结构阻尼

结构阻尼
结构阻尼

浅析结构阻尼

院系:土木工程学院

班级:研1404

姓名:张晓彤

学号:143085213123

日期:2014年11月24日

摘要:结构阻尼是描述振动系统在振动时能量损耗的总称。包括DTC东泰五金阻尼、阻尼铰链、阻尼滑轨粘性阻尼、干阻尼、滞后阻尼和非线性阻尼。本文主要总结和阐述了阻尼减震结构的概念与原理,结构减震控制的原理与概念,耗能减震的概念原理与分类,以及粘滞阻尼、金属耗能、粘弹性阻尼、摩擦耗能减震的原理与概念,以及各自的应用范围。

关键词:减震金属耗能摩擦耗能粘弹性阻尼粘滞阻尼

前言

地震和风灾害严重威胁着人类的生存和发展,自从人类诞生以来人们就为抗拒这两种自然灾害而奋斗。随着科学技术和人民生活水平的提高,预防与抵御地震和风灾的能力也在不断的提高,结构减震(振)控制技术作为抗御地震(强风)的一种有方法,也得到了发展和应用,并成为比较成熟的技术,结构减震(振)控制方法改变了通过提高结构刚度、强度和延性来提高结构的抗震抗风能力的传统抗震抗风方法,而是通过调整或改变结构动力特性的途径,改变结构的震(振)动反应,有效的保护结构在地震强风中的安全。在结构中加入耗能器来控制结构的地震和风振反应的耗能减震(振)方法是结构减震控制技术中一种有效、安全、可靠、经济的减震(振)方法。

1 阻尼结构的概念与原理

1.1结构减震控制的基本概念

传统的结构抗震方法是通过增强结构本身的抗震性能(强度、刚度、延性)来抵御地震作用的,即由结构本身储存和耗散地震能量,这是被动消极的抗震对策。由于地震的随机性,人们尚不能准确的估计未来地震灾害作用的强度和特性,按照传统抗震方法设计的结构不具备自我调节功能。因此,结构很可能在地震或风荷载作用下不满足安全性能的要求,而产生严重破坏或倒塌,造成重大的经济损失和人员伤亡。

合理有效的抗震途径是对结构安装抗震装置系统,由抗震装置与结构共同承受地震作用,即共同存储和耗能地震能量,以调节和减轻结构的地震反应。这是积极主动的抗震对策,也是目前抗震对策中的重大突破和发展方向。

1.2结构减震控制的分类

结构减震控制根据是否需要外部能量输入可分为被动控制、主动控制、半主动控制、智能控制和混合控制。

1.3耗能减震的概念

结构耗能减震技术是在结构物的某些部位(如支撑、剪力墙、节点、联结缝或连接件、楼层空间、相邻建筑间、主附结构间等)设置耗能(阻尼)装置(或元件),通过耗能阻尼装置产生摩擦、弯曲(或剪切、扭转)、弹塑(或粘滞、粘弹)性滯回变形来耗散或吸收地震输入结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。耗能阻尼装置元件和支撑构件构成耗能部件,装有耗能

部件的结构称为耗能减震结构。

1.4耗能减震的原理

耗能减震结构在小震和设计风荷载作用下,耗能部件基本处于弹性状态,主要给主体结构提供足够的刚度或阻尼,使耗能减震结构满足正常使用的要求;在中震、大震及强震作用下,耗能阻尼装置元件率先进入耗能工作状态,产生较大的阻尼,大量耗散输入结构中的能量,迅速衰减结构的动力反应,而主体结构不出现明显的非弹性变形,从而确保结构在强震或强风中的安全性和正确使用。

耗能减震的原理可以从能量的角度来描述,结构在地震中任意时刻的能量方程为:对于传统抗震结构: in e k c h E E E E E =+++

'''''in e k c h d E E E E E E =++++对于耗能减震结构:

在上述能量方程中, e E k E 'e E 'k E 仅仅是能量的转换,不导致能量消耗,E c 和'c E 一般只占总能量的很小部分(5%左右),可忽略不计。对于传统的抗震结构,主要依靠h E 消耗输

入结构的地震能量,因此结构构件在利用自身变形耗能的同时,构件本身将遭到损伤甚至破坏,而且耗能越多,破坏越严重;而对于耗能减震结构,耗能减震器或耗能元件在主体结构进入非弹性状态前率先进入耗能工作状态,充分发挥耗能作用,耗散大量输入结构的地震能量,因而结构本身需耗散的能量很少,结构反应将大大减小,从而有效地保护了主体结构,使其免受损伤而破坏。

1.5耗能减震装置的类型

耗能减震装置可以用不同的材料、不同的耗能机制、不同的构造来制造。目前,研究开发的耗能减震装置种类很多,从耗能减震装置与位移和速度的相关性来分,可以分为位移相关型和速度相关型及位移-速度相关型(复合型)耗能器,从耗能器制造所用的材料可以分为金属耗能器、粘弹性耗能器和智能材料耗能器,从耗能器的耗能机制可以分为摩擦耗能器、弹塑性耗能器、粘滞耗能器和电磁感应式耗能器,从受力的形式上可以分为弯曲型、剪切型、扭转型、弯剪型和挤压型耗能器。

耗能阻尼器可以增加结构阻尼和刚度,减小结构在地震作用下的动力反应。结构在地震时会产生一定的变形,如果将这种变形的建筑比作一个驼背的人,则耗能阻尼器就好像是扶杖,它可以增加刚度和阻尼,使得结构不至于倒塌。

2各耗能减震的概念与原理

2.1摩擦耗能减震的概念与原理

2.1.1

(1)摩擦耗能隔震结构

在建筑物上部结构和下部基础之间采用石墨、云母片、砂粒层之类的材料作为摩擦耗能隔震层,当地震发生时通过隔震层的摩擦耗能来减少输入上部结构的地震能量,减小结构地震反应以保护结构的安全。

摩擦耗能隔震结构不但建造简单、造价便宜,而且其最大的优点是没有明确的周期,因

此对于不同周期特性的地震作用都能起到一定的隔震作用,但是,摩擦耗能隔震层也存在一定的不足,具体如下:

①动摩擦系数不易掌握,另外由于老化、侵蚀或磨碎等原因还将引起摩擦系数的改变;

②摩擦面太大,不易做到受力均匀;

③没有自复位功能,上部结构可能会产生过大的滑动移动,震后复位困难。

鉴于上述缺点,单纯靠采用摩擦耗能隔震层来对结构进行耗能减震控制,其控制效果便显得不是很突出,也缺乏工程实用性及适用性,因此,目前采用较多的是复合摩擦耗能隔震装置,即在隔震层中,通过附加复位装置或限定装置以防止上部结构产生过大的滑动位移。

(2)摩擦耗能支撑结构

在结构中安装带有摩擦耗能器的支撑结构,利用摩擦耗能器的摩擦来耗能,并通过耗能支撑与结构的相互作用来减小结构动力反应,以保证结构的安全性和适应性。

一般来说,摩擦耗能装置可以采用不同的机械组合方式和不同的摩擦介质,但其基本机理都是一致的,通过滑动摩擦做功来耗散输入结构的能量。对于摩擦耗能隔震结构,由于摩擦耗能隔震层自身存在一定的不足,使其不能广泛推广应用于实际工程中,取而代之的更多是采用技术更为成熟的叠层橡胶隔震支座。

目前,对于采用摩擦耗能原理对结构进行减震控制,主要是指在结构的某些部位(如支撑、剪力墙、节点、连接缝或连接件等)设置摩擦耗能装置,通过耗能装置所产生的摩擦滞回变形来耗散地震输入结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。

