二次函数背景下的面积问题

二次函数背景下的面积问题
二次函数背景下的面积问题

二次函数背景下与面积有关的问题导学案授课人:解燕课型:复习课

一、引入定标:

课前准备:

学习目标:1 会求二次函数表达式

2 在二次函数背景下,学会解决与面积有关的题。

二、导学探究:

例1:已知抛物线经过点A(3,0) , B(0,3) , C(-1,0).

任务一:.求抛物线的解析式和直线AB的解析式

任务二:.点P是直线AB上方抛物线上一动点是否存在一点P,使△PAB的面积最大?如果存在,求出最大面积,并求出此时P的坐标;如果不存在,请说明理由

任务三:在抛物线上是否存在一点E,使得以S△ABC

=S△ACE ,存在,求出点E坐标。不存在,说明理由

任务四;.在抛物线上是否存在点Q,使得S△QAB=S△OAB ?如果存在,请求点Q的坐标;如果不存在,请说明理由

任务五:在抛物线的对称轴上是否存在一点M,使S△MAB=3S△OBC ?如果存在,求

出点M的坐标;如果不存在,请说明理由;

三、练测展示:

如图,直线L: y=-3x+3与x轴、y轴分别相交于A 、B

两点,抛物线y=ax2-2ax+a+4 (a<0)经过点B

1、求该抛物线的函数表达式

2、已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM. 设点

M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值。

四、反馈梳理:

谈谈本节课的收获

五、精准达标:

分成达标

1.必做题:(专题十一,二次函数综合题1. 2)

2.选做题:(二次函数综合题3)

备用备用备用备用

函数中的面积问题

一次函数、反比例函数中的面积问题 兴文县建武初级中学校杨波 学习目标:1.全面复习一次函数、反比例函数的基础知识; 2.灵活应用相关知识进行解题; 3.进一步体会数学结合的思想. 学习重点:1.全面复习一次函数、反比例函数的基础知识; 2.灵活应用相关知识进行解题. 学习难点:1.具体问题的分析方法和解决问题能力的培养; 2.规范的书写格式和严格的书写要求. 学习过程: 一、课堂导入: 请大家看着学习案的第一部分,这是2013年和2014年宜宾市中考数学的22题,想要解决这两个题,需要使用函数和坐标系、一次函数、反比例函数的知识,通过这次半期模拟考试,我发现大家对一次函数和反比例函数掌握还是不够,很多的知识需要再次进行复习。今天,我们就一起再次对一次函数和反比例函数的知识进行复习和巩固。 二、学生自学,完成学习案: 对于一次函数和反比例函数的知识,我们之前曾有过复习,现在请大家回忆一下,按照下面的要求,独立的完成学习案: 时间:5分钟, 内容:

完成方式:独立思考,自主解答, 三、自学检查,成果展示: 请大家停下笔,看看自己的学习案,现在我们以前后两排,六个同学为一个小组,以小组为单位,对学习案上的问题进行讨论,注意弄清楚每个答案的来历,小组内无法解决的问题做好记号。注意:讨论的声音不能影响到其他的小组,每位同学都要认真的参与,尊重他人就是尊重自己。 四、新课学习,检查自学效果: 现在请大家看着2014年遂宁市中考数学题,给大家2分钟时间,结合我们刚刚复习的知识,你有什么想法? 1、请学生说说想法、思路? 2、请其他同学补充或更正? 3、师生共同分析、审题,找出解决问题的办法; 4、学生根据分析的思路和想法,书写解答过程。强调:注意 书写规范、格式。 5、小组内展示自己的解题过程,相互帮助同学找出解题中的 问题和不足,返回进行修改。 6、根据刚才的经验,请同学们独立分析和解答2014年宜宾中 考22题,实在有困难的可以和同桌进行小声的交流,注意 把握交流的声音不能影响到其他同学的思考。 五、课堂小结: 通过遂宁、宜宾两道中考题的分析和解答,请大家以小组为单位讨论

二次函数的应用——面积最大问题

《二次函数的应用——何时围得面积最大?》 说课稿 【教材分析】 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,也为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。 【课时安排】 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。 【学情及学法分析】 对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课

标中知识与技能呈螺旋式上升的规律。 【教学目标】 1.知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的 图象与性质,理解顶点与最值的关系,会求解最值问题。 2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中 的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的 能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合 作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛 的应用价值。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 正确构建数学模型 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本 节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探 究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性, 突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。 为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学流程 (一)复习引入: 复习引入阶段我设计了三个问题:

