应用行星式球磨机进行机械合金化的研究

? 2008 Advanced Study Center Co. Ltd.

Corresponding author: Galina G. Chernik, e-mail: galgeorg@yandex.ru MECHANICAL ALLOYING IN PLANETARY MILLS OF

HIGH ACCELERATIONS

Marco Hüller 1, Galina G. Chernik 2, Elena L. Fokina 2 and Nadezda I. Budim 2

1

Corporate Research Centre Germany, EADS Deutschland GmbH, 81663 Munich, Germany

2

Institute of Chemistry, St. Petersburg State University, Universitetski pr. 26, Petrodvorets, 198504 St. Petersburg,

Russia

Received: March 29, 2008

Abstract. Mechanical activation effects were studied for metal matrix composites (MMC). Plan-etary mills of high accelerations were applied in super-high energy milling with the aim of obtaining an Aluminium alloy AA6061 containing a finely dispersed hard phase of NiTi or Al 2O 3. During separate milling of the components it was possible to diminish the particle size and obtain a nar-row particle size distribution. The crystallite size attained for Al alloy can be as low as 40 nm. The time of milling in the planetary mills of 28 and 50 g accelerations is much lower than that in the milling devices of lower energy density. During the process of mechanical alloying in the planetary mill further reduction of the crystallite size took place, yielding nanoscale crystallite size for all components. A high degree of coverage of the reinforcement particles by aluminium was achieved.A sample of NiTi mechanically alloyed with AA6061 showed excellent matrix/particle interface and low porosity in the MMC powder. Fine dispersion of NiTi particles was obtained, and the reinforce-ment particles were well distributed in the matrix. The use of planetary mills of high accelerations can significantly accelerate mechanical alloying.

1. INTRODUCTION

The quest for new aluminium alloys of better per-formance has been in progress at least since the discovery of practical methods for producing alu-minium itself. Almost from the beginning, the use-fulness of such alloys in high performance aero-space structures was recognized, and research aimed at identifying alloys and processes produc-ing unique combinations of mechanical and physi-cal properties has been ongoing since that time [1]. In this work the following two approaches, us-ing mechanical activation, are investigated to im-prove the performance of commercially used Al alloys.

1. Nanocrystalline materials with grain sizes of the order of 100 nm and below are known to be high-strength materials, with the yield strength of

about an order of magnitude higher than that for their coarse-grained counterparts [2]. It has been shown recently that nanocrystalline metals and al-loys can be produced by mechanical treatment.This method introduces large deformations into the material and produces nanocrystalline structure by creating randomly orientated high-angle grain boundaries within conventional polycrystals [3]. Our motivation was to obtain nanocrystalline commer-cial Al alloys by ball milling without using liquid ni-trogen for cooling.

2. Metal matrix composites possess the metal-lic properties of ductility, toughness and environ-mental resistance in combination with the ceramic properties of high strength and high modulus. The widely used commercial particulates generally have a size ranging from a few micrometers to several

367

Mechanical alloying in planetary mills of high accelerations

a

Fig. 1. Particle size distribution for Al alloy AA6061: a) initial; b) milled in Pulverisette 6 mill in Ar at 6.5 g for 4 h; c) milled in MPP-1 mill in air at 28 g for 30 min; d) milled in MPP-1-1 mill in Ar at 50 g for 20 min. hundred micrometers. Some investigations have

indicated that the strength of the composites tends

to increase with decreasing particulate size. There-

fore nanometric particulates have attracted con-

siderable attention for their special properties [4].

High energy ball milling was successfully employed

to fabricate metal matrix composites (MMCs) [5].

Liquid phase processes result in the lower values

of the mechanical properties because of bad wet-

ting of the particles [6].

It is known that planetary mills possess higher

energy density and provide stronger mechanical

impact on materials than other milling devices.

Planetary mills are characterized by higher pres-

sure on particles and higher energy density than

attritors, vibro-mills, jet mills and disintegrators [7].

Earlier only laboratory planetary mills were in use,

and at present industrial planetary mills are com-

mercially available [8]. Industrial planetary mills of

periodic action characterized by acceleration of 20

g (1 g is gravitational acceleration) and productiv-

ity up to 20-40 kg/h are promising for applications

in powder metallurgy. The aim of the present work

was to perform comminution and mechanical al-

loying and study possibilities of the laboratory plan-

etary mills of high accelerations having in mind that

scaling up of the processes is possible.

368M. H üller, G. G. Chernik, E. L. Fokina and N. I. Budim

Fig. 2. Comparison of X-ray diffraction [111] maximum of Al alloy AA6061 samples - powder milled at

acceleration 28 g for 90 min (a), powder milled for 40 min (b) and initial powder (c).

2. EXPERIMENTAL Materials

Aluminium powder AA6061 was produced by intergas spray-atomization at ECKART-WERKE (Fürth, Germany). ASM specifications allow the following content of elements: Al – balance, Mg 0.8-1.2%, Si 0.4-0.8%, Cu 0.15-1.4%, Cr 0.04-0.35%, Fe 0.7%. The particle size of the initial pow-der was reported to be 50-100 μm. Al 2O 3 micro-powder, particle size 100-400 μm, was manufac-tured by Abler (Germany) and NiTi powder was supplied by NANOVAL (Berlin, Germany), Ni:Ti ratio = 50:50, particle size 45 - 350 mm.

Milling conditions

Mechanical milling was performed at the Corpo-rate Research Centre of the European Aeronautic Defence and Space Company (EADS) in the fol-

lowing milling device: planetary ball mill Pulverisette 6 (Fritsch, Germany). The vial and the balls (10mm diameter) are made up of hardened steel. The ball-to-powder ratio was 5:1. A rotational speed of 250 rpm results in an acceleration of about 6.5 https://www.360docs.net/doc/6b18867434.html,ling with the use of Pulverisette 6 planetary mill was accomplished inside an Ar filled glove box. To avoid temperatures >60 °C the process was stopped for 45 min after 15 min milling. Milling was performed for 1, 4, 8, 16, and 64 h.

The possibilities of the planetary ball mills [8]produced by Technics and Technology of Disinte-gration Ltd. (TTD, Russia) were investigated. The planetary mills of periodic action (MPP) of this manufacturer are characterized by high accelera-tion of 25 g and higher [9]. Laboratory planetary mills MPP-1 (at acceleration 28 g) and MPP-1-1(acceleration 50 g) with steel jars and milling bod-ies were exploited. Milling experiments at high ac-celerations were performed at the TTD company.

369

Mechanical alloying in planetary mills of high accelerations Fig. 3. Dependence of the degree of amorphisation (a) and structural factor (dw ) calculated from X-ray

data for AA6061 upon time of milling in air at acceleration 28 g.

The technical specifications of MPP-1 mill are given in Table 1. The milling of NiTi was performed at 50g, with removing of the finest fraction and adding of the initial powder after 5 min milling. The total time of the milling experiments was 88 min for mill-ing in air and 160 min for milling in jars filled with argon. Al 2O 3 was milled in air at 50 g for 5 min.

Methods

Scanning electron microscope (SEM) observations were performed by means of JEOL JSM-6320F.X-ray diffraction analysis was performed at St.Petersburg State University using DRON 4 M (Burevestnik, Russia) X-ray diffractometer, Cu K αradiation, Ni filter. Emission spectroscopy analysis was done by means of a DFS-13 spectrophotom-eter (Russia) in order to estimate the contents of elements in the subject matter. TEM observations were carried out with a Philips CM20 microscope operated at 200 kV at the University of Erlangen.The determination of the particle size was carried out by means of laser diffraction using “Analysette 22” (Fritsch, Germany).

3. RESULTS AND DISCUSSION Milling of Al alloy AA6061

Milling of AA6061 in planetary mills of different ac-celerations was undertaken with the aim to dimin-ish the crystallite size. Particle size distribution for the initial and milled powders is reproduced in Fig.1. Milling at acceleration of 6.5 g induced particle growth because of strong cold welding tendencies (Fig. 1b). The particle size increased from 50 μm to about 1500 μm in the milling time of more than 4h. Particles milled for a duration longer than 4 h exhibited an almost spherical morphology. The average crystallite size was found to be less than 100 nm.