2.1.2摩擦耗能装置及摩擦耗能结构的耗能机制

在实际工程中,通常在框架结构中安装由摩擦耗能装置和支撑共同组成的摩擦耗能支撑,形成摩擦耗能支撑框架。

在风荷载和小震作用下,摩擦耗能支撑不产生滑动,主体结构处于弹性状态,摩擦耗能支撑相当于普通支撑仅为结构提供足够的抗侧刚度,满足其正常使用的要求,在中震或大震作用下,摩擦耗能支撑在主体结构构件屈服之前,按预定滑动荷载产生滑移,提供了依靠摩擦耗散能量的机制,同时由于摩擦耗能器滑移时只承担固定的荷载,即摩擦耗能器起滑动摩擦力保持不变,其余荷载仍由结构来承担,这时在结构的其他楼层间将发生力的重分配,促使其他所有的摩擦耗能器产生滑移共同耗能,地震能量大部分由摩擦耗能支撑消耗,主体结构只承担一小部分的能量,从而避免或延缓主体结构产生明显的非弹性变形,保护主体结构在强震中免遭破坏。

摩擦耗能支撑在滑移过程中不仅消耗了大量地震能量,而且在滑移过程中还改变了原结构的自振频率和基本振型,减小了结构的振幅,避免了结构的共振或准共振效应,进一步避免结构产生严重破坏。

2.2粘弹性耗能减震的概念与原理

粘弹性阻尼器是一种有效的被动减震控制装置,它主要依靠粘弹性材料的滞回耗能特性,给结构提供附加刚度和阻尼,减小结构的动力反应,以达到减震的目的。

典型粘弹性阻尼器是由两个T形钢板夹一块矩形钢板组成,T形约束钢板与中间钢板之间夹有一层粘弹性材料,在反复轴向力作用下,T形约束钢板与中间钢板产生相对运动,使粘弹性材料产生往复剪切滞回变形,以吸收和耗散能量。

耗能装置的耗能能力可以用其在力(或弯矩)作用下发生位移(或转动)时所作的功来衡量,也就是可以用力(或弯矩)与位移(或转角)的关系曲线所包络的面积来表示,包络的面积越大,耗能的能力就越大,减震的效果就越明显。粘弹性阻尼器滞回环

呈椭圆形,具有良好的耗能性能,它能同时提供刚度和阻尼,由于粘弹性材料的性能受温度、频率、应变和幅值等因素的影响,大量的研究结果表明,其耗能能力随着温度的增加而降低,随着频率的增加而增加,在高频下,随着循环次数的增加,耗能能力逐渐退回至某一平衡值,当应变幅值小于50%时,应变的影响不大,但在大应变的激励下,随着循环次数的增加,耗能能力逐渐退回至某一平衡值。

粘弹性阻尼器通常安装在主体结构两点间相对位移较大处,由于在地震或强风作用下两点间产生往复的相对位移,因此,耗能阻尼器也作往复运动,从而带动粘弹性阻尼材料变形而耗散结构中的能量;粘弹性阻尼器还可以安装在互联结构中和多结构联系体

系中,利用结构之间或主体结构与附属结构之间的相对位移,使耗能器产生耗能。

2.3金属耗能特性与减震原理

2.3.1金属耗能的特性与减震原理

金属的弹塑性变形时消耗地震输入能量最有效的机制之一,制作金属耗能器通常的金属材料有钢材(软钢和低屈服点刚)、铅和形状记忆合金等。为了了解金属耗能器的特性,必须研究金属产生塑性变形的机制。

如果应变继续增加,它将达到一个材料屈服值。屈服点在隔震和耗能减震器设计中特别重要。应力进一步增加导致产生的塑性段曲线,对铅来说塑性段曲线接近水平,软刚的塑性段曲线以中等坡度上升。如果应力从一个很高的值降到零。卸载时金属不再回到其初始状态,而留有残留变形。卸载曲线有与弹性段相同的梯度,即杨氏模量和剪切模量。

2.3.2钢材的耗能特性与减震原理

地震时,金属耗能器必须先于梁柱等结构构件进入塑性,而且必须在设计期望的应力水平进入塑性状态。金属耗能器先于其他构件发生塑性的目标,通过精心的形状设计、采用合适的使用方法是可以实现的,对于具有低屈服点特性的钢材,则这一目标更容易实现.为此要求用于制造耗能器的钢材应具有低屈服点,平时我们所说的软钢和低屈服点钢都具有这样的特性.我国的软钢是屈服点为235 N/mm2级别的钢材,而把屈服点为100 N/mm2一下级别的钢材称为极低屈服点钢,通常也叫做低屈服点钢。

几乎所以的钢弹塑性耗能器都是由软钢和低屈服点钢制成的,这与软钢和低屈服点钢的基本性能是分不开的。软钢和低屈服点钢有密度大、塑性好、线膨胀系数大和屈服强度低等特点。可知软钢、低屈服点钢在弹塑性变形过程中可吸收大量的能量、综上所述,软钢、低屈服点钢在弹塑性变形过程中可吸收大量的能量,有较高的柔性和延展性,有较好的变形追踪能力,环境和温度对其性能没有明显的影响,并且钢材具有造价低廉等特点。因此,软钢和低屈服点钢适合制作各种类型的钢耗能器。

2.4粘滞阻尼减震的原理

2.4.1粘滞材料的耗能机理

δπ;而理想弹性材料理想的粘性材料的应力与应变之间存在滞后现象,相位差=/2

δ。因此,在正弦交变应力作用下,理想的应力与应变之间不存在滞后现象,相位差=0

的弹性材料智能存储能量,不能耗散能量,体现材料的刚度特性,然而在实际的工程应用中,理想的粘性或弹性材料是不可获得的,粘滞阻尼器中的粘滞材料也一样,它的应

力与应变存在滞后现象,相位差0~/2δπ介于之间,因此既能存储能量,又能耗散能量。 一般来讲,材料的耗能特性可有三种参数来描述:储能模量'''''

'==tan G G G G

ηηδ、耗能模量和耗能因子。参数之间的关系为:

而影响储能模量、耗能模量和耗能因子的主要因素是温度、振动频率和振幅大小,在适当的温度、频率和振幅范围内,承受交变应力时材料具有很强的耗能能力。另外,阻尼材料滞回曲线所包围的面积越大,耗能能力就越强。

2.4.2粘滞阻尼减震的基本原理

阻尼是结构振动衰减的根本原因,但实际结构中由于阻尼特性的复杂性而不能将其准确定位,所以在结构分析中通常认为结构阻尼为线性粘滞阻尼,认为阻尼力与速度成正比。同时假定结构中设置粘滞阻尼器所附加给结构的阻尼与结构本身的阻尼相一致。 结构减震原理可以通过单质点体系SDOF 振动分析来阐明,其运动方程为: ...