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题说出如何表示各图中阴影部分的面积? 如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC 的“铅垂高h”。三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半。 x y O M E N A 图 O x y D C 图 x y O D C E B 图六 P x y O A B D 图 E x y O A B 图 x y O A B 图

抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0), 交y 轴于点B 。 (1)求抛物线和直线AB 的解析式;(2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △ PAB =S △CAB ,若存在,求出P 点的坐标; 若不存在,请说明理由。

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。 (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积 已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为在双曲线3 y x =上是否存在点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在,请说明理由. A x y O B C 变式二图

中考数学专题复习-函数中的面积问题

函数中的面积问题 1.如图,在直角梯形ABCD 中,AD BC ∥,90B ∠?=, 6AD cm =,8AB cm =,14BC cm =.动点P Q 、都从点C 出发,点P 沿C B →方 向做匀速运动,点Q 沿C D A →→方向做匀速运动,当P Q 、其中一点到达终点时,另一点也随之停止运动. (1)求CD 的长; (2)若点P 以1/ cm s 速度运动,点Q 以22/cm s 的速度运动,连接BQ PQ 、,设 BQP 面积为2S cm (),点P Q 、运动的时间为t s () ,求S 与t 的函数关系式,并写出t 的取 值范围; (3)若点P 的速度仍是1/cm s ,点Q 的速度为/acm s ,要使在运动过程中出现 PQ DC ∥,请你直接写出a 的取值范围. 解析:(1)过D 点作DH BC ⊥,垂足为点H ,

则有8DH AB cm ==,6BH AD cm == ∴1468CH BC BH cm =-=-= 在Rt DCH 中,CD ==. (2)当点P Q 、运动的时间为t s () ,则PC t =. ①当Q 在CD 上时,过Q 点作QG BC ⊥,垂足为点G , 则由点Q 的速度为/s ,得QC =. 又∵DH HC =,DH BC ⊥, ∴45C ∠?=. ∴在Rt QCG 中,·sin sin 452QG QC C t ∠?===. 又∵14BP BC PC t =-=-, ∴211 (14)21422 BPQ S BP QG t t t t == -=- 当Q 运动到D 点时所需要的时间4t = == ∴2 1404S t t t =-≤(<). ②当Q 在DA 上时,过Q 点作QG BC ⊥,垂足为点G , 则8QG AB cm ==,14BP BC PC t =-=-. ∴11 (14)856422 BPQ S BP QG t t ==-=-

二次函数的应用--最大面积

二次函数的应用—面积问题 【知识要点】 (1)求出面积与自变量的函数关系y=ax2+bx+c(a≠0) (2)用配方法用配方法将y=ax2+bx+c化为y=a(x-h)2+k的形式: y=ax2+bx+c==a=a+. 当a>0时,则时,y最小值= 当a<0时,则时,y最大值= (3)确定自变量的取值范围,检验是否在取值范围内,若不在,则根据函数的增减性,代入自变量的端点值求出最值 求几何图形的常见方法: ①利用几何图形的面积公式; ②利用三角形的相似(面积比等于相似比的平方); ③利用割补法求几何图形的面积和或差; 【例题解析】 例4、有窗框料12m长,现要制成一个如图所示的窗框,问长宽各为多少米,才能使光照最充足?

例5、在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y. (1)求y与x的函数表达式; (2)当x为何值时,y有最大值,最大值是多少? 例6、如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N 作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时. (1)P点的坐标为______(用含t的代数式表示); (2)记△MPA的面积为S,求S与t的函数关系式(0<t<4); (3)当t=______秒时,S有最大值,最大值是______; (4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式. 【课堂练习】

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数面积最大值

二次函数面积最大值 教学目标: 1.通过本节课学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性质,理解顶点 与最值的关系,会求解最值问题。 2.通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 1、正确构建数学模型 2、对函数图象顶点与最值关系的理解与应用 教学过程: 一、复习旧知: 1.二次函数y=ax 2+bx+c 的图象是一条,它的对称轴是,顶点坐标是 . 当 a>0时,抛物线开口向,有最点,函数有最值,是_____;当a<0时,抛物线开口向,有最点,函数有最值,是. 2.二次函数y=2x 2-8x+9的对称轴是,顶点坐标是.当x=时,函数有最值,是. 二、创设情境: 小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD 究竟应为多少米才能使花圃的面积最大? (设计意图:寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,加深对知识的理解,做到数与形的完美结合,既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。) 三、讲解新知: 有一块三角形余料如图所示,∠A=90°,AM=30cm ,AN=40cm ,要利用这块余料截出一个矩形,怎样截取矩形的面积最大?

