环境应力开裂

环境应力开裂
环境应力开裂

6.1.3聚乙烯环境应力开裂试验(G B1842——1999)

应力开裂是指材料受到低于其屈服点的应力或者说低于其短期强度的应力(包括内应力、外应力以及两种应力的组合)的长期作用下发生开裂而破坏的现象。但这种应力开裂,可能需要很长时间才会发生,当材料暴露于化学介质中,发生应力开裂而破坏的时间就会大大地缩短,因此环境应力开裂就是指材料暴露于化学介质中,受到低于其屈服点的应力或者说低于其短期强度的应力(包括内、外应力以及两种应力的组合)的较长期作用下,发生开裂而破坏的现象。

一、培训准备

1.理论准备

的定义。

掌握应力开裂、应力开裂破损、环境应力开裂时间F

50

了解环境应力开裂试验设备的结构。

2.仪器准备

环境应力开裂试验仪器、测定所需试剂及相应设备。

二、操作步骤

1.试剂

壬基酚聚氧乙烯醚(TX-10,也称OP-10、Oπ-10)或其10%(V/V)水溶液。壬基酚聚氧乙烯醚应贮存在密闭的金属或玻璃容器中以避免其吸湿,TX-10试剂放置时间较长时可进行红外分析,若观察到羰基峰存在,则认为试剂已降解。

配制试剂水溶液时,应将混合液加热到60℃左右,连续搅拌1h。配制好的试剂水溶液应在一个星期内使用,并只使用一次,不得重复使用。

如有特殊需要也可以采用其他表面活性剂、皂类及任何不使试样发生显着溶胀的有机试剂作为试剂。

2.试样制备

按GB/T9352规定采用单功位压机和溢料式模具按照表2-6-1条件制备压塑试片,试片厚度如下:密度小于等于925kg/m3的聚乙烯试片厚度为3.00mm~3.30mm,密度大于925kg/m3的为1.75mm~2.00mm。

表2-6-1试片模塑条件

3.试样状态调节

除非特别指出,试样应GB/T2918规定,在温度23℃±2℃、相对湿度50%±10%条件下状态调节至少40h,但最多不超过96h。试样刻痕、弯曲后应立即开始试验。

4.试验步骤

1)试验条件

试验条件见表2-6-2,密度小于等于925kg3/m3的聚乙烯选择条件A,密度大于925g3/m3的选择条件B。对于部分密度大于940kg/m3的聚乙烯材料可选择条件C。

2)刻痕

对试样进行刻痕,刻痕深度符合表2-6-2要求。

3)将10个刻痕面向上的试样放入试样弯曲装置上,在台钳、平板压床或其他适当的工具上合拢弯曲装置,整个操作过程在30s内完成。用试样转移工具把弯曲好的试样转移到试样保持架中,并使试样两端紧贴试样保持架底部。

4)试样保持架需在10min内放入已盛有预热到规定温度试剂的试管中,试剂液面应高于保持架约10mm。用包有铝箔的塞子塞紧试管,迅速放入已达到温度要求的恒温浴槽中,并开始计时。在操作过程中刻痕不应与试管接触。

5)按下列观察时间检查试样并记录试样破损数目及相应的破损时间。

0.1h,0.25h,0.5h,1.0h,1.5h,2h,3h,4h,5h,6h,7h,8h,12h,16h,20h,24h,32h,40h,48h。48h后每24h观察一次。

6)采用对数—概率坐标作图法确定试样环境应力开裂时间F50,

5.试样数目

检验时,试样数目至少为10个。

6.试验报告

试验报告应包括如下内容:材料的完整标识;试剂名称及浓度;试样数目;

;试验日期及试验条件;试样破损时间及破损几率;试样环境应力开裂时间F

50

检验人员。

三、给您提个醒

1.刻痕的刀片必须光滑、无卷刃,每把刀片刻痕次数不应超过100次。刻痕深度必须满足标准要求,对试样刻痕、弯曲、置于试样保持架及放入玻璃管的过程必须在5min内完成。刻痕时,如室温较低,可先将试片提高温度在刻痕。

2.试验温度过高过低都会对结果带来影响,所以恒温浴面必须高于浸泡介质的液面,避免温度波动的影响。

四、请您想一想

如何采用对数—概率坐标作图法确定试样环境应力开裂时间F50?