After milling in TTD planetary mill MPP-1 at an acceleration of 28 g the diminishing of the particle size was achieved. The average particle size d 50observed after 30 min milling was 7.5 μm. The size distribution curve of a sample ground for 30 min was rather narrow (Fig. 1c). For that sample 10%of the particles had sizes less than 2 μm. Contami-nation as a result of grinding was rather small

370M. Hüller, G. G. Chernik, E. L. Fokina and N. I. Budim PARAMETERS MODEL

MPP-1

Number of jars 4

Jar diameter, mm Changeable jars

80, 100, 120, 150

Jar height, mm 48

Single jar volume, without lining, ml variable

240; 370; 540; 850 Loaded batch volume per jar, ml variable

40; 70; 100; 170

Weight of the loaded material of density 3 g/cm3, g variable

- per jar 120; 210; 300; 510

- per all jars 480; 840; 1200; 2040

Maximum particle size of feed material, mm 2

Milling time, min

- till 90% less than 10 μm5÷ 10

- till 90% less than 1 μm20 ÷ 40

Centrifugal factor, G (gravitational acceleration) Variable, up to 25

Electric motor, asynchronic 3-phasic

Nominal power, kW 3.0

Weight, kg130

Dimensions, L x B x H, m 0.7 x 0.5 x 0.4

Table 1. Technical specifications of MPP-1 planetary mill of periodic action (TTD, Russia) [13].

(0.05% of Fe for 30 min milling), and the accept-able values of Fe content were not exceeded.

The diminished height and broadening of the peaks in the X-ray diffraction data for Al alloy pow-der that was activated for 40 and 90 min at 28 g revealed a remarkably strong amorphisation of the structure (Fig. 2). The amorphisation degree (a), the size of the regions of coherent scattering (crys-tallite size) and the structural factor (dw) were cal-culated according to the technique described ear-lier [10]. The structural factor reflects the accumu-lation of various types of defects of the crystalline structure in the state that is pre-transitional to the X-ray-amorphous structure. The crystallite size re-duces to 38 nm after 90 min milling (T able 2). Both the amorphisation degree and the structural factor grow drastically with the milling duration (Fig. 3). The values of the crystallite size of ground AA6061 powder determined by electron microscopy were consistent with the data calculated from X-ray dif-fraction patterns.

Summarizing these findings, in the TTD mill MPP-1, with an acceleration four times higher (28 g) than in the reference planetary ball mill, a smaller grain size of 38 nm was achieved almost 5 times faster. It has been made clear that the milling time for grain size refinement could be drastically re-duced when the acceleration of the mill is en-hanced.

Al alloy AA6061 was milled in a TTD planetary mill MPP-1-1 at an acceleration of 50 g for 22.5 min (in 2.5 min increments) with metal balls in air and for 20 min in Ar atmosphere. The particle size distribution given in Fig. 1, d reveals significant amounts of small particles. The crystallite sizes for these samples were found to be 73 nm and 70-80 nm, respectively (Table 2). The alloy particles ex-hibited flake-like shape, which was found to be an advantage for further processing. The element content of AA6061 samples obtained by milling at an acceleration of 50 g showed that the content of Fe and Cr stayed within the limits defined by ASM specifications.

Milling of reinforcements

NiTi powder was milled at an acceleration of 50 g in small increments, removing (-40) μm fraction and

371

Mechanical alloying in planetary mills of high accelerations Milling equipment

Acceleration, atmosphere

Time of milling Crystallite size

AA6061

TTD planetary mill MPP-1 28 g, air 40 min 130 nm TTD planetary mill MPP-1 28 g, air 90 min 38 nm

TTD planetary mill MPP-1-1 50 g, air 22.5 min 73 nm

TTD planetary mill MPP-1-1 50 g, Ar 20 min 70-80 nm Fritsch planetary mill 6.5 g, Ar

8 h

<100 nm

Pulverisette 6

Al

Al - Attritor [11] liquid N 2 16 h 26 nm Al - SPEX 8000 [12]

Ar

24 h

22 nm

NiTi

TTD planetary mill MPP-1-1 50 g, Ar

160 min < 50 nm

Al 2O 3

TTD planetary mill MPP-1-1

50 g, air 5 min 100 nm

Table 2. Crystallite size calculated from X-ray diffraction data for Al alloy AA6061 and reinforcements milled in planetary mills. Comparison with literature data for Al milled in attritor and in SPEX 8000 mill.Mechanical alloying Al crystallite Al 2O 3 crystallite Al 2O 3 coverage time, min

size, nm size, nm degree, %

0 70 100 10 60 80 97 15

50

80

97.5

Table 3. Crystallite sizes and coverage degree of reinforcement calculated from X-ray data for Al alloy AA6061 and Al 2O 3 mechanically alloyed at acceleration 28 g for 10 and 15 min.

adding raw powder, in total for 88 min in air and another sample for 160 min in Ar. The crystallite size after milling for 160 min was found to be less than 50 nm. The particles were found to have flat shape. Al 2O 3 was milled at TTD at 50 g for 5 min with metal balls in air atmosphere, with 100 nm crystallite size obtained.

4. PREPARATION OF METAL MATRIX COMPOSITES Al alloy AA6061/Al 2O 3 composite

Alloy AA6061 pre-milled at 50 g for 20 min and Al 2O 3 pre-milled in air at 50 g for 5 min were used

for the preparation of metal matrix composite. Me-chanical alloying was performed in Ar atmosphere for the batch containing 10 vol.% Al 2O 3 at an accel-eration of 28 g during 5, 10, and 15 min. It can be seen from the X-ray diffraction pattern that peaks corresponding to Al 2O 3 have almost completely dis-appeared in the X-ray pattern for the AA6061/Al 2O 3composite (Fig. 4). These results indicate a high degree of coverage of Al 2O 3 particles by the Alu-minium alloy. Crystallite size values were calculated basing on the X-ray structural analysis results (see T able 2).

As described above, the diminishing of the crys-tallite sizes of Al and Al 2O 3 takes place when they

372M. H ü

ller, G. G. Chernik, E. L. Fokina and N. I. Budim

Fig. 4. X-ray diffraction pattern for Al 2O 3 milled in air at 50 g for 5 min (curve 1) and composite AA6061/Al 2O 3 mechanically alloyed in Ar atmosphere at acceleration 28 g for 15 min (curve 2).

are milled separately (at 50 g). Furthermore, dur-ing the process of mechanical alloying in the plan-etary mill at an acceleration of 28 g further reduc-

tion of crystallite size is going on, as well as the encapsulation of Al 2O 3 particles with Al alloy. The coverage degree of Al 2O 3

particles was determined

Fig. 5. X-ray diffraction pattern for AA6061/NiTi composite (components pre-milled separately at accel-eration 50 g) mechanically alloyed in Ar at acceleration 28 g for 10 min.

373

Mechanical alloying in planetary mills of high accelerations Fig. 6. Image of AA6061+NiTi composite, with com-ponents pre-milled separately at 50 g, mechani-cally alloyed at 28 g for 15 min and additionally mechanically alloyed with initial AA6061 at 6.5 g for 4 h.

according to E. L. Fokina’s technique based on the determination of the optical path depth of X-rays in various materials; the data are presented in Table 3. A high degree of coverage of the reinforcement particles by Aluminium (97.5 %) was observed.

Al alloy AA6061/ NiTi composite

Aluminium alloy AA6061 pre-milled at 50 g for 20min in Ar atmosphere and NiTi pre-milled at 50 g during 88 min were used. A batch containing 10vol.% NiTi was mechanically alloyed in the TTD planetary mill MPP-1 at 28 g during 5, 10 and 15min. In Fig. 5 a fragment of an X-ray pattern taken for the composite AA6061/NiTi mechanically al-loyed for 10 min is reproduced. A strong amorphization of NiTi can be observed. Both pow-ders show crystallite size in the nanoscale range.As a result of mechanical alloying at an accelera-tion of 28 g reinforcement particles are coated with Al alloy, which is beneficial for the good distribu-tion in the metal matrix.

This pre-alloyed at 28 g for 15 min NiTi+AA6061powder was used for further mechanical alloying for 4 h with the initial AA6061 by means of conven-tional milling at low acceleration (Pulverisette 6,acceleration 6.5 g). It seems that the Al alloy coat-ing on the surface of the NiTi particles improved the adhesion of the initial AA6061 powder (Fig. 6).The micrographs show that the particle-matrix in-terface is very good irrespective of the size of the reinforcement particles. As the layers of the matrix material on the surface of the NiTi particles are rather thin, these particles could easily be distrib-uted in the initial AA6061 powder by a subsequent milling process. This indicates that pre-alloying at high accelerations activated the powders and pro-vided a second phase that could easily be intro-duced into the metal matrix.

5. CONCLUSIONS

The influence of the centrifugal factor was studied for the process of metal matrix composite prepa-ration. The separate milling of the powders of the Aluminium alloy AA6061 and reinforcements NiTi and Al 2O 3 and the mechanical alloying of these components were performed in the planetary mills of different accelerations.