反比例函数有关的面积问题

反比例函数面积基本模型: 如图1,过双曲线()0k y k x = ≠上的任一点(),P x y ,作x 轴(或y 轴)的垂线,则 12 2 AOP k S x y ?= ?=. 如图2,过双曲线()0k y k x = ≠上的 任一点(),P x y ,作x 轴、y 轴的垂线, 则AOBP S x y k =?=矩形. 以上是反比例函数图象的一个重要性质, ,有广泛的应用. 利用以上结论我们可以解决以下一系列的问题. 【例1】如图3,在平面直角坐标系中,点A 、B 在反比例函数x k y = 图象上,AC ∥y 轴,BD ∥x 轴,设△AOC 和△BOD 的面积分别 是S 1、S 2,比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 【例2】如图4,点A 、B 是双曲线()0k y k x = >上的点,过点 A 作AC 垂直于x 轴,垂足为C ,过点 B 作BD 垂直于x 轴, 垂足为D ,设△AOE 和四边形ECDB 的面积分别是S 1、S 2, 比较它们的大小,可得( ) (A )S 1>S 2 (B )S 1=S 2 (C )S 1<S 2 (D )大小关系不能确定 (图反比例函数与面积问题

【例3】如图5,函数()0y mx m =≠与()0k y k x = ≠ 交于A 、B 两点,过点A 作AC 垂直于x 轴,垂足为C ,则 A B C △的面积为 . 【例4】如图6-1,函数()0y mx m = ≠与()0k y k x = ≠垂直y 轴(亦可向x 轴作垂线图6-2)于点C 、D ,则四边形ACBD 的面积为 . 【例5】如图7,函数() 0y mx m =≠与()0k y k x =≠的图象交于A 、B 两点,AC 、BD 分别垂 直x 与y 轴于点C 、D ,连结CD ,则四边形ACBD 的面积为 . 【例6】如图8,函数()0y mx m =≠与()0k y k x =≠的图象交于A 、B 两点,AC 、BF 分别垂 直x 于点C 、F , AE 、BD 分别垂直y 于点E 、D , 连结CD ,则六边形AEFBDC 的面积为 . 【例7】如图9,已知一次函数b kx y +=的图像与反比例函数12y x =的图像交于A 、B 两点, 且点A 的横坐标是1,点B 的纵坐标是-1 , 求(1)一次函数的解析式; (2)△AOB 的面积. (图6-1) (图6-2) (图7) (图8)

二次函数应用(最大面积问题)

一、教学过程 AB 和AD 分别在两直角边上,1、如图。在一个直角三角形的内部画一个矩形ABCD,其中 AN=40m, AM=30m (1)设矩形的一边AB= xm,那么 AD 边的长度如何表示? (2)设矩形的面积为ym2,当x 取何值时,y 的最大值是多少? (二)变式探究 【探究一】在上一个问题中,如果把矩形改成如图所示的位置,其顶点 A 和顶点 D 分别在两直角边上, BC 在斜边上,其他条件不变,那么矩形的最大面积是什么? 【探究二】如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm,若在 △ABC 上,截出一零件 DEFG,使得 EF在 BC上,点 D、G 分别在边 AB、AC上,问矩形 DEFG 的最大面积是多少?

(三)课下作业 1、如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有两道篱笆的长方形花圃, 设花圃的宽AB 为 x 米,面积S 平方米 (1)求 S 与 x 的函数关系式及自变量的取值范围; (2)当 x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大利用长度为8 米,求此时围成花圃的最大面积和最小面积分别是多少? 2、如图, AD 是△ ABC的高, BC=60cm,AD=40cm,点 P,Q 是 BC边上的点,点 S 在 AB 边上,点 R 在 AC 边上,四边形 SPQR是矩形,求矩形 SPQR面积最大值 BC、 CD 上的两个动点,当M 点在BC 上运动时,3、正方形ABCD边长为 4, M 、N 分别是 保持 AM和MN垂直 (1)证明: RT△ ABM∽ RT△ MCN (2)设 BM=x,梯形 ABCN 的面积为y,求y与x之间的函数关系式:当 M 点运动到什么位 置时, (3)四边形ABCN 面积最大,并求出最大面积