()mu cu ku f t ++= 结构减震的效果除了和附加阻尼比有关外,还和地震波的性质有极大的关系,同时减震结构的阻尼比δ最大不宜超过0.3,否则不能达到结构设计的经济性。

由于普通钢筋混凝土结构的阻尼比约为0.05,而普通钢结构的阻尼比约为0.02,所以地震发生时结构振动一般都处于放大效应状态,调整阻尼或结构的频率就成为降低结构反应的重要途径。还可以得到减震和隔震的本质区别:减震就是通过增大结构的阻尼来减小结构的动力反应,而隔震是通过调整结构的固有频率使其远离干扰频率来减小结构的动力反应。但同时也应该注意到,隔震结构中也有阻尼器耗散能量,而减震结构也改变了结构的自振特性,所以二者也具有一定的联系。

3 应用范围

3.1摩擦耗能减震的应用范围

从耗能机制上看,摩擦耗能器属于位移相关型耗能装置,耗能器必须产生一定的滑动位移才能有效耗能,因此,对于摩擦耗能结构,在地震作用下合理的位移控制是十分关键的,这样既保证摩擦耗能器产生滑动摩擦,以消耗地震能量,减小结构的反应,同时又不使主体结构因过大的变形而产生损伤和破坏,保护主体结构的安全。摩擦耗能器较多的应用于一下结构:

(1) 中高层建筑

(2) 单层或多层工业产房

(3) 钢结构,高耸塔架

(4) 超高层矩形建筑结构

3.2粘弹性阻尼器的应用范围

粘弹性阻尼器性能可靠、构造简单、制作方便、它能给结构提供刚度和较大的阻尼;它的力与位移滞回曲线近似于椭圆形,耗能能力强,能够有效减小建筑物的风振及地震反应,具有广泛的工程适用性。

可应用于层数较多、高度较大、水平刚度较小、水平位移较明显懂得多层、高层、超高层建筑和桥梁、管线、塔架、高耸结构、大跨度结构等。可用于结构的抗风减震中,又可适用于结构的抗震减震中,新建工程和震损结构的加固及震后修复工程。

3.3金属耗能减震的应用范围

一般而言,金属耗能器可适用于各种类别及外形的建筑结构。耗能器的相对位移增大,其耗能能力也相应增大,因此,耗能器更适用于较柔的结构体系。对于刚度较大的钢筋混凝土剪力墙或砌体结构,设置耗能器对于控制早起裂缝也是有利的。金属耗能器既可用于现有的建筑的抗震加固和震损结构的抗震加固与修复,又可用于新建建筑。对于其他的耗能器,金属耗能器有较大的耗能能力,它更适用于巨型结构的耗能减震。

3.4粘滞阻尼器的应用范围

粘滞阻尼器在建筑结构中得到了广泛的应用,不仅开辟了结构工程的一片新天地,而且解决了很多传统结构解决不了的问题.阻尼器在建筑结构上的应用,在以下几个方面展现出了巨大的优势:

(1)作为地震工程,抗风工程几大难题的解决途径,特别适用于软土地基、复杂结构、

多维震动;

(2)阻尼器的潜力很大,可用于抵抗预想不到的超载的结构物

(3)建筑物之间的连接,可以减少结构耦联、振动和碰撞

(4)体育场馆,特别是开启式屋顶

(5)超高层建筑抗风、抗震,特别是钢结构

(6)减少振动的TMD系统

(7)特别重要的建筑-核电站、机场控制室、军事工程、医院

(8)需要降低建筑结构的造价的抗震抗风建筑

参考文献

1、周云,刘季.新型耗能(阻尼)减震器的开发与研究[J].地震工程与工程振动,1998,

18(1)

2、周云,徐彤.耗能减震技术的回顾与前瞻[J].力学实践,2000,22(5)

3、龙旭,吴斌等.抗震结构的阻尼减震效果分析[J].世界地震工程,2001,17(1)

4、林新阳,周福森.消能减震的基本原理和实际应用[J].世界地震工程,2002,18(3)

ansys提阻尼比

请教,ANSYS模态分析后,如何得到各阶模态的模态阻尼比 *get entity=mode ,item1=damp 请教1楼,命令流*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM 中其他几项分别如何设置,如Par,ENTNUM,等,另外输入命令流如何显示其模态阻尼比,本人初学命令流,谢谢! par是随便一个参数名,其他的默认,,,只有逗号即可, 在后在参数里看 ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍. 一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。因为前者使用节点坐标,而后者使用总体坐标. 1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为: 阻尼矩阵为下面的各阻尼形式之和: α为常值质量阻尼(α阻尼)(ALPHAD命令) β为常值刚度阻尼(β阻尼)(BETA命令) ξ为常值阻尼比,f为当前的频率(DMPRAT命令) βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令) [C]为单元阻尼矩阵(支持该形式阻尼的单元) where: [C] = structure damping matrix α = mass matrix multiplier (input on ALPHAD command) [M] = structure mass matrix β = stiffness matrix multiplier (input on BETAD command) βc = varia ble stiffness matrix multiplier (see Equation 15–23) [K] = structure stiffness matrix Nm = number of materials with DAMP or DMPR input = stiffness matrix multiplier for material j (input as DAMP on MP command) = constant (frequency-independent) stiffness matrix coefficient for material j (input as DMPR on MP command) Ω = circular excitation frequency Kj = portion of structure stiffness matrix based on material j Ne = number of elements with specified damping Ck = element damping matrix Cξ = fre quency-dependent damping matrix (see Equation 15–21) 2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:

结构阻尼比对单管塔风荷载计算的影响分析

结构阻尼比对单管塔风荷载计算的影响分析 结构阻尼比对单管塔风荷载计算的影响分析结构阻尼比对单管塔风荷载计算的影响分析屠海明1张帆2 (1.同济大学建筑设计研究院(集团)有限公司上海200092;2.中国铁塔股份有限公司北京100142)摘要:为了分析结构阻尼比对单管塔风荷载计算的影响,本文进行了阻尼比不同取值时风振系数的计算对比。结果表明风振系数随着结构阻尼比的增加而显著下降。然后根据上海某单管塔实测得到的阻尼比与规范规定的阻尼比取值,分别对该单管塔风荷载进行了计算对比。实测的阻尼比大于规范规定的取值,相应计算得到的风荷载也明显降低。这给单管塔的优化设计提供了参考依据。关键词:阻尼比单管塔风荷载引言近年来随着通信基站建设的发展,对通信塔的专业化、标准化提出了更高的要求。对于单管塔的设计和制作而言,起控制作用的荷载是风荷载,得到相对准确的风荷载设计值,对于每年数万座标准化生产的单管塔而言,具有很重要的经济意义。本文作者[1]根据2012年调整前后的荷载规范,对高耸结构的风荷载进行了分析与对比,并提出了《高耸结构设计规范》(GB 50135-2006)中风荷载部分条文的修改意见。但是以上分析没有专门涉及结构阻尼比对于风荷载计算的影响分析。同济大学何敏娟[2]等采用激振法对336m黑龙江电

视塔进行了模态参数的实测和分析,实测结构一阶阻尼比为0.028,大于规范规定值0.02。同济大学闫祥梅等[3]对位于河北的辛安-衡水500kV线路工程的几座直线输电塔转角塔进行了环境脉动下的动力测试。同济大学设计院梁峰[4]对上海新国际博览中心展馆两侧的30m高钢结构灯杆进行 了微风振动下的动力测试,得到了灯杆的自振频率和阻尼比。本文作者对上海移动两座单管塔进行了微风振动下的动力测试,并根据实测结果,与规范规定值对比,探讨结构阻尼比对单管塔风荷载计算的影响。 1 阻尼比对风荷载计算的影响结构阻尼比用于表达结构阻尼的大小,是描述结构在振动过程中能量耗散的术语。引起结构能量耗散的因素很多,主要有:材料阻尼,周围介质对振动的阻尼,节点、支座连接处的阻尼等。结构阻尼对结构效应的影响体现在结构的风致振动中,对于高耸结构的风振分析,比较准确的是采用频率域和时间域的动力分析方法。实际工程中,为了方便应用,按照荷载规范计算等效风荷载,用静力分析方法计算结构风效应。因此,结构阻尼比对风荷载计算的影响,主要体现在风振系数的计算上。《建筑结构荷载规范》(GB 50009-2012)中风振系数的表达式为:其中:g为峰值因子;I10为10m高名义湍流强度;Bz为背景分量因子;共振分量因子R表示与频率有关的积分项,可按下列公式计算:其中:ζ1为结构阻尼比;f1为结构第1阶自振频率;kw为