It was demonstrated that during milling of Al alloy in the TTD planetary mill at an acceleration of 28 g for only 30 min it was possible to diminish particle size down to 8 mm and to obtain a narrow particle size distribution. The milling time in the planetary

mill of 28 g acceleration is much lower than in mill-ing devices of lower energy density. The crystallite

374M. Hüller, G. G. Chernik, E. L. Fokina and N. I. Budim size attained can be as low as 40 nm. The milling

time needed to achieve a crystallite size of the na-

nometer scale in planetary mills of high accelera-

tions is significantly lower compared to the values

reported in the literature for milling in an attritor and

in a SPEX mill (Table 2).

The milling of Al alloy in the TTD planetary mill

of 50 g acceleration in Ar atmosphere resulted in

obtaining a crystallite size in the nanoscale region

in only 20 min. The milling of reinforcement par-

ticles of NiTi required 88-160 min; flat flake-like

shape of the particles was beneficial for embed-

ding of the reinforcements in the metal matrix.

The mechanical alloying of AA6061/NiTi and

AA6061/Al

2O

3

metal matrix composites (with pre-

milled components) was performed in the planetary mill at 28 g for only 15 min. During the process of mechanical alloying the further reduction of crys-tallite size took place, yielding nanoscale crystal-lite size for all the components. The encapsulation of reinforcement particles with Al alloy was re-vealed. A high degree of coverage (97.5%) of the reinforcement particles by the Aluminium alloy was achieved. Subsequent mechanical alloying at low acceleration (6.5 g) for 4 h resulted in homoge-neous distribution of NiTi reinforcements in the matrix and in a good connection to the matrix.

Thus, fast mechanical alloying at an accelera-tion of 28 g of the components activated at a higher acceleration provided metal-coated particles which could be easily distributed in the metal matrix by a subsequent milling process. Therefore, planetary mills of high accelerations can substantially reduce the time of production of nanocrystalline metal matrix composites. ACKNOWLEDGEMENTS

The grant of the 6th Framework Program NMP2-CT-2004-505885 is gratefully acknowledged. We are indebted to Dr. V.G. Kochnev and his co-work-ers at the TTD company (T echnics and Technol-ogy of Disintegration, Russia) for milling of the samples in the TTD planetary mills. REFERENCES

[1] R. R. Sawtell and C.L. Jensen // Metallurgical

Transactions. A21A (1990) 421.

[2] E. Hellstern, H.J. Fecht, Z. Fu and W.L.

Johnson // J.Appl Phys.65 (1989) 305. [3] H.J. Fecht, E. Hellstern, Z. Fu and W.L.

Johnson // Adv. Powder Metall. 1 (1989) 11.

[4] Z.Y. Ma, Y.L. Li, Y. Liang, F. Zheng, J. Bi and

S.C. Tjong // Mater. Sci.Engineering A 219

(1996) 229.

[5] M.S. El-Eskandarany // J. Alloys Compounds

279 (1998) 263.

[6] A. Malchere, M. Grosbras, D.L. Demenet,

L. Bresson and E. Gaffet // Materials Science Forum225-227 (1996) 763.

[7] M.V. Chaikina, Mechanochemistry of Natural

and Synthetic Apatites (Novosibirsk, 2002), In Russian.

[8] V.G. Kochnev, Planetary mill, RU Patent

1358990 (1992).

[9] E.L. Fokina, N.I. Budim, V.G. Kochnev and

G.G. Chernik // J. Mater. Sci.39 (2004) 5217.

[10] A.N. Streletskii, V.I. Lapshin and E.L. Fokina

// Kinetika i kataliz30 (1989) 1064, In

Russian.

[11] F. Zhou, J. Lee, S. Dallek and E.J. Lavernia

// J. Mater. Res.16 (2001) 3451.

[12] J. Eckert, J.C. Holzer, C.E. Krill and W.L.

Johnson // Materials Science Forum88-90

(1992) 505.

[13] www.ttd.spb.ru

行星式球磨机YXQM-0.4L技术参数

品牌MITR米淇 型号(油封静音)行星式球磨机MITR-YXQM-0.4L 声音处理油封静音处理技术(专利号ZL 2014 2 0375569.1)研磨罐体积(ml)50ml-100ml 常规研磨罐材质选择金属材质选择:304不锈钢、硬质合金(YG8) 非金属材质选择:陶瓷/刚玉/氧化铝、氧化锆、玛瑙高分子材质选择:尼龙、聚氨酯、聚四氟乙烯 常规磨介材质选择不锈钢、陶瓷/刚玉/氧化铝、氧化锆、玛瑙、硬质合金每罐最大装料物料和磨介不超过容积的1/3 进料粒度松脆物料小于10毫米,其它小于3毫米单个研磨罐装料量50ml(装16ml料)100ml(装33ml料) 出料粒度最小可至0.1微米 研磨方式干法/湿法/高能合金化研磨/真空磨/低温磨(后两者需定制) 转速公转最大0-450r/min,自转0-900r/min 转速比(公转:自转)1:2 调速方式PLC变频控制系统、触摸屏幕控制系统可选 传动方式齿轮传动 磨球比例(具体数量比咨询客服)右侧仅为参考,实际以每个客户实验要求进行配比,精准配置咨询销售客常规研磨800目以上(5mm:10mm:15mm)进料3mm以下 精细研磨800-1500目(3mm:5mm:10mm)进料1mm以下 超细研磨1500目(0.1~10μm)以上(1mm.3mm:5mm)进料200目以下 工作电压220V 电机功率与变频功率0.55Kw 工作方式两个或四个罐同时工作 最大连续工作时间72小时(定时器0-9999h) 程控控制球磨机采用高科技微电脑晶片控制,可按设置程序正转、反转反复交替运行(0-999min)及正转、暂停、反转、暂停、正转(0-999min)交替运行,特别适合需要冷却或者需要间断运行之需要

QM-3SP4行星式球磨机使用说明书

QM-3SP4 行星式球磨机使用说明书 1、工作原理 QM 系列行星式球磨机是在一大盘上装有四只球磨罐,当大盘旋转时 (公转)带动球磨罐绕自己的转轴旋转(自转),从而形成行星运动。 公转与自转的传动比为1:2(公转一转,自转两转)。罐内磨球和磨 料在公转与自转两个离心力的作用下相互碰撞、粉碎、研磨、混合试 验样品。 2、可配球磨罐:容积(单罐容积,单位:毫升):50、100、150、250、300、400、500。 球磨罐最大装料量:罐容积的四分之三(包括磨球)。 上述各项检查无误后即可装罐。 a、装磨球:为了提高球磨效率,罐内装入大小不同的磨球,大球主要 作用是砸碎粗磨料,小球则用于磨细及研磨,使磨料磨到要求的细度。 下表列出各种规格球磨罐的配球数(仅供参考) 罐容积(ml) 50 100 150 250 300 400 500 球φ6 50 100 150 280 330 420 500 (粒)φ10 8 16 24 40 48 80 100 φ20 2 2 3 注:最佳配球数根据磨料性质及要求细度,用户自行在实践中得出经验数据。 b、装磨料 进料粒度:松脆材料≤10 ㎜,其它料≤3 ㎜。 球磨前磨料粒度要求:松脆磨料不大于10mm,其他磨料一般小于3mm。装料不超过罐容积的四分之三(包括磨球)。 c、装球磨罐 装罐完毕即可将球磨罐装入球磨机拉马套内,可同时装四个球磨罐, 亦可以对称安装两个,不允许只装一个或三个。安装后利用两个加力 套管(本机附件)先拧紧V 型螺栓,然后拧紧锁紧螺母,以防球磨时 磨罐松动。 注意:拧螺栓、螺母时不允许用锤敲击。 球磨罐安装完毕,罩上保护罩,安全开关被接通球磨机才能正常运行。 球磨过程中如遇意外,保护罩松动或脱落,安全开关断开,球磨机立 刻停转,意外排除后重新罩上保护罩,再重新启动。球磨完毕,用加 力套管先松开锁紧螺母,再松开V 型螺栓即可以卸下球磨罐,把试样 和磨球同时倒入筛子内(本机附件),使球和磨料分离。再次球磨前 先检查一遍拉马套有无松动,如松动,必须拧紧螺丝,以防意外。卸 球磨罐时注意。球磨时由于磨球之间、磨球与磨罐之间互相撞击,长 时间球磨后罐内的温度和压力都很高,球磨完毕,需冷却后再拆卸。

