液浓度很小时可用浓度代替。) 如果与一参比电极组成电池可表示为: (汞活泼性比银大开始时汞会把银离子置换出来所以汞是负极银是正极。Ej表示液体接界电位,一般很小,可以忽略。并且,盐桥是减弱液接电位的有效手段。) 进一步简化为: 式中包括和r(Ag+)常数项。银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。例如,卤素离子。 本实验利用Cl-与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。在终点时: 其中X-为Cl-、I-,代入终点时的滴定电池方程: 用该式即可计算出被滴定物质难溶盐的K sp。 通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。 注:当盐桥溶液不影响测定的时候选用单盐桥,否则必须选择双盐桥。 外盐桥的作用:(1)防止参比电极内盐桥的物质渗入的待测溶液中干扰测定 (2)防止待测溶液中有害物质进入内盐桥影响其电极电位

三、仪器和药品 仪器:pH/mV计,电磁搅拌器,银电极,双液接饱和甘汞电极,分析天平,容量瓶(250mL,1000mL),烧杯(150mL,250mL) 药品:AgNO3(分析纯,s),KNO3(分析纯,s),KCl(分析纯,s),K2CrO4(分析纯,s),Ba(NO3)2(分析纯,s) 四、实验内容 1.硝酸银标准溶液,0.100mol?L-1 溶解17.00g AgNO3于1000mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。准确称取1.8638g基准KCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。准确移取25.00mL KCl标准溶液于锥形瓶中,准确移取25.00mL去离子水(加几滴15% K2CrO4和几滴Ba(NO3)2,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点)。根据KCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。 2.将银电极用蒸馏水冲洗干净,并浸泡在蒸馏水中。烧杯及搅拌磁子都要用清洗干净。 3.根据滴定终点的电动势计算AgCl的K sp。 按图示安装仪器 电位滴定装置 1-银电极;2-双盐桥饱和甘汞电极;3-滴定管;4-滴定池(100mL烧杯);5-搅拌子;6-磁力搅拌器。

相关文档
最新文档