阻尼器设计

1.结构设计 2.工作原理 2.1磁流变液 磁流变液是在1948 年被Rabinow,J.发明的一种由非磁性基液(如矿物油、硅油等)、微小磁性颗粒、表面活性剂(也称稳定剂)等组合而成的智能型流体材料。在无磁场加入的条件下,磁流变液将表现为低粘度较强流动性的牛顿流体特性,加入磁场后,则会表现为高粘度低流动性的Bingham 流体特性。 非磁性基液是一种绝缘、耐腐蚀、化学性能稳定的有机液体。基液所拥有的特征是:粘度较低,磁流变液在没有磁场加入的条件下表现为低粘度状态,这样能够较好的降低磁流变液的零场粘度; 沸点高、凝固点较低,这样就可以确保磁流变液在温度变化波动较大的环境下工作依然可以保持较高的稳定性;较高的密度,能够保证磁流变液不会因沉降问题而无法正常使用; 无毒无味、廉价,保障其安全性的同时做到能够广泛使用。 微小磁性颗粒是一种可离散、可极化的软磁性固体颗粒,其单位是微米数量级的。其主要的特征有[5]: 低矫顽力,对于已经磁化过的液体,加较小的磁场就能够使其恢复零磁场状态,即拥有较高的保磁能力; 高磁导率,能够在弱磁场中获得较强的磁感应强度从而节约能量;磁滞回线狭窄、内聚力小; 磁性颗粒的体积应相对大一些,用于存贮更多的能量。 表面活性剂是可以增加溶液或混合物等稳定性的化学物质。在实际使用过程中,磁流变液比较容易出现沉降分层现象,所以需要在磁流变液中加入表面活性剂保证物理化学性能的平衡,减少分层、降低沉降。 2.2磁流变液的工作模式 磁流变液在外加磁场影响下出现磁流变效应现象,改变流体的表观粘度、流动状态,从而改变剪切屈服应力等参数,使输出的阻尼力能够实时变化,达到所期望的目的。现如今,磁路变液的一般工作模式有三类:流动式、剪切式及挤压式,如下图所示。 (a)流动式(b)剪切式(c)挤压式 图1-3 磁流变液工作模式 Fig. 1-3 MR fluid working mode 流动式:如图1-3(a)所示,在两块固定静止的磁极板中间具有充足的磁流变液,对磁流变液施加一个压力使其流过两磁极板,其中,两极板之间外加了与磁流变液运动方向垂直的磁场。当磁性液体经过磁场时,其流体特性与流动状态被改变从而产生剪切应力即阻尼力。改变线圈的输入电流强弱从而使磁场强度发生变化,阻尼力也会跟着变化,实现实时调节的效果。流动式多用于控制阀、阻尼器、电磁元件等的设计。

建筑用液体粘滞阻尼器设计方法简介

1.阻尼器应用的设计目标和理念 传统建筑,无论木结构,钢筋混凝土,钢结构已经有上百年的抗风,抗震历史,为什么提出在这些建筑中添加阻尼器?精简总结,有以下几点原因: ●对于一些使用要求较高的建筑结构(超高层,大跨结构等),地震,抗风形成动力难题,需 要更合理的解决办法; ●对比其他传统方案,减少结构受力体系的造价; ●科学不断发展,开辟了解决结构工程问题的新思路;可以使结构最大限度的保持在弹性范围 内工作,为结构提升安全保障。 以某抗震加固工程为例,我们对剪力墙(传统方案)和液体粘滞阻尼器两个方案从理念和计算结果作了如下对比如下表: 我国现行抗震设计规范中已经开始有了关于消能减震的有关规定。结合国内外有关阻尼器应用发展情况和我们的应用体会,我们再谈一下在建筑上使用阻尼器的目标和理念。简单的说,我们安置阻尼器可以有以下几个目的。 A 增加抗震、抗风能力 原设计可能已经可以满足所有规范规定的抗震抗风要求,加上液体粘滞阻阻尼器,在振动过程中起到耗能和增加结构阻尼的作用,从而降低结构反应的基底剪力,减少整个结构的受力,也就可以大大提高结构的抗地震能力。同时,只要阻尼器安装的合适,设置到不同的需要方向,还可以预防和减少原设计没有考虑,或考虑不足的振动受力。 对特别重要的结构,高发地震区,花钱不多,设置这一第二防线是很值得的。对于非严重地震区,也可以用阻尼器达到抗风和增加抗震能力的目的。 B.用阻尼器去防范罕遇大地震或大风 按小震不坏大振不倒的原则,我们可以用常规的设计办法使设计满足多遇地震的抗震要求。对于罕遇的大地震可能显得不足、不理想或不经济。用结构的被动保护系统-特别是阻尼器来等待和解决这罕遇大地震的问题,不仅新建结构建议采用这一设计理念,原设计未设防抗震或设防不足的结构加固工程也很适于。 这一理念会带来经济实用和可靠的结果,设计的好,可以为工程节省费用。国外抗震先进国家大都采用这一理念。在所有可能发生地震的地区,我们主要想提出推广的这一设计理念。 国外有的工程,在结构的小振设计中也充分利用施加了阻尼器的优越。他们大胆的用加阻尼器后的修正反应谱作结构的设计。

建筑结构阻尼比

建筑结构阻尼比 一、阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有:(1)材料阻尼、这是能量耗散的主要原因。 (2)周围介质对振动的阻尼。 (3)节点、支座联接处的阻尼 (4)通过支座基础散失一部分能量。 结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。在等效秥滞模态阻尼中,混凝土结构刚性较大,而且破坏过程(钢筋屈服和混凝土破碎)中也能够吸收大量能量;钢结构较为柔软主要通过弹塑性变形吸收能量,较混凝土而言脆断的可能性低得多,变形量也较大,一般认为10层以下的钢结构建筑物基本不会发生倒塌事故。综上可以看出,钢结构体系变形大,破环程度小是其优势,钢结构抗震方面的优势更多是从材料较轻,承载力高,地震过程中弹塑性变形较大,基本不会发生断裂,构造措施(如柱间支撑)等方面表现出来的。 二、现行设计规范关于结构阻尼比的取值内容: GB50011-2010建筑抗震设计规范规定: 第5.1.5条:建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和形状参数应符合下列要求: 1 除有专门规定外,建筑结构的阻尼比应取0.05,……。 其中专门规定有: 8 多层和高层钢结构房屋中8.2 计算要点中第8.2.2条钢结构抗震计算的阻尼比宜符合下列规定: 1 多遇地震下的计算,高度不大于50m时可取0.04;高度大于50m且小于200m时,可取0.03;高度不小于200m时,宜取0.02。 2 当偏心支撑框架部分承担的地震倾覆力矩大于结构总地震倾覆力矩的50%时,其阻尼比可比本条1款相应增加0.005。 3 在罕遇地震下的弹塑性分析,阻尼比可取0.05。 9 单层工业厂房中9.2 单层钢结构厂房中第9.2.5条····单层厂房的阻尼比,可依据屋盖和围护墙的类型,取0.045~0.05。 其中条文说明:9.2.5 通常设计时,单层钢结构厂房的阻尼比与混凝土柱厂房相同。本次修订,考虑到轻型围护的单层钢结构厂房,在弹性状态工作的阻尼比较小,根据单层、多层到高层钢结构房屋的阻尼比由大到小变化的规律,建议阻尼比按屋盖和围护墙的类型区别对待。 10 空旷房屋和大跨屋盖建筑中第10.2.8 屋盖钢结构和下部支承结构协同分析时,阻尼比应符合下列规定: 1 当下部支承结构为钢结构或屋盖直接支承在地面时,阻尼比可取0.02。 2 当下部支承结构为混凝土结构时,阻尼比可取0.025~0.035。 其中条文说明:本条规定了整体、协同计算时的阻尼比取值。 屋盖钢结构和下部混凝土支承结构的阻尼比不伺,协同分析时阻尼比取值方面的研究较少。