XQM-2L球磨机再验证方案及报告

2012年XQM-2L型球磨机再验证方案及报告 1. 目的 对XQM-2L型球磨机的安装、运行和性能进行再验证,作出该设备能适应工艺的评估。 2. 适用范围 本方案适用于XQM-2L型球磨机的再验证。 3. 职责 设备动力科:负责该设备验证方案的起草,并负责组织方案的实施。 生产车间:负责性能确认的实施,并协助性能确认方案的起草。 质量部QC:负责该设备验证方案中相关检验任务,确保检验结论正确可靠。 质量部QA:协助该设备验证方案的组织实施;起草验证报告;根据批准的验证报告发放验证合格证书。 验证委员会成员:审核该设备验证方案和报告。 生产技术部经理:批准该设备验证方案和报告。 4、概述

XQM-2L型球磨机用于公司片生产,是在同一转盘上装有四个球磨罐,当转盘转动时,球磨罐在绕转盘轴公转的同时又围绕自身轴心自转,作行星式运动。罐中磨球在高速运动中相互碰撞,研磨和混合样品。该设备2008年12月购置,2009年04~05月验证合格,此次是再验证,确认该设备各项性能指标是否发生漂移,是否满足生产工艺需要。 5. 设备安装再确认 5.1 文件及资料 确认人:日期: 确认人:日期: 5.3 电源配置及参数 5.3.1电源配置 本设备使用电源由楼层配电柜统一提供,电源线路为三相四线制BVV敷设,能符合目前我国电气规范。 确认人日期: 5.3.2 性能参数

传动方式:齿型带传动 控制方式:变频控制 工作方式:两个或四个球磨罐同时工作 最大装样量:球磨罐容积的三分之二 进料粒度:土壤料≤10mm 其它料≤3mm 出料粒度:最小可达0.1um 转速:公转: 50~400转/分钟 自转: 100~800转/分钟 定时时间:1~9999分钟 交替运行定时时间:1~99分钟 电机功率:0.75kw、220V、50HZ 5.4 设备安装确认小结 结论人:日期: 6 设备运行再确认 6.1 运行确认目的及范围 目的:XQM-2L在空运行时能稳定的运行且能达到设计标准。 范围:XQM-2L球磨机标准操作规程(SOP)的步骤进行操作至运行正常。 6.2 设备运行测试 确认人:日期: 6.3 设备运行确认小结 确认人:日期:

球磨机使用说明

一、实验用行星球磨机的简介: 迪斯普行星球磨机,也叫行星球磨仪、行星式球磨机、行星式球磨仪、行星磨等;行星球磨机是混和、细磨、小样制备、新产品研制和小批量生产高新技术材料的必备装置。迪斯普行星球磨机体积小、功能全、效率高、噪声低,是科研单位、高等院校、企业实验室获取研究试样(每次实验可同时获得四个样品)的理想设备,配用真空球磨罐,可在真空状态下磨制试样。 行星球磨机广泛应用于地质、矿产、冶金、电子、建材、陶瓷、化工、轻工、医药、环保等部门,适用于电子陶瓷、结构陶瓷、磁性材料、钴酸锂、锰酸锂、催化剂、荧光粉、长余辉发光粉、稀土抛光粉、电子玻璃粉、燃料电池、氧化锌压敏电阻、压电陶瓷、纳米材料、圆片陶瓷电容、MLCC、热敏电阻(PTC、 NTC)、ZnO压敏电阻、介质陶瓷、氧化铝陶瓷、氧化锆陶瓷、荧光粉、氧化锌粉料、氧化钴粉料、Ni-Zn铁氧体、Mn-Zn铁氧体等产品的生产领域。 二、实验用行星球磨机原理: 行星球磨机是在一转盘上装有四个球磨罐,当转盘转动时,球磨罐随着转盘转动,同时球磨罐在齿轮的带动下自身由中心轴带动作行星运动,罐中磨球在高速运动中做不规则运动产生冲击、剪切、研磨力达到研磨和混和样品的目的。行星球磨机能用干、湿两种方法粉碎和混和粒度不同,材料各异的产品,效率高、效能大、研磨产品最小粒度可至0.1微米(即1.0×10-4mm)甚至纳米级。

三、行星球磨机技术参数: 1、传动方式:齿轮传动; 2、工作方式:两个或四个球磨罐同时工作; 3、最大装样量:球磨罐容积的三分之二; 4、球磨罐体积:每罐0.05L-50L,总体积0.2L-200L; 5、进料粒度:土壤料≤10mm ,其他料≤3mm ; 6、出料粒度:最小可达0.1um ; 7、转速比(公转:自转):1:2 8、转速(自转):0-900转/分钟(普通型), 0-1400转/分钟(高速型); 9、调速方式:无级调速,转速精度0.2转/分钟; 10、程控控制:球磨机采用高科技微电脑晶片控制,可按设置程序正转、反转反复交替运行(0-999min)及正转、暂停、反转、暂停、正转(0-999min)交替运行,特别适合需要冷却或者需要间断运行之需要; 11、最大连续工作时间(满负荷):72小时(定时器0-9999h); 12、球磨罐各种材质可选: 玛瑙、氧化铝刚玉陶瓷、氧化锆陶瓷、氮化硅陶瓷、碳化硅陶瓷、不锈钢、高耐磨钢、锰钢、尼龙、聚四氟乙烯、聚氨酯、硬质合金、水晶玻璃、其它特殊金属材质等等; 13、球磨介质可选:

压电陶瓷综合实验

信息功能陶瓷材料综合实验 高春华黄新友 江苏大学材料科学与工程学院

序言 “信息功能陶瓷材料综合实验”是为大学生“陶瓷工艺学”、“无机材料物理性能”、“电子元器件概论”和“无机材料研究方法”等课程及实验编写的。 本实验是由十个综合实验所组成的系列实验,包括材料工艺实验:配料与混合、可塑法成型工艺、主晶相的固相法合成、硅碳棒电炉的使用、陶瓷的金属化与封接、压电陶瓷的极化等;材料性能评价实验:差热分析、陶瓷介电性能的测定、陶瓷压电性能的测定、PTC热敏陶瓷阻温特性测定等,以及进行信息功能陶瓷材料研究所需的基本技术实验。通过此系列实验,能使学生全面掌握信息功能陶瓷材料的研究和生产的整套生产工艺过程。 一实验目的 信息功能陶瓷材料综合实验,起着验证和巩固基本理论的作用,并可培养学生掌握有关材料的基本研究方法,是加强理论联系实际的重要环节之一。而且,也能够训练实验操作技能,培养分析、综合与处理实验数据的能力,能对提高学生的综合素质、动手能力、创新能力越到重要的促进作用。 二实验要求 实验前应该作好充分准备,弄清实验原理、实验目的、要求以及实验条件和可能产生偏差的因素等。 实验过程中应该操作准确、观察细心、正确地记录有关实验数据,并将实验过程中的异常现象及时记录下来。 实验数据的可靠性是分析与阐明实验结果,并作出必要结论的关键所在,所以在整个实验过程中,都应注意将实验误差限制在尽可能小的范围内,因此,对每一实验的操作、读数、记录都应认真对待,一丝不苟。 三注意事项 1.自觉遵守实验室规则。 2.实验前应根据实验讲义进得充分准备,实验前经老师提问合格后,方可开始实验。 3.实验过程中,严肃认真,保持实验室安静。严格按操作规程进行,注意安全,爱护仪器。 4.实验时,每个学生都应了解、掌握整个实验过程。 5.实验完毕,必须将实验记录交教师检查,合格者方可结束实验,不合格者重新进行实验。 6.每人必须认真填写一份实验报告,实验报告除包括必要的实验目的及原理以外,还应包括原始数据、计算方法、必要的数据表格与图形,主要的实验过程等。另外,还应对实验结果作必要的讨论,分析引起偏差的原因。书写应清楚整洁。7.实验时应保持实验台整洁,实验结束后应整理仪器,作好室内清洁卫生。

QM-3SP4行星式球磨机触摸屏说明书

QM-3SP4行星式球磨机 使用说明书 一、概况 1、用途 QM系列行星式球磨机能用干、湿两种方法磨细或混合粒度不同、材料各异的固体颗粒、悬浮液和糊膏。如果用真空球磨罐则可以在真空或惰性气体中研磨、混合样品。经过许多科研、企业单位的使用、我厂生产的QM系列行星式球磨机研磨材料的粒度完全能够达到纳米级水平,根据用户反馈已达到30纳米(0.03μm)左右。该系列球磨机广泛适用于地质、冶金、土壤、建材、化工、轻工、医药、电子、陶瓷、电池、环保等领域。 随着科技高速发展,纳米材料的广泛应用,20世纪80年代发现的机械合金化(MC)更赋予QM系列行星式球磨机新的使命。机械合金化的基本过程是几种金属或非金属元素的粉末颗粒在球磨机中反复混合、破碎和冷焊,在球磨过程中逐渐细化至纳米级,并在固态下形成合金相的核。使过去传统熔炼工艺难以实现的某些物质在球磨过程中实现合金化。许多单位使用我厂生产的球磨机实现了多种合金粉末,如纳米晶硬质合金、Nd60Fe20Al10CO10非晶合金粉末、Al2O3/Al复合粉末等。 2、工作原理 QM系列行星式球磨机是在一大盘上装有四只球磨罐,当大盘旋转时(公转)带动球磨罐绕自己的转轴旋转(自转),从而形成行星运动。公转与自转的传动比为1:2(公转一转,自转两转)。罐内磨球和磨料在公转与自转两个离心力的作用下相互碰撞、粉碎、研磨、混合试验样品。 3、特点 A、QM-3SP4齿轮传动行星轮系,本公司采用自润滑增强性工程塑料制造,即确保 了机械强度,又降低了噪音。 此产品为我公司专利产品。 B、间隔运行功能:为了防止球磨产生过热而影响材料的性能和品质,本机可按“运