求二次函数中三角形面积最大值压轴题专题汇编

M N B C x A O y 求二次函数中三角形面积最大值压轴题专题汇编 28.( 甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)连接,AC AB ,若点N 在线段BC 上运动(不与点,B C 重合),过点N 作 //NM AC ,交AB 于点M ,当AMN ?面积最大时,求N 点的坐标; (3)连接OM ,在(2)的结论下,求OM 与A C 的数量关系. 解:(1)将点B ,点C 的坐标分别代入24y ax bx =++, 得:4240 64840a b a b -+=??++=? , 1分 解得:1 4 a =-,32 b =. ∴该二次函数的表达式为 213 442 y x x =-++. 3分 (2)设点N 的坐标为(n ,0)(-2<n <8), 则2BN n =+,8CN n =-. ∵B (-2,0), C (8,0), ∴BC =10. 令0x =,解得:4y =, ∴点A (0,4),OA =4,

∵MN ∥AC , ∴ 810 AM NC n AB BC -== . 4分 ∵OA =4,BC =10, ∴1 14102022 ABC S BC OA =?=??=V . 5分 11 22222 810ABN AMN ABN S BN OA n+n+S AM CN n , S AB CB = ?=?-===()4=()又V V V Q ∴2811 (8)(2)(3)51055 AMN ABN n S S n n n -= =-+=--+V V . 6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大. 7 分 (3)当N (3,0)时,N 为BC 边中点. ∴M 为AB 边中点,∴12 OM AB.= 8分 ∵AB = AC ∴12AB AC,= 9分 ∴1 4 OM AC =. 10分 24( 海南).抛物线23y ax bx =++经过点()1,0A 和点()5,0B 。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = + 相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数中三角形面积最大值综合题

精心整理 2017中考数学全国试题汇编------二次函数中三角形面积最大值综合题 28.(2017甘肃白银)如图,已知二次函数24y ax bx =++的图象与x 轴交于点()2,0B -,点()8,0C ,与y 轴交于点A . (1)求二次函数24y ax bx =++的表达式; (2)AB 于 点M (3∴ 810 AM NC n AB BC -== .4分 ∵OA =4,BC =10, ∴11 4102022ABC S BC OA =?=??=V .5分 ∴2811(8)(2)(3)51055 AMN ABN n S S n n n -==-+=--+V V .6分 ∴当n =3时,即N (3,0)时,△AMN 的面积最大.7分 (3)当N (3,0)时,N 为BC 边中点.

∴M 为AB 边中点,∴12 OM AB.=8分 ∵2241625AB OB OA =+=+=, 22641645AC OC OA =+=+=, ∴12AB AC,=9分 ∴1 4 OM AC =.10分 24(2017海南).抛物线23y ax bx =++经过点()和点()。 (1)求该抛物线所对应的函数解析式; (2)该抛物线与直线3 35 y x = +相交于C D 、两点,点P 是抛物线上的动点且位于x 轴下方。直线//PM y 轴,分别与x 轴和直线CD 交与点M N 、。 ①连结PC PD 、,如图12-1,在点P 运动过程中,PCD ?的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由; ②连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图12-2。是否存在点P ,使得CNQ ?与PBM ?相似?若存在,求出满足条件的点P 的坐标;若不存在,说明理由。 【分析】(1)由A 、B 两点的坐标,利用待定系数法可求得抛物线解析式; (2)①可设出P 点坐标,则可表示出M 、N 的坐标,联立直线与抛物线解析式可求得C 、D 的坐标,过C 、D 作PN 的垂线,可用t 表示出△PCD 的面积,利用二次函数的性质可求得其最大值; ②当△CNQ 与△PBM 相似时有 = 或 = 两种情况,利用P 点坐标,可分别表示出线段的长, 可得到关于P 点坐标的方程,可求得P 点坐标. 【解答】解: (1)∵抛物线y=ax 2+bx +3经过点A (1,0)和点B (5,0), ∴,解得, ∴该抛物线对应的函数解析式为y=x 2﹣x +3; (2)①∵点P 是抛物线上的动点且位于x 轴下方, ∴可设P (t ,t 2﹣ t +3)(1<t <5), ∵直线PM ∥y 轴,分别与x 轴和直线C D 交于点M 、N ,