阻尼比的概念

阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。 阻尼比在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间. ζ <1的单自由度系统自由振动下的位移 u(t) = exp(-ζwn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定. 阻尼比的来源及阻尼比影响因素 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有[1](1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。 阻尼比的计算 对于小阻尼情况[2]: 1) 阻尼比可以用定义来计算,及ksai=C/C0; 2) ksai=C/(2*m*w) % w为结构圆频率 3) ksai=ita/2 % ita 为材料损耗系数 4) ksai=1/2/Qmax % Qmax 为共振点放大比,无量纲 5) ksai=delta/2/pi % delta是对数衰减率,无量纲 6) ksai=Ed/W/2/pi % 损耗能与机械能之比再除以2pi 阻尼比的取值 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各国情况,钢结构的阻尼比一般在0.01-0.02之间(虾肝蚁胆:单层钢结构厂房可取0.05),钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶振型的阻尼比的值。

题目3:阻尼比确定

题目3:阻尼比确定 1. 阻尼 阻尼是指任何振动系统在振动中,由于外界作用和系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性阻尼模型,是工程中应用最广泛的阻尼模型。粘性阻尼模型能较好地模拟空气、水等流体对振动的阻碍作用。 粘性阻尼可表示为以下式子: 式中 为阻尼力( ), 表示振子的运动速度( ), 是表征阻尼大小的常数,称为阻尼系数( )。 理想的弹簧阻尼器振子系统如下图所示。 分析其受力分别有: 弹性力(k 为弹簧的劲度系数,x 为振子偏离平衡位置的位移): F s = ? kx 阻尼力(c 为阻尼系数,v 为振子速度): 2. 阻尼比 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程: 其中a 为加速度。 上面得到的系统振动方程可写成如下形式,问题归结为求解位移x 关于时间t 函数的二阶常微分方程: 将方程改写成下面的形式: 然后为求解以上的方程,定义两个新参量: 上面定义的第一个参量n ω,称为系统的(无阻尼状态下的)固有频率。第二个参量ζ,称 cv F -=m N ?m/s s/m N ?F v c

为阻尼比。根据定义,固有频率具有角速度的量纲,而阻尼比为无量纲参量。阻尼比也定义为实际的粘性阻尼系数c 与临界阻尼系数r c 之比。ζ= 1时,此时的阻尼系数称为临界阻尼系数r c 。 3. 阻尼比计算公式 由上述分析可知,微分方程化为: 根据经验,假设方程解的形式为 其中参数γ一般为复数。 将假设解的形式代入振动微分方程,得到关于γ的特征方程: 解得γ为: 当0 <ζ< 1时,运动方程的解可写成: 其中 D D D T ωπ ξωω212 = -=, 经过一个周期D T 后,相邻两个振幅1+i i A A 和的比值为 D D i i T T t t i i e Ae Ae A A ξωξωξω==+--+) (1 由此可得 D i i T A A ωπ ξωξω2ln 1==+ 如果2.0<ξ,则 1≈ω ωD ,而 1 ln 21 +≈ i i A A πξ 同样,用n i i A A +和表是两个相隔n 个周期的振幅,可得

结构阻尼

浅析结构阻尼 院系:土木工程学院 班级:研1404 姓名:张晓彤 学号:143085213123 日期:2014年11月24日

摘要:结构阻尼是描述振动系统在振动时能量损耗的总称。包括DTC东泰五金阻尼、阻尼铰链、阻尼滑轨粘性阻尼、干阻尼、滞后阻尼和非线性阻尼。本文主要总结和阐述了阻尼减震结构的概念与原理,结构减震控制的原理与概念,耗能减震的概念原理与分类,以及粘滞阻尼、金属耗能、粘弹性阻尼、摩擦耗能减震的原理与概念,以及各自的应用范围。 关键词:减震金属耗能摩擦耗能粘弹性阻尼粘滞阻尼 前言 地震和风灾害严重威胁着人类的生存和发展,自从人类诞生以来人们就为抗拒这两种自然灾害而奋斗。随着科学技术和人民生活水平的提高,预防与抵御地震和风灾的能力也在不断的提高,结构减震(振)控制技术作为抗御地震(强风)的一种有方法,也得到了发展和应用,并成为比较成熟的技术,结构减震(振)控制方法改变了通过提高结构刚度、强度和延性来提高结构的抗震抗风能力的传统抗震抗风方法,而是通过调整或改变结构动力特性的途径,改变结构的震(振)动反应,有效的保护结构在地震强风中的安全。在结构中加入耗能器来控制结构的地震和风振反应的耗能减震(振)方法是结构减震控制技术中一种有效、安全、可靠、经济的减震(振)方法。 1 阻尼结构的概念与原理 1.1结构减震控制的基本概念 传统的结构抗震方法是通过增强结构本身的抗震性能(强度、刚度、延性)来抵御地震作用的,即由结构本身储存和耗散地震能量,这是被动消极的抗震对策。由于地震的随机性,人们尚不能准确的估计未来地震灾害作用的强度和特性,按照传统抗震方法设计的结构不具备自我调节功能。因此,结构很可能在地震或风荷载作用下不满足安全性能的要求,而产生严重破坏或倒塌,造成重大的经济损失和人员伤亡。 合理有效的抗震途径是对结构安装抗震装置系统,由抗震装置与结构共同承受地震作用,即共同存储和耗能地震能量,以调节和减轻结构的地震反应。这是积极主动的抗震对策,也是目前抗震对策中的重大突破和发展方向。 1.2结构减震控制的分类 结构减震控制根据是否需要外部能量输入可分为被动控制、主动控制、半主动控制、智能控制和混合控制。 1.3耗能减震的概念 结构耗能减震技术是在结构物的某些部位(如支撑、剪力墙、节点、联结缝或连接件、楼层空间、相邻建筑间、主附结构间等)设置耗能(阻尼)装置(或元件),通过耗能阻尼装置产生摩擦、弯曲(或剪切、扭转)、弹塑(或粘滞、粘弹)性滯回变形来耗散或吸收地震输入结构中的能量,以减小主体结构地震反应,从而避免结构产生破坏或倒塌,达到减震控制的目的。耗能阻尼装置元件和支撑构件构成耗能部件,装有耗能

15大工《高层建筑结构》作业答案

大连理工大学《高层建筑结构》大作业 学习中心: 姓 名: 学 号: 题目二:底部剪力法。 钢筋混凝土8层框架结构各层高均为3m ,经质量集中后,各楼层的重力荷载代表值分别为:11000kN G =,234567800kN G G G G G G ======, 8700kN G =。结构阻尼比0.05ξ=,自振周期为10.80s T =,Ⅱ类场地类别,设计地震分组为第二组,抗震设防烈度为7度。按底部剪力法计算结构在多遇地震时的水平地震作用及地震剪力。 解:

Ⅱ类场地,地震分组为第二组,查表得Tg<T1<5Tg α1=(Tg/T1) rζαmax=(Tg/T1)0.9×0.08=(0.40/0.80) 0.9×0.08= 0.536 Fβk=α1Geq=0.536×0.85×∑Gi=0.536×0.85×(G1+G2+G+G4+G5+G6+G7+G8) =0.4556×6500=2961.4KN 顶部附加水平地震作用T1>1.4×0.4=0.56s Rn=0.08 T1 0.01=0.08×0.80 0.01=0.074 △Fn= RnFEK=0.074×2961.4=219.1436 KN 题目五:竖向荷载作用下,剪力墙结构的内力是如何考虑的? 解: 竖向荷载作用下一般取平面结构简图进行内力分析,不考虑结构单元内各片剪力墙之间的协同工作。每片剪力墙承受的竖向荷载为该片墙负荷范围内的永久荷载和可变荷载。当为装配式楼盖时,各层楼面传给剪力墙的为均布荷载,当为现浇楼盖时,各层楼面传给剪力墙的可能为三角形或梯形分布荷载以及集中荷载。剪力墙自重按均布荷载计算。竖向荷载作用下剪力墙内力的计算,不考虑结构的连续性,可近似地认为各片剪力墙只承受轴向力,其弯矩和剪力等于零。各片剪力墙承受的轴力由墙体自重和楼板传来的荷载两部分组成,其中楼板传来的荷载可近似地按其受荷面积进行分配。各墙肢承受的轴力以洞口中线作为荷载分界线,计算墙自重重力荷载时应扣除门洞部分。

阻尼结构分析

高速机组阻尼绕组结构型式的探讨 一、前言 水轮发电机设臵阻尼绕组可以抑制转子自由振荡,提高电力系统运行稳定性,削弱过电压倍数,提高发电机承担不对称负荷的能力和加速发电机自同期过程。但将导致电机结构复杂和用铜量的增加。尤其是对于高速机组设臵横向阻尼,其结构更为复杂。国内、外有不少制造厂往往采用不连续阻尼环,使结构简化。但横轴阻尼作用有所削弱。 本文结合泉州市龙门滩二级电站发电机SF13-10/3000的设计就高速机组阻尼绕组结构型式进行探讨。 二、不同阻尼结构对电气参数的影响 阻尼环结构可分为两大类:一是连续整圆结构;二是不连续的扇形结构。采用第二种结构型式,横轴阻尼作用显然被削弱了。这种结构差异在电机设计中直接影响到阻尼绕组横轴漏抗X kq的数值,从而影响到横轴超瞬变电抗X q″、负序电抗X2以及瞬变电流衰减的时间常数等的数值。导出它们的显函数是十分复杂的,且不易进行直观的判断。这里对SF13-10/3000发电机两种阻尼结构进行计算和比较,计算结果列于表一。 从表一可见,采用扇形阻尼环较之整圆阻尼环横轴超瞬变电抗X q″增大50%,负序电抗X2增大22.5%,瞬变电流衰减时间常数也有所增大。但是它们仍在常规的取值范围内,并非产生“离谱”的效果。

表一:两种不同阻尼绕组电抗及时间参数

三、不同阻尼结构对故障的影响 如前所述由于阻尼绕组结构不同,电机的电抗、时间常数不同,因而在事故工况下产生的过电压及过电流衰减的情况有所差别。现就几种事故工况进行分析。 单相突然短路故障状况与电机中性点接地方式有关。由于本机采取中性点不接地方式。即使单相失地,也不存在单相突然短路的问题。 三相突然短路时,阻尼绕组结构型式不同,对故障影响的效果,主要是突然短路电流中非周期分量衰减时间增大,扇形结构衰减时间为0.1445s较之整圆结构大19.6%…见表一?,就其数值仍属于比较小的范围,通常电机的时间常数Ta为0.08~0.32s。可见不同阻尼结构对三相突然短路的故障效果影响不大。换言之,扇形结构的阻尼绕组对于三相突然短路的故障是能适应的。 对于两相突然短路,阻尼绕组结构不同影响较多。现把计算列于表二。从表二中可以看出,采用扇形结构较之整圆结构好处是突然短路电流减小,最大脉振转矩减小;弊处是衰减时间变长,平均力矩变大,开路相的过电压变大。 脉振力矩小,使电机经受的机械冲击小。对电机避免因短路而造成剧烈振动和机械性冲击是很有利的。 平均转矩对应于定、转子中的短路铜耗,对电机造成后果是不大的。短路电流变小,衰减时间变大,I2t关系计算短路电流对定子绕组产生热冲击,计算结果列于表三。从表三可见采用扇形结构对短路电流的热冲击比较小。

关于结构阻尼的认识

关于结构阻尼的认识 阻尼是反映结构体系振动过程中能量耗散特征的参数。实际结构振动时耗能是多方面的,具体型式相当复杂。而且耗能不象构件尺寸、结构质量、刚度等有明确的、直接的测量手段和相应的分析方法,使得阻尼问题难以采用精细的理论分析方法,而主要是采用宏观总体表达的方法。结构振动时耗能因素较多,但影响程度有所不同。一般认为振动过程中耗能因素有如下几方面:(1)结构材料内摩擦;(2)连接处干摩擦;(3)空气阻尼;4)地基土内摩擦;(5)地基中波的辐射耗能。当结构体系进入弹塑性状态时,构件的塑性耗能将远大于上述各项耗能,一般分析中不将塑性耗能纳入阻尼耗能,而是单独加以表达,地基土产生塑性变形时亦将耗散较多的机械能,是否作为阻尼考虑则视情况不同而定。对于大多数建筑结构而言,阻尼以考虑上部阻尼为主(偏于保守)。 目前公认的结沦是,以上部结构为主的结构体系具有在相当宽的频率范围内振型阻尼比不变的特征。而地下结构以及动力机器的大块式基础等的阻尼比则随频率的增加而增加,符合粘滞阻尼规律。根据这一结论,目前一般考虑的上部结构阻尼耗能因素中遗漏了一个重要方面,那就是填充墙围护部分内部耗能及其与主体间的摩擦耗能。笔者认为,上部结构阻尼耗能中,干摩擦耗既是最主要的部分,因为空气阻尼耗能只占总阻尼耗能的很小部分,一般为总阻尼的1%左右,显然可不考虑。如果以材料内摩擦为主,由材料科学研究可知,材料内摩擦耗能源于振动过程中原子

换位所引起的能量损耗,这一过程常称为弛豫,与振动频率是密切相关的。频率太高,原子换位来不及发生,无损耗;而频率太低,弛豫完全能完成,亦无损耗。只有与弛豫过程有适当配合的应力频率,才会发生最大的内耗。内摩擦耗能的特性说明,上部结构中材料内摩擦耗能不是阻尼耗能的主要部分。上部结构中阻尼耗能以于摩擦耗能为主,因此必然得出振动一周耗能与频率无关但与最大位移有关的结论.而这正是公认的上部结构阻尼实验和实测的结论。即使是考虑钢筋混凝土构件开裂后裂缝面相互运动导致阻尼提高,其实质显然也是于摩擦,而非材料内摩擦。材料内摩擦是微观意义上的摩擦,而裂缝后混凝土构件内的摩擦是宏观意义上的摩擦,应届于干摩擦。 根据上述分析,目前一般采用的动力分析模型是不可能细致表达阻尼特征的。因为一般结构分析总是着限于主要的结构构件,而将填充围护等附属部分作为质量、荷载考虑,但实际振动过程中,阻尼耗能恰恰主要发生于这些附属部分内部及其与主体构件间的摩擦,一般的阻尼研究和实验往往也忽略了附属部分的影响,因而结论不尽合理。 上部结构阻尼的实质是以连接及附属部分内部及其与主体结构间于摩擦耗能为主的耗能机制.阻尼耗能显然应与质量(反映附属部分大小)和刚度(反映位移大小)有关(于摩擦的摩擦系数则应与质量和刚度均有关)。 明确了阻尼的实质,还需要寻求合理的表达方法。经过近百年的