球磨机的说明书

球磨机使用说明书一、机器用途、机构及原理 球磨机被广泛的用于选矿厂、耐火材料厂、水泥厂、玻璃厂等工业部门中供细磨中等硬度物料之用。湿式是将物料渗水进行湿磨,干式则不允许渗水而进行干磨。 机器的结构和工作原理 球磨机主要是由给料部、进料部、筒体部和出料部等工作部分以及轴承部、传动部、减速机、联轴器等传动部件组成的。筒体是用钢板焊成、两端用螺栓分别与进、出料中空轴相连接,并水平的支承在两个主轴承上,在进、出料中空轴颈内部又装有可换的衬套并把它用作进出料的通路,筒体内壁装有高锰钢衬板及白口铁衬板,筒内装有一定数量的研磨介质(球或棒)及待磨物料。当筒体以选得的正确速度绕水平轴旋转时,由于离心力的作用,使混合物的质点在筒体内上升到一定的高度,然后自筒体内壁断离而沿抛物线的轨迹下落,物料的磨细,一方面是由于落到物料上沉重的介

质(球或棒)的撞击作用而破碎,另一方面物料是在介质与介质间和介质与筒体内壁间压碎及物料在筒体内滚动而磨碎。连续工作的磨机,被磨物料从磨机进料端不断的连续给入,磨细的产品借助边疆给入物料的催力,水力(湿法生产)或风力(干法生产)以及提升格子板的提取作用从磨机另一端排出机外。机器的技术参数(点击查看) 二、安装说明(一)安装基础说明1、球磨机必须安装在已经干燥的坚固的钢筋混凝土基础之上。 2、基础不许有显著的倾斜与下沉,如有少许下沉亦应是均衡的和水平的,否则不能进行安装。 3、球磨机的基础与地平面应有足够的高度,以供更换衬板及研磨介质之用。 4、基础的设计可参考本厂的地基部图进行,但不可将该图直接用作基础施工工作图。 (二)安装前的准备工作 1、在安装前必须将所有的零件和部件的加工工作表面上的防锈油防护物及

高效立式行星球磨机设计说明书

目录 摘要 (2) 绪论 (3) 一.图片及实例 (8) 二.技术参数 (8) 三.高效行星球磨机的几项考核措施 (9) 四.高效行星球磨机特点 (9) 五.分析工作原理及选择电动机 (10) 1. 电动机类型的选择 (10) 2. 确定电动机的功率 (11) 3. 确定电动机的转速 (13) 六.主轴的结构设计 (18) 七.小轴的设计 (22) 八.齿轮的设计 (27) 九.下箱体的设计 (31) 十.大小轮槽设计 (31) 十一. 带传动设计 (32) 十二. 参考文献 (34) 十三. 致谢 (35)

摘要 球磨机是通过圆筒内的钢球在材料之上作用来碾磨材料的,是一种能有效的碾磨多种材料的工具。其被广泛地被用于建材、化工、选矿等行业。 球磨机的能量利用率很低,这和物料在磨内分布情况有极大的关系。越靠近筒体的外层运动轨迹,研磨作用越大。而磨机实际生产时,物料进入筒体就直接落入内层,内层的物料要经过较长时间才能进入外层充分碾磨,从而损失了大量能量。 为了使物料合理地分布,对磨机进料部分进行改进。将旧式的直角下料溜改为倾角式下料溜,使物料溜角大于休止角,物料顺畅进给。合理的选取进料点,使物料直接进入筒体外层。最后通过计算和一些经验数据,确定进料装置的材质,物料填充率,筒体适应转速和磨机功率等相关参数。

Abstract Ball mill winch grinds material by rotating a cylinder with steel grinding balls, is an efficient tool for grinding many materials into fine powder. It is widely used in building material, chemical industry, etc. A Ball Mill The ball mill energy use factor is low, the distribution situation has the enormous relations with the material in grinding. Therefore discovered more approached the grinding machine outer layer, the abrasive action is bigger. When grinding machine actual production, the materials entered the mill to fall directly the inner layer, the process dynamics analysis, the inner layer material had to through the long time to enter the outer layer, reduced the production efficiency greatly. In order to cause the material to be quickly even, it has made the improvement to grinding machine feeding. First the old-style right angle feeding change the inclination angle type, then slide the angle to be bigger than stops the angle, will cause the material fast smoothly to enter. Then reasonable selection feeding spot, causes the material to enter the tube body outer layer directly. Finally through the computation and empirical dates, had determined the device material, the material feeding rate, the mill the rotational speed and the grinding machine power and so on. 绪论 全自动立式超微球磨粉碎机(简称球磨机)。其工作原理:在一转盘上装有4个球磨罐,当转盘转动时,球磨罐在绕转盘轴公转、的同时又绕

深度解析球磨机工作原理,详细讲解球磨机内部结构

深度解析球磨机工作原理,详细讲解球磨机内部结构 球磨机工作原理: 球磨机是物料被破碎之后,再进行粉碎必不可少的关键设备。广泛应用于生产行业,包括:水泥,硅酸盐制品,新型建筑材料、耐火材料、化肥、黑有色金属选矿以及玻璃陶瓷等等。那么球磨机工作原理是什么呢?球磨机的内部结构是怎样的?中国球磨机交易网将为您一一解答。 球磨机是由水平的筒体,进出料空心轴及磨头等部分组成,筒体为圆筒较长,筒内装有研磨体,筒体采用钢板制造,有钢制衬板与筒体固定,研磨体一般使用钢制圆球,并按不同直径和一定比例装入筒中,研磨体也可用钢段,根据研磨物料的粒度加以选择,物料由球磨机进料端空心轴装入筒体内,当球磨机筒体转动时候,研磨体由于惯性和离心力作用,摩擦力的作用,使它帖附近筒体衬板上被筒体带走,当被带到一定的高度时候,由于其本身的重力作用而被抛落,下落的研磨体像抛射体一样将筒体内的物料给击碎。 物料由进料装置经入料中空轴螺旋均匀地进入球磨机第一仓,该仓内有阶梯衬板或波纹衬板,内装不同规格钢球,筒体转动产生离心力将钢球带到一定高度后落下,对物料产生重击和研磨作用。物料在第一仓达到粗磨后,经单层隔仓板进入第二仓,该仓内镶有平衬板,内有钢球,将物料进一步研磨。粉状物通过卸料箅板排出,完成粉磨作业。 筒体在回转的过程中,研磨体也有滑落现象,在滑落过程中给物料以研磨作用,为了有效的利用研磨作用,对物料粒度教大的一般二十目磨细时候,把磨体筒体用隔仓板分隔为二段,即成为双仓,物料进入第一仓时候被钢球击碎,物料进入第二仓时候,钢端对物料进行研磨,磨细合格的物料从出料端空心轴排出,对进料颗粒小的物料(如砂二号矿渣、粗粉煤灰)进行磨细时候,球磨机筒体可不设隔板,成为一个单仓筒磨,研磨体也可只用钢段。 以格子型球磨机(卧式筒形旋转装置,外沿齿轮传动,两仓)为例:物料由进料装置经入料中空轴螺旋均匀地进入球磨机第一仓,该仓内有阶梯衬板或波纹衬板,内装不同规格钢球,筒体转动产生离心力将钢球带到一定高度后落下,对物料产生重击和研磨作用。物料在第一仓达到粗磨后,经单层隔仓板进入第二仓,该仓内镶有平衬板,内有钢球,将物料进一步研磨。粉状物通过卸料箅板排出,完成粉磨作业。 球磨机主要部分包括:给料部、出料部、回转部、传动部(减速机,电机,电控,小传动齿轮)。中空轴采用铸钢件,内衬可拆换,回转大齿轮采用铸件滚齿加工,筒体内镶有耐磨衬板,具有良好的耐磨性。球磨机整机运转平稳,工作可靠。

球磨机安装施工方案(精选.)