二次函数的应用_——最大面积问题教学设计

《二次函数的应用——面积最大问题》教学设计 二次函数的应用——面积最大问题。所用教材是教育材九年级上册第三章第六节二次函 数的应用,本节共需四课时,面积最大是第一节。 下面我将从教材容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程 的设计和教学效果预测几方面对本节课进行说明。 一、教学容的分析 1、地位与作用: 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际 问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数 的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利 用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感 兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题 奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和 函数有关的应用问题。此部分容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以 后学习更多函数打下坚实的理论和思想方法基础。 2、课时安排 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有 归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运 动中的二次函数、综合应用四课时,本节是第一课时。 3.学情及学法分析 学生由简单的二次函数y =x 2学习开始,然后是y =ax2,y =ax 2+c ,最后是y=a(x-h)2, y =a(x-h)2+k ,y =ax 2+bx+c ,学生已经掌握了二次函数的三种表示方式和图像的性质。 对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值, 但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这 一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力, 这也符合新课标中知识与技能呈螺旋式上升的规律。 二、教学目标、重点、难点的确定 教学目标: 1、知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性 质,理解顶点与最值的关系,会求解最值问题。 2.过程与方法:经历“实际问题转化成数学问题——利用二次函数知识解决问题— —利用求解的结果解释问题”的过程体会数学建模的思想,体会到数学来源于生活,又服务 于 生活。 3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过 程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。 教学重点:利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究 式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论, 充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数综合应用—面积问题(学生版)

二次函数与图形面积 适用学科数学适用年级九年级 适用区域全国课时时长(分钟)120分钟 知识点二次函数面积问题 教学目标通过数形结合,讨论二次函数面积问题 教学重点充分考虑到二次函数中“数”的规律和“形”的特征,运用好数形结合; 对于各种可能的情况我们常常要运用分类讨论逐一加以研究 教学难点运用数学模型,利用“构造法”达到解决问题 教学过程 一、复习预习 求面积常用的方法 a.直接法 b.简单的组合 c.面积不变同底等高或等底等高的转换 d.相似 e.三角函数 f.找面积的最大最小值利用二次函数的性质 二、知识讲解 考点/易错点1 已知三角形两个顶点是二次函数与x轴的交点,第三个顶点是抛物线一侧上的动点,求三角形面积最大

考点/易错点2 已知三角形两个顶点是二次函数与x轴的交点,第三个顶点是抛物线上一动点,求三角形面积等于定值的动点坐标。 考点/易错点3 二次函数中所围成的四边形面积求法:

三、例题精析 例题1【题干】已知二次函数的图象如图所示,根据图中的数据, (1)求二次函数的解析式; (2)设此二次函数的顶点为P,求△ABP的面积. 【例题2】【题干】已知二次函数y=x2-8x+15的图象交x轴于A、B两点,交y轴于点C.请 结合这个函数的图象解决下列问题: (1)求△ABC的面积; (2)点P在这个二次函数的图象上运动,能使△PAB的面积等于1个平方单位的P点共有多少个?请直接写出满足条件的P点坐标; (3)在(2)中,使△PAB的面积等于2个平方单位的P点是否存在?如果存在,写出P点的个数;如果不存在,请说明理由

【例题3】【题干】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点. (1)求这个二次函数的解析式; (2)当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

一次函数中的面积问题讲义(含答案)

一次函数中的面积问题讲义 一、知识点睛 1. 坐标系中处理面积问题,要寻找并利用_____________的线, 通常有以下三种思路: ①__________________(规则图形); ②__________________(分割求和、补形作差); ③__________________(例:同底等高). 2. 坐标系中面积问题的处理方法举例 ①割补求面积(铅垂法): B A h M a P P a M h A B 12△APB S ah = 1 2△APB S ah = ②转化求面积: h h l 1 l 2 A B C 如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上. 二、精讲精练 1. 如图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则 △AOB 的面积为___________. x A y B O

2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P 的坐标为(-2,2),则S △P AB =___________. O B y A P x P D O B y A C x 第2题图 第3题图 3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线 CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________. 4. 如图,直线1 12 y x =+经过点A (1,m ),B (4,n ),点C 的坐标 为(2,5),求△ABC 的面积. C O A B x y

二次函数的应用—面积问题

二次函数面积问题 基础知识 () 在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值; 2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值; 4.利用基本不等式或不等分析法求最值. 知识典例 (夯实基础)(30分钟) [例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm /s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q 两点同时出发,分别到达B、C两点后就停止移动. (1)运动第t秒时,△PBQ的面积y(cm2)是多少? (2)此时五边形APQCD的面积是S(cm2),写出S与t的函数关系式,并指出自变量的取值范围. (3)t为何值时s最小,最小值时多少?

[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大? ()(5分钟) [例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 强化练习 x

相关文档
最新文档