最新建筑结构阻尼比

1 建筑结构阻尼比 2 一、阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构3 在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响4 结构阻尼比的因素)很多,主要有:(1)材料阻尼、这是能量耗散的主要原因。5 (2)周围介质对振动的阻尼。 6 (3)节点、支座联接处的阻尼 7 (4)通过支座基础散失一部分能量。 8 结构类型和材料分类给出了共一般分析采用的所谓典型阻尼比的值。综合各9 国情况,钢结构的阻尼比一般在0.01-0.02之间(单层钢结构厂房可取0.05),10 钢筋混凝土结构的阻尼比一般在0.03-0.08之间。以上的典型阻尼比的值即11 为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。在等效秥滞模态阻12 尼中,混凝土结构刚性较大,而且破坏过程(钢筋屈服和混凝土破碎)中也能13 够吸收大量能量;钢结构较为柔软主要通过弹塑性变形吸收能量,较混凝土而14 言脆断的可能性低得多,变形量也较大,一般认为10层以下的钢结构建筑物基15 本不会发生倒塌事故。综上可以看出,钢结构体系变形大,破环程度小是其优16 势,钢结构抗震方面的优势更多是从材料较轻,承载力高,地震过程中弹塑性17 变形较大,基本不会发生断裂,构造措施(如柱间支撑)等方面表现出来的。 18 19 二、现行设计规范关于结构阻尼比的取值内容: 20 GB50011-2010建筑抗震设计规范规定: 21 第5.1.5条:建筑结构地震影响系数曲线(图5.1.5)的阻尼调整和形状22 参数应符合下列要求:

23 1 除有专门规定外,建筑结构的阻尼比应取0.05,……。 24 25 其中专门规定有: 26 8 多层和高层钢结构房屋中8.2 计算要点中第8.2.2条钢结构抗震计算27 的阻尼比宜符合下列规定: 28 1 多遇地震下的计算,高度不大于50m时可取0.04;高度大于50m且小于200m 29 时,可取0.03;高度不小于200m时,宜取0.02。 30 2 当偏心支撑框架部分承担的地震倾覆力矩大于结构总地震倾覆力矩的50%31 时,其阻尼比可比本条1款相应增加0.005。 32 3 在罕遇地震下的弹塑性分析,阻尼比可取0.05。 33 9 单层工业厂房中9.2 单层钢结构厂房中第9.2.5条····单层厂房的阻34 尼比,可依据屋盖和围护墙的类型,取0.045~0.05。 35 其中条文说明:9.2.5 通常设计时,单层钢结构厂房的阻尼比与混凝土柱36 厂房相同。本次修订,考虑到轻型围护的单层钢结构厂房,在弹性状态工作的37 阻尼比较小,根据单层、多层到高层钢结构房屋的阻尼比由大到小变化的规律,38 建议阻尼比按屋盖和围护墙的类型区别对待。 39 10 空旷房屋和大跨屋盖建筑中第10.2.8 屋盖钢结构和下部支承结构协同40 分析时,阻尼比应符合下列规定: 41 1 当下部支承结构为钢结构或屋盖直接支承在地面时,阻尼比可取0.02。 42 2 当下部支承结构为混凝土结构时,阻尼比可取0.025~0.035。 43 其中条文说明:本条规定了整体、协同计算时的阻尼比取值。

二阶系统阻尼比公式

二阶系统: 凡用二阶微分方程描述的系统称为二阶系统。许多高阶系统在一定的条件下,常常近似地作为二阶系统来研究。 二阶系统控制系统按数学模型分类时的一种形式.是用数学模型可表示为二阶线性常微分方程的系统.二阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分.P(s)的一般形式为变换算子s的二次三项代数式,经标准化后可记为 代数方程P(s)=0的根,可能出现四种情况: 1.两个实根的情况,对应于两个串联的一阶系统.如果两个根都是负值,就为非周期性收敛的稳定情况. 2.当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现. 3.当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现. 4.当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值比例对输出过程有很大的影响.一般以阻尼系数ζ来表征,常取 在0.4~0.8之间为宜.当ζ>0.8后,振荡的作用就不显著,输出的速度也比较慢.而ζ<0.4时,输出量就带有明显的振荡和较大的超调量,衰减也较慢,这也是控制系统中所不希望的. 阻尼比:

阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间。 ζ<1的单自由度系统自由振动下的位移u(t) = exp(-ζ wn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = wn*sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A由初始条件决定。 影响因素: 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有(1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。(5)结构的工艺性对振动的阻尼。

浅谈建筑结构的阻尼与阻尼比

浅谈建筑结构的阻尼与阻尼比 浅谈建筑结构的阻尼与阻尼比 摘要:阻尼是建筑结构进行动力分析一个重要的参数。文章首先简要介绍阻尼的实质、表达方法及其对反应谱的影响,重点对空间结构弹性分析时的阻尼比取值进行讨论,并给出了阻尼比的建议值,可供设计分析参考。 关键词:阻尼;阻尼比;空间结构;反应谱 1 阻尼 1.1 阻尼的实质 阻尼是反映结构体系振动过程中能量耗散的特征参数。实际结构的振动耗能是多方面的,具体形式相当复杂,且耗能不具有构件尺寸、结构质量、刚度等有明确的、直接的测量手段和相应的分析方法,使得阻尼问题难以采用精细的理论分析方法。 阻尼的表达方法主要分为两大类: (1)粘滞阻尼,即假定阻尼力与速度成正比,无论对简谐振动还是非简谐振动得到的振动方程均是线性方程。 (2)滞回阻尼,即假定应力应变间存在一相位差,从而振动一周有耗能发生,其特点是可以得到不随频率而改变的振型阻尼比。 1.2 阻尼的表达方法 传统上,总是将系统假定为比例阻尼来处理,应用最为广泛有:(1)Rayleigh 阻尼C = αM + βK;(2)Clough 广义阻尼C =ΣCb = MΣab ( M-1 K)b,(-∞