球磨机安装施工方案 一、工程概况 该工程为新疆千鑫矿业有限公司2500t/a选矿厂球磨机安装工程,3.6米*6.7米湿式溢流型球磨机重约170吨。安装在主厂房CD 跨11米平台上,是该项目主要设备之一。溢流型球磨机主要有同步电机、空气离合器、高压开关柜、大小齿轮传动部分、筒体。主轴承、进出部励磁部、传动部,空压机、顶起装置、油站及润滑装置等组成。设备中最重单体约30吨,车间有一台32/5t的的行车可供安装时使用。 二、编制依据 2.1 球磨机基础图 2.2 球磨机安装图 2.3球磨机厂家提供的安装资料及使用说明 2.4机械设备安装施工规范 2.5重型设备吊装手册 2.6国家规范及现行标准 2.7建设单位的有关制度、规定 三、施工前准备 3.1组织相关技术人员熟悉工程图纸,并根具现场实际情况编制施工方案。 3.2熟悉规范和工艺标准,做好技术交底工作。 3.3准备施工专用输电线路,并采取有效措施保证畅通。 3.4设备进场的道路要平整坚实,有足够的宽度和转弯半径。

3.5设备的卸车场地要平整坚实。 3.6配置本工程所需的测量仪器、专用工具和吊装机具。 3.7组织施工人员进行相应技术、质量和安全教育。 四、安装的工艺和方法 4.1安装程序 施工准备及设备运输→设备验收→清洗、注油、检查→基础验收及复测→基础螺栓及底板→主轴承→回转部分(筒体、进出料)→传动部分(大小齿轮、联轴器、慢速传动装置)→电动机→给料部分→齿轮罩(包括稀喷雾装置)→高低压润滑油站→输油、输水管路→安全罩、扶手、栏杆→主电动机干燥→空负荷试运转→负荷试运转→交付使用。 4.2安装要点及要求 4.2.1施工准备 设备安装前,对临时设施、运输道路、水源、电源、照明、消防、机具、劳动力等做好充分准备,合理安排。 4.2.2组织全体施工人员、现场管理人员学习、熟悉工艺图、设备图、设备技术文件、有关国家标准、施工及验收规范,做到准备充分,心中有数。 4.2.3设备验收 设备的验收在业主及供货商有关人员参加下进行,设备开箱按下列项目进行检查,并做记录。 (a)、箱号、箱数以及包装情况。

行星球磨机

行星球磨机 型 号 介 绍 来源:南京途威商贸有限公司 热线:4008-585-600 产品用途: 行星式球磨机是混和、细磨、小样制备、新产品研制和小批量生产高新技术材料的必备装置。该产品体积小、功能全、效率高、噪声低,是科研单位、高等院校、企业实验室获取研究试样(每次实验可同时获得四个样品)的理想设备,配用真空球磨罐,可在真空状态或惰性气体保护状态下磨制试样。广泛应用于地质、矿产、冶金、电子、建材、陶瓷、化工、轻工、医药、环保等部门。 QM系列行星式球磨机是在一转盘上装有四个球磨罐,当转盘转动时,球磨罐中心轴作行星运动,罐中磨球在高速运动中研磨和混和样品。该产品能用干、湿两

种方法粉碎和混和粒度不同,材料各异的产品,研磨产品最小粒度可至0.1微米(即1.0×10-4mm) 型号规格: 型号规格 球磨罐 单价备注规格(ml)数量(个/套) QM-3SP04 0.4L 50~100 4 12000 可配50ml真空球磨罐 QM-3SP2 2L 100~500 4 16000 可配100~250ml真空球磨罐QM-3SP4 4L 250~1000 4 18000 可配250~500ml真空球磨罐QM-2SP12 12L 1000~3000 4 27000 可配1000~2000ml真空球磨罐QM-2SP20 20L 1000~5000 4 30000 可配3500ml真空球磨罐 QM-2SP60 60L 10L~15L 4 100000 可配10L真空球磨罐 QM-2SP100 100L 10~25L 4 120000 可配10~20L真空球磨罐 注:QM-3SP型是原QM-1SP型的改进型,QM-1SP型的主机与电源控制器是分开的, 而QM-3SP型的主机和电源控制器组合为一体,造形更加美观,两者的机械性能 和电器性能都是一样的。 技术指标: 传动方式:齿轮传动 工作方式:两个或四个球磨罐同时工作 最大装样量:球磨罐容积的三分之二 进料粒度:土壤料≤10mm ,其他料≤3mm 出料粒度:最小可达0.1um 转速比(公转:自转):1:2(0.4L,2L,4L);1:1.9(12L);1:1.5(20L,60L,100L)

球磨机的工作原理及球磨机的研磨体的运动分析上

1.1 球磨机工作原理及研磨体运动的基本状态 1.1.1 球磨机工作原理 球磨机的主要工作部分是一个装在两个大型轴承上并水平放置的回转圆筒,筒体用隔仓板分成几个仓室,在各仓内装有一定形状和大小的研磨体。研磨体一般为钢球、钢锻、钢棒、卵石、砾石和瓷球等。为了防止筒体被磨损,在筒体内壁装有衬板。 图1 磨机粉磨物料的作用 当球磨机回转时,研磨体在离心力和与筒体内壁的衬板面产生的摩擦力的作用下,贴附在筒体内壁的衬板面上,随筒体一起回转,并被带到一定高度(如图1所示),在重力作用下自由下落,下落时研磨体像抛射体一样,冲击底部的物料把物料击碎。研磨体上升、下落的循环运动是周而复始的。此外,在磨机回转的过程中,研磨体还产生滑动和滚动,因而研磨体、衬板与物料之间发生研磨作用,使物料磨细。由于进料端不断喂入新物料,使进料与出料端物料之间存在着料面差能强制物料流动,并且研磨体下落时冲击物料产生轴向推力也迫使物料流动,另外磨内气流运动也帮助物料流动。因此,磨机筒体虽然是水平放置,但物料却可以由进料端缓慢地流向出料端,完成粉磨作业。 1.1.2研磨体运动的基本状态 球磨机筒体的回转速度和研磨体的填充率对于粉磨物料的作用影响很大。当筒体以不同转速回转时,筒体内的研磨体可能出现三种基本状态,如图7.2所示。 图7.2(a),转速太慢,研磨体和物料因摩擦力被筒体带到等于动摩擦角的高度时,研磨体和物料就下滑,称为“倾泻状态”,对物料有研磨作用,但对物料的冲击作用很小,因而使粉磨效率不佳;图7.2(c),转速太快,研磨体和物料在其惯性离心力的作用下 图7.2 筒体转速对研磨体运动的影响 (a)低转速;(b)适宜转速;(c)高转速 贴附筒体一起回转(作圆周运动),称为“周转状态”,研磨体对物料起不到冲击和研磨作用;图7.2(b),转

QM-3SP2行星式球磨机

QM-3SP2行星式球磨机 使用说明书 一、概况 1、用途 QM系列行星式球磨机能用干、湿两种方法磨细或混合粒度不同、材料各异的固体颗粒、悬浮液和糊膏。如果用真空球磨罐则可以在真空或惰性气体中研磨、混合样品。经过许多科研、企业单位的使用、我厂生产的QM系列行星式球磨机研磨材料的粒度完全能够达到纳米级水平,根据用户反馈已达到30纳米(0.03μm)左右。该系列球磨机广泛适用于地质、冶金、土壤、建材、化工、轻工、医药、电子、陶瓷、电池、环保等领域。 随着科技高速发展,纳米材料的广泛应用,20世纪80年代发现的机械合金化(MC)更赋予QM系列行星式球磨机新的使命。机械合金化的基本过程是几种金属或非金属元素的粉末颗粒在球磨机中反复混合、破碎和冷焊,在球磨过程中逐渐细化至纳米级,并在固态下形成合金相的核。使过去传统熔炼工艺难以实现的某些物质在球磨过程中实现合金化。许多单位使用我厂生产的球磨机实现了多种合金粉末,如纳米晶硬质合金、Nd60Fe20Al10CO10非晶合金粉末、Al2O3/Al复合粉末等。 2、工作原理 QM系列行星式球磨机是在一大盘上装有四只球磨罐,当大盘旋转时(公转)带动球磨罐绕自己的转轴旋转(自转),从而形成行星运动。公转与自转的传动比为1:2(公转一转,自转两转)。罐内磨球和磨料在公转与自转两个离心力的作用下相互碰撞、粉碎、研磨、混合试验样品。 3、特点 A、QM-3SP2齿轮传动行星轮系,本厂采用自润滑增强性工程塑料制造,即确保了 机 械强度,又降低了噪音。 此产品为我厂专利产品。专利号:ZL022202595