钢结构抗震计算-阻尼比

阻尼比 阻尼就是使自由振动衰减的各种摩擦和其他阻碍作用。在土木、机械、航天等领域是结构动力学的一个重要概念,指阻尼系数与临界阻尼系数之比,表达结构体标准化的阻尼大小。 主要概念 阻尼比是无单位量纲,表示了结构在受激振后振动的衰减形式。可分为等于1,等于0, 大于1,0~1之间4种,阻尼比=0即不考虑阻尼系统,结构常见的阻尼比都在0~1之间。 ζ<1的单自由度系统自由振动下的位移u(t) = exp(-ζ wn t)*A cos (wd t - Φ ), 其中wn 是结构的固有频率,wd = wn*sqrt(1-ζ^2) ,Φ为相位移.Φ和常数A 由初始条件决定。 影响因素 主要针对土木、机械、航天等领域的阻尼比定义来讲解。阻尼比用于表达结构阻尼的大小,是结构的动力特性之一,是描述结构在振动过程中某种能量耗散的术语,引起结构能量耗散的因素(或称之为影响结构阻尼比的因素)很多,主要有(1)材料阻尼、这是能量耗散的主要原因。(2)周围介质对振动的阻尼。(3)节点、支座联接处的阻尼(4)通过支座基础散失一部分能量。(5)结构的工艺性对振动的阻尼。 计算方法 对于小阻尼情况[1]: 1) 阻尼比可以用定义来计算,及ζ=C/C0; 2) ζ=C/(2*m*w) % w为结构圆频率 3) ζ=ita/2 % ita 为材料损耗系数 4) ζ=1/2/Qmax % Qmax 为共振点放大比,无量纲 5) ζ=delta/2/pi % delta是对数衰减率,无量纲 6) ζ=Ed/W/2/pi % 损耗能与机械能之比再除以4pi 取值方式 对结构基本处于弹性状态的的情况,各国都根据本国的实测数据并参考别国的资料,按结构类型和材料分类给出了供一般分析采用的所谓典型阻尼比的值。《建筑抗震设计规范》GB50011-2010第8.2.2条规定,钢结构抗震计算的阻尼比宜符合下列规定:(1)多遇地震下的计算,高度不大于50m是可取0.04,高度大于50m且小于200m时可取0.03,高度不小于200m时宜取0.02.(3)罕遇地震下的弹塑性分析,阻尼比可取0.05。 钢筋混凝土结构的阻尼比一般在0.03-0.08之间,对于钢-混凝土结构则根据钢和混凝土对结构整体刚度的贡献率取为0.025-0.035。以上的典型阻尼比的值即为结构动力学在等效秥滞模态阻尼中,采用的阻尼比的值。该阻尼比即为各阶

临界阻尼系数与阻尼比

使机械振动能量耗散的作用,是组成机械系统的一个元素。例如物体在其平衡位置附近作自由振动时,振幅总是随着时间增长而逐渐衰减,这表明有阻尼存在。在机械系统中,多数阻尼以阻力形式出现,如两物体表面的摩擦阻力,加入润滑剂后油膜的粘性阻力,物体在流体中运动受到的介质阻力等。此外还有振荡电路中的电阻、材料和结构的内阻引起的结构阻尼等。 在机械系统中,线性粘性阻尼是最常用的一种阻尼模型。阻尼力R的大小与运动质点的速度的大小成正比,方向相反,记作R=-C,C为粘性阻尼系数,其数值须由振动试验确定。由于线性系统数学求解简单,在工程上常将其他形式的阻尼按照它们在一个周期内能量损耗相等的原则,折算成等效粘性阻尼。物体的运动随着系统阻尼系数的大小而改变。如在一个 自由度的振动系统中,[973-01],称临界阻尼系数。式中为质点的质量,K为弹簧 的刚度。实际的粘性阻尼系数C 与临界阻尼系数C之比称为阻尼比。<1称欠阻尼,物体作对数衰减振动;>1称过阻尼,物体没有振动地缓慢返回平衡位置。欠阻尼对系统的固有频率值影响甚小,但自由振动的振幅却衰减得很快。阻尼还能使受迫振动的振幅在共振区附近显著下降,在远离共振区阻尼对振幅则影响不大。新出现的大阻尼材料和挤压油膜轴承,有显著减振效果。 在某些情况下,粘性阻尼并不能充分反映机械系统中能量耗散的实际情况。因此,在研究机械振动时,还建立有迟滞阻尼、比例阻尼和非线性阻尼等模型。使机械振动能量耗散的作用,是组成机械系统的一个元素。例如物体在其平衡位置附近作自由振动时,振幅总是随着时间增长而逐渐衰减,这表明有阻尼存在。在机械系统中,多数阻尼以阻力形式出现,如两物体表面的摩擦阻力,加入润滑剂后油膜的粘性阻力,物体在流体中运动受到的介质阻力等。此外还有振荡电路中的电阻、材料和结构的内阻引起的结构阻尼等。 在机械系统中,线性粘性阻尼是最常用的一种阻尼模型。阻尼力R的大小与运动质点的速度的大小成正比,方向相反,记作R=-C,C为粘性阻尼系数,其数值须由振动试验确定。由于线性系统数学求解简单,在工程上常将其他形式的阻尼按照它们在一个周期内能量损耗相等的原则,折算成等效粘性阻尼。物体的运动随着系统阻尼系数的大小而改变。如在一个 自由度的振动系统中,[973-01],称临界阻尼系数。式中为质点的质量,K为弹簧 的刚度。实际的粘性阻尼系数C 与临界阻尼系数C之比称为阻尼比。<1称欠阻尼,物体作对数衰减振动;>1称过阻尼,物体没有振动地缓慢返回平衡位置。欠阻尼对系统的固有频率值影响甚小,但自由振动的振幅却衰减得很快。阻尼还能使受迫振动的振幅在共振区附近显著下降,在远离共振区阻尼对振幅则影响不大。新出现的大阻尼材料和挤压油膜轴承,有显著减振效果。 在某些情况下,粘性阻尼并不能充分反映机械系统中能量耗散的实际情况。因此,在研究机械振动时,还建立有迟滞阻尼、比例阻尼和非线性阻尼等模型。

大工16秋《高层建筑结构》大作业答案(5题均有)

大连理工大学《高层建筑结构》大作业 学习中心: 姓名: 学号:

题目一:反弯点法计算题 已知框架结构如图所示,承受水平风荷载作用,图中数字为框架梁、柱的相对刚度,试用反弯点法求各个框架柱的剪力。其中118kN F =,220kN F =,316kN F =, 4 22kN F =。 4 F 3F 2F 1 F 0.42 0.66 0.340.66 D A B C 7500mm 6000m m 0.64 0.347500mm 7500mm 4000m m 4000m m 4000m m 0.640.640.640.64 0.64 0.42 0.42 0.42 0.42 0.42 (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) 解: 一、对题目进行分析可知: (1) 各柱反弯点高度: 1层取底层柱高的2/3,即 : ; 2~4层均在各柱中点处: (2)结构对称,外柱A 、D 有同样侧移刚度,内柱B 、C 也有同样侧移刚度,且2~4层柱刚度一致,故2~4层柱剪力分配系数为:

二、根据公式进行计算: 从底层(F1)开始计算,求各柱剪力 (1)、底层(F1)柱剪力计算: QA=QD=(22+16+20+18)×22 666.034.034.066.0666 .0+++=76×05556 .001833.0≈25.073KN QB=QC=(22+16+20+18)×22666.034.034.066.0634.0+++=76×05556 .000944.0≈12.913KN (2)、二层(F2)柱剪力计算: QA=QD=(22+16+20)×22464.042.042.064.0464 .0+++=58×1325 .004.0≈17.509KN QB=QC=(22+16+22)×22 464.042.042.064.0442 .0+++=58×1325 .002625.0≈11.491KN (3)、三层(F3)柱剪力计算: QA=QD=(22+16)×22464.042.042.064.0464 .0+++=38×1325 .004.0≈11.472KN QB=QC=(22+16)×22464.042.042.064.0442.0+++=38×1325 .002625.0≈7.528KN (4)、顶层(F4)柱剪力计算: QA=QD=22×22464.042.042.064.0464 .0+++=22×1325 .004.0≈6.642KN QB=QC=22×22464.042.042.064.0442.0+++=22×1325 .002625.0≈4.358KN

相关文档
最新文档