B、间隔运行功能:为了防止球磨产生过热而影响材料的性能和品质,本机可按“运 行—停机—再运行”的循环模式自动控制各状态的时间。 4、技术参数 型号:QM-3SP2 可配球磨罐:容积(单罐容积,单位:毫升):50、100、250、400、500。 材质:不锈钢、玛瑙、尼龙、聚氨酯、聚四氟乙烯、硬质合金(YG8)、 陶瓷等(玛瑙罐最大可配400毫升)。 类型:普通罐、不锈钢真空罐、不锈钢真空套(配合玛瑙、尼龙、陶 瓷等球磨罐抽真空用)。真空球磨罐容积均不超过250毫升。 球磨罐最大装料量:罐容积的四分之三(包括磨球)。 进料粒度:松脆材料≤10㎜,其它料≤3㎜。 出料粒度:最小可至0.1μm 额定转速:公转(大盘)290转/分±10%,自转(球磨罐):580转/分± 10%。 运行模式:球磨机由变频器控制共有五种运行模式: 1、单向运行,不定时停机; 2、单向运行,定时停机; 3、正、反向交替运行,定时停机; 4、单向间隔运行,定时停机; 5、正、反向交替间隔运行,定时停机。 调速方式:变频调速0~50Hz,分辨率1Hz,本机限速0~45Hz。 控制方式:0~45Hz(0~580转/分)随时手动调节、0.1~100小时定时运 行,0.1~50小时定时正反转,0.1~100小时定时间隔运行,0~ 100次重启动运行。 电机型号:Y802—4 三相交流0.75KW 1400转/分 本机外形尺寸:750×460×590 mm 本机净重:130Kg

球磨机工作原理及技术参数

球磨机工作原理及技术参数第一节球磨机主体技术参数 工作原理 物料经过给料部、进料部进入筒体部。筒体部内装有磨矿介质(钢球),介质与物料随筒体回转产生离心力作用下,当介质提升到一定高度后抛落下来,在磨矿介质对物料的冲击磨剥作用下将物料粉碎,粉碎后的物料借助进料及冲矿水的推力经出料口排出机外,完成磨矿过程。 总技术参数及配备电机型号序 号 项目单位数值 1 设备型号MQY5064 MQY4361 2 筒体内径m 5.0 3 4.27 3 筒体工作长度m 6. 4 6.1 4 筒体工作转速r/min 14.4 15.67 5 筒体有效容积m 3121 80 6 最大充填率45% 45% 7 最大装载 量 钢球t 210 144 物料t 290 202 8 同步电机 型号 TDMK2600 -30 TDMK1750-30 功率kw 2600 1750 电压v 10000 10000 转速r/mi200 200

n 9 气动离合 器 型号 DV46VC12 00 DV38VC1200 10 慢速驱动 装置 型号N111C MJZ2 功率kw 22 15 速比1109 1482.4 输出 轴 转速 r /min 1.11 1.012 第二节主液压站主要参数 型号E658B(MQY5064球磨机液压润滑油站) 设备油 泵 数 量 工作压 力 (MPa) 公称流量 (L/min) 电机 型号功率(KW) 转速 (r/min) 高压 供油系统2 8-10 160 Y2-250M -4 55 1440

低压 供油系统 2 0.26-0. 6 200 Y2-160M- 6 7.5 960 型号E681(MQY4361球磨机液压润滑油站) 设备油泵 数量 工作压 力 (MPa) 公称流 量 (L/mi n) 电机 型号功率(KW) 转速 (r/min) 高压 供油系统2 8-10 100 Y2-180L -4 22 1440 低压 供油系统2 0.26-0. 6 125 Y2-132M2 -6 5.5 960 小齿 供油系统2 0.26-0. 6 10 Y2-90S-6 0.75 2.29

球磨机的工作原理

球磨机的工作原理 一、球磨机的组成结构 球磨机主要由圆柱形筒体、端盖、轴承和传动大齿圈等部件组成。 筒体:其内装入直径为25mm—150mm的钢球或钢棒,称为磨矿介质,其装入量为整个筒体有效容积的25%--50%。 端盖:筒体两端有端盖,利用螺钉与筒体端部法兰相连接,端盖的中部有孔,称为中空轴颈。 轴承:中空轴径支承在轴承上,筒体可以转动。 大齿轮圈:在筒体上固定。 二、磨矿过程介绍 磨矿作业是在球磨机简体内进行的,筒体的磨介随着筒体的旋转而被带到一定的高度后,介质由于自重而下落,装在筒体内的矿石就受到介质猛烈的冲击力;另一方面由于磨介在筒体内沿筒体轴心的公转与自转,在磨介之间及其与筒体接触区又产生对矿石的挤压和磨剥力,从而将矿石磨碎。 球磨机钢球(磨矿介质)当筒体旋转时即被带起并升到一定高度,由于钢球本身的重力作用,最后沿一定的轨道下落。在区域内的钢球受到两种力的作用:一为旋转时自切线方向施于钢球的作用力;一为与钢球直径相对称一面而与上述作用力相反的力,这个作用力的产生是由于钢球本身自重而向下滑动所引起的。上述两种作用力,对于钢球会构成一对力偶,由于钢球是被挤压在筒体与相邻钢球的中间,所以力偶会使钢球之间存在大小不等的摩擦力,钢球随筒体轴心作公转运动时在区域

内自上落下抛落,就在区域里对筒体内的矿石产生强大的冲击作用,将矿石破碎。可以说,在磨机筒体内矿石主要是受磨剥力、冲击力及挤压力的作用而被磨碎的。 三、球磨机的分型 溢流型球磨机:随着筒体的旋转和磨介的运动,矿石等物料破碎后逐渐向右方扩散,最后从右方的中空轴颈溢流而出,因而得名。 格子型球磨机:此类机器在排料端安设有格子板,由若干块扇形孔板组成,其上的箅孔宽度为 7mm—20mm,矿石通过箅孔进入格子板与端盖之间的空间内,然后由举板将物料向上提升,物料延着举板滑落,再经过锥形块而向右至中空轴颈排出机外。 风力排料球磨机:物料从给料口进入球磨机,磨介对物料进行冲击与研磨后,物料从磨机的进口逐渐向出口移动,出口端与风管连接,在系统中串联着分离器、选粉机、除尘器及风机的进口,当风力排料开始运作时,球磨机机体内相对的处于低负压,破碎后被磨细的物料随着风力从出料口进入管道系统,由选粉机将较粗的颗粒分离后重新送入球磨机进口,已经磨碎的物料则由分离器分离回收。

磨机的分类与工作原理

磨机的分类与工作原理 球磨机(包括棒、管磨机)选型设计第一节磨机的分类与工作原理 一、磨机的分类 第一节磨机的分类与工作原理 一、磨机的分类 物料经过破碎机械破碎(粗、中、细破碎)的物料粒度在8-20 mm 之间,为了达到生产工艺所需要的细度要求,破碎后的物料还必须经过粉磨机械磨细。粉磨是现代工业生产中的重要过程。 在选矿、建材、水泥、煤炭、化工、电力、轻工和冶金等工业部门中,都需要磨碎作业,球磨机、振动磨机、气流磨机和其他磨机是这些工业部门的重要设备之一。而球磨机的应用最为广泛,这类粉磨机的主要部件都是一个缓慢旋转的筒体,筒体内装有磨碎介质,由于球磨机结构简单坚固、操作可靠、维护管理简单、能长期连续运转、对物料适应性强、破碎比大(可达300 以上)和生产能力大,所以能满足现代化大规模工业生产的需要。但球磨机的缺点也比较明显,其工作效率低、体型笨重、研磨体和衬板的消耗量大、操作时噪声大,因而在选用粉磨机械时,应综合物料的物性、物料磨碎的要求、操作条件、生产环境、机械能耗、工作效率及基建投资等多种因素,进行比较、筛选后才能决定。由于每一种粉磨机械都有其局限性及优缺点,在选用设备时必须按上述要求进行综合比较,选取最合理的粉磨机械。 1. 按筒体的长度与直径之比分类 (1)短磨机长径比在2以下时为短磨机,或称球磨机。一般为单仓,用于粗磨或一级磨,也可将2-3台球磨机串联使用。 (2)中长磨机长径比在3左右时为中长磨机。 (3)长磨机长径比在4以上时为长磨机或称管磨机。中长磨和长磨,其内部一般分成2-4 个仓。在水泥厂中用得较多。 2. 按磨内装入的研磨介质形状分类 (1)球磨机磨内装入的研磨介质主要是钢球或钢段。这种磨机使用最普遍。 (2)棒磨机磨内装入直径为50 -100 mm 的钢棒作研磨介质。棒磨机筒体长度与直径之比一般为1.5-2。 (3)棒球磨机这种磨机通常具有2-4个仓。在第一仓内装入圆柱形钢棒作为研磨介质,以后各仓则装入钢球或钢段。 棒球磨机的长径比应在5左右为宜,棒仓长度与磨机有效直径之比应在1.2-1.5之间,棒长比棒仓短100mm左右,以利于钢棒平行排列,防止交叉和乱棒。(4)砾石磨磨内装入的研磨介质为砾石、卵石、瓷球等。用花岗岩、瓷料做衬板。用于白色或彩色水泥以及陶瓷生产。 3. 按卸料方式分类 (1)尾卸式磨机欲磨物料由磨机的一端喂入,由另一端卸出,称为尾卸式磨机。 (2)中卸式磨机欲磨物料由磨机的两端喂入,由磨机筒体中部卸出,称为中卸式磨机。该类磨机相当于两台球磨机并联使用,这样设备紧凑,简化流程。 按尾卸式磨机的排料方式有格子排料、溢流排料、周边排料和风力排料等多种类型(见图1-1、图1-2、表1-1)。

QM-1SP4南大仪器厂行星式球磨机使用说明

QM-1SP4行星式球磨机 使 用 说 明 书 一、 概 况 1、用途 QM 系列行星式球磨机能用干、湿两种方法磨细或混合粒度不同、材料各异的固体颗粒、悬浮液和糊膏。如果用真空球磨罐则可以在真空或惰性气体中研磨、混合样品。经过许多科研、企业单位的使用、我厂生产的QM 系列行星式球磨机研磨材料的粒度完全能够达到纳米级水平,根据用户反馈已达到30纳米(μm )左右。该系列球磨机广泛适用于地质、冶金、土壤、建材、化工、轻工、医药、电子、陶瓷、电池、环保等领域。 随着科技高速发展,纳米材料的广泛应用,20世纪80年代发现的机械合金化(MC )更赋予QM 系列行星式球磨机新的使命。机械合金化的基本过程是几种金属或非金属元素的粉末颗粒在球磨机中反复混合、破碎和冷焊,在球磨过程中逐渐细化至纳米级,并在固态下形成合金相的核。使过去传统熔炼工艺难以实现的某些物质在球磨过程中实现合金化。许多单位使用我厂生产的球磨机实现了多种合金粉末,如纳米晶硬质合金、Nd 60Fe 20Al 10CO 10非晶合金粉末、Al 2O 3/Al 复合粉末等。 2、工作原理 QM 系列行星式球磨机是在一大盘上装有四只球磨罐,当大盘旋转时(公转)带动球磨罐绕自己的转轴旋转(自转),从而形成行星运动。公转与自转的传动比为1:2(公转一转,自转两转)。罐内磨球和磨料在公转与自转两个离心力的作用下相互碰撞、粉碎、研磨、混合试验样品。 3、功能 A 、QM 系列行星式球磨机有两种结构不同的行星轮系。 QM-1SP4皮带传动行星轮系。 QM-1SP4-CL 齿轮传动行星轮系,本厂采用自润滑增强性工程塑料,即确保了机械强度,又降低了噪音。 此产品为我厂专利产品。专利号:ZL0 B 、间隔运行功能:为了防止球磨产生过热而影响磨料的质量或其他需要,本机可 按“运行—停机—再运行”的循环模式自动控制各状态的时间。 4、技术参数 型 号:球磨机:QM-1SP4 QM-1SP4-CL 电源箱:QM-1SP4

行星式球磨机说明书样本

行星式球磨机说明书 行星球磨机是在一转盘上装有四个球磨罐, 当转盘转动时, 球磨罐随着转盘转动, 同时球磨罐在齿轮的带动下自身由中心轴带动作行星运动, 罐中磨球在高速运动中做不规则运动产生冲击、剪切、研磨力达到研磨和混和样品的目的。行星球磨机能用干、湿两种方法粉碎和混和粒度不同, 材料各异的产品, 效率高、效能大、研磨产品极小粒度可至0.1微米( 即1.0×10-4mm) 甚至纳米级。 用途: QM-QX全方位行星式球磨机是混和、细磨、小样制备、新产品研制和小批量生产高新技术材料务必具备的装置。该产品体积小、功能全、效率高、噪声低, 是科研单位、高等院校、企业实验室获取研究试样(每次实验可同时获得四个样品)的理想设备, 配用真空球磨罐, 可在真空状态或惰性气体保护状态下磨制试样。该产品能用干、湿两种方法粉碎和混和粒度不同, 材料各异的产品, 研磨产品粒度可至0.1微米(即1.0×10-4mm)。广泛应用于土壤、地质、矿产、冶金、电子、建材、陶瓷、化工、轻工、医药、环保等部门。 型号规格: 型号 规 格球磨罐 备注规格 ( ml) 数量( 个/套) ( 配备相应数量磨球) QM-Q050~ 4 可配50ml真空球

技术指标: 传动方式: 齿轮传动 工作方式: 两个或四个球磨罐同时工作 装样量: 球磨罐容积的三分之二 进料粒度: 土壤料≤10mm ,其它料≤3mm 出料粒度: 极小可达0.1um 转速比(公转: 自转): 1: 2 转速(自转): 0.4L:0~600转/分 2L: 0~580转/分 4L: 0~530转/分 10L: 0~350转/分 20L: 0~270转/分 60L: 0~230转/分 100L: 0~200转/分公、自转总成翻转周期:1分钟 控制方式: 变频无级调速、程控控制, 自动定时正反转、定时关机 连续工作时间(满负荷): 48小时 特点:

应用行星式球磨机进行机械合金化的研究

? 2008 Advanced Study Center Co. Ltd. Corresponding author: Galina G. Chernik, e-mail: galgeorg@yandex.ru MECHANICAL ALLOYING IN PLANETARY MILLS OF HIGH ACCELERATIONS Marco Hüller 1, Galina G. Chernik 2, Elena L. Fokina 2 and Nadezda I. Budim 2 1 Corporate Research Centre Germany, EADS Deutschland GmbH, 81663 Munich, Germany 2 Institute of Chemistry, St. Petersburg State University, Universitetski pr. 26, Petrodvorets, 198504 St. Petersburg, Russia Received: March 29, 2008 Abstract. Mechanical activation effects were studied for metal matrix composites (MMC). Plan-etary mills of high accelerations were applied in super-high energy milling with the aim of obtaining an Aluminium alloy AA6061 containing a finely dispersed hard phase of NiTi or Al 2O 3. During separate milling of the components it was possible to diminish the particle size and obtain a nar-row particle size distribution. The crystallite size attained for Al alloy can be as low as 40 nm. The time of milling in the planetary mills of 28 and 50 g accelerations is much lower than that in the milling devices of lower energy density. During the process of mechanical alloying in the planetary mill further reduction of the crystallite size took place, yielding nanoscale crystallite size for all components. A high degree of coverage of the reinforcement particles by aluminium was achieved.A sample of NiTi mechanically alloyed with AA6061 showed excellent matrix/particle interface and low porosity in the MMC powder. Fine dispersion of NiTi particles was obtained, and the reinforce-ment particles were well distributed in the matrix. The use of planetary mills of high accelerations can significantly accelerate mechanical alloying. 1. INTRODUCTION The quest for new aluminium alloys of better per-formance has been in progress at least since the discovery of practical methods for producing alu-minium itself. Almost from the beginning, the use-fulness of such alloys in high performance aero-space structures was recognized, and research aimed at identifying alloys and processes produc-ing unique combinations of mechanical and physi-cal properties has been ongoing since that time [1]. In this work the following two approaches, us-ing mechanical activation, are investigated to im-prove the performance of commercially used Al alloys. 1. Nanocrystalline materials with grain sizes of the order of 100 nm and below are known to be high-strength materials, with the yield strength of about an order of magnitude higher than that for their coarse-grained counterparts [2]. It has been shown recently that nanocrystalline metals and al-loys can be produced by mechanical treatment.This method introduces large deformations into the material and produces nanocrystalline structure by creating randomly orientated high-angle grain boundaries within conventional polycrystals [3]. Our motivation was to obtain nanocrystalline commer-cial Al alloys by ball milling without using liquid ni-trogen for cooling. 2. Metal matrix composites possess the metal-lic properties of ductility, toughness and environ-mental resistance in combination with the ceramic properties of high strength and high modulus. The widely used commercial particulates generally have a size ranging from a few micrometers to several

相关文档
最新文档