6.3.5影响耐环境应力开裂试验测定结果的因素及解决方案

一、培训准备

1.理论准备

掌握耐环境应力开裂试验的测定原理及操作步骤,掌握测定过程中出现异常现象的处理方法。

2.仪器准备

耐环境应力开裂试验装置。

3.试样准备

用于测定的试样。

二、操作步骤

1.检查耐环境应力开裂试验装置,满足试验要求的情况下开始进行样品测试。

2.测定试样,测定结果出现异常,查找原因。

3.参照表3-6-7,总结出现测定结果异常的原因。

4.根据所查找的出现测定结果异常的可能原因,制定完善的解决方案。

5.实施解决方案,确认方案实施效果。如问题解决则进行下一步操作,若问题仍然存在,则继续查找原因和制定、实施解决方案,直至出现测定结果异常现

象消除。

6.重新进行样品测定。

表3-6-7影响耐环境应力开裂试验测定结果的因素

三、给您提个醒

本节中未列出仪器故障、原因分析及解决方案,如在实际测试中遇到该类问题,可查找该仪器的使用说明书进行原因分析和故障处理。

简述耐环境应力开裂的介质配制。[T/]

[D]答:当使用TX-10时,要在60℃搅拌1h(0.2),配制后须在一星期内使用(0.2),不能放置过久(0.2)。实践证明,浓度大小对结果有影响(0.2),每次试验必须使用新配制的介质溶液(0.2)。[D/]

[T]B-H-A-016243

简述刻痕对耐环境应力开裂的影响。[T/]

[D]答:刻痕的刀片必须光滑(0.1)、无卷刃(0.1),每把刀片刻痕次数不应超过100次(0.1)。刻痕深度必须满足标准要求(0.2),对试样刻痕、弯曲、置于试样保持架及放入玻璃管的过程必须在5min内完成(0.2)。刻痕时,如室温较低,可先将试片提高温度再刻痕(0.3)。[D/]

应力腐蚀断裂精编版

应力腐蚀断裂精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

应力腐蚀断裂 一.概述 应力腐蚀是材料、或在静(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有 害物质浓度往往很低,如大气中微量的H 2S和NH 3 可分别引起钢和铜合金的应力腐蚀

应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

金属疲劳应力腐蚀试验及宏观断口分析

金属疲劳、应力腐蚀试验及宏观断口分析 在足够大的交变应力作用下,由于金属构件外形突变或表面刻痕或内部缺陷等部位,都可能因较大的应力集中引发微观裂纹。分散的微观裂纹经过集结沟通将形成宏观裂纹。已形成的宏观裂纹逐渐缓慢地扩展,构件横截面逐步削弱,当达到一定限度时,构件会突然断裂。金属因交变应力引起的上述失效现象,称为金属的疲劳。静载下塑性性能很好的材料,当承受交变应力时,往往在应力低于屈服极限没有明显塑性变形的情况下,突然断裂。疲劳断口(见图1-1)明显地分为三个区域:裂纹源区、较为光滑的裂纹扩展区和较为粗糙的断裂区。裂纹形成后,交变应力使裂纹的两侧时而张开时而闭合,相互挤压反复研磨,光滑区就是这样形成的。载荷的间断和大小的变化,在光滑区留下多条裂纹前沿线。至于粗糙的断裂区,则是最后突然断裂形成的。统计数据表明,机械零件的失效,约有70%左右是疲劳引起的,而且造成的事故大多数是灾难性的。因此,通过实验研究金属材料抗疲劳的性能是有实际意义的。 图1-1 疲劳宏观断口 一﹑实验目的 1.了解测定材料疲劳极限的方法。 2.掌握金属材料拉拉疲劳测试的方法。 3.观察疲劳失效现象和断口特征。 4.掌握慢应变速率拉伸试验的方法。 二、实验设备 1.PLD-50KN-250NM 拉扭疲劳试验机。 2.游标卡尺。 3.试验材料S135钻杆钢。 4.PLT-10慢应变速率拉伸试验。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值为应力比: max min σσ= r (1-1) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为max 1σ,经历N 1次循环后,发生疲劳失效, 则N 1称为最大应力r 为时的max 1σ疲劳寿命(简称寿命) 。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力max σ与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图1-2所示。由图可见,当应力降到某一极限值r σ时,S-N 曲线趋 近于水平线。即应力不超过r σ时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107 次循环下仍未失效的最大应力作为持久极限r σ。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

PC开裂原因分析

PC开裂原因分析与验证 一、不良描述: 不良产品:1200LED龙A日光灯管(T8 S3014冷白) 不良时间:2013.08.12 上午8:00 不良地点:六楼老化车间 不良现象:老化72H透光罩输入端15CM内(特点:端盖为6孔透气;此端安装有电源)有不同程度内部开裂 现象(非边缘开裂,非龟裂,非松纹裂,非单向 开裂,开裂处内外表面手摸无触感) 不良率:全检总数:500PCS,不良数:33PCS,不良率: 6.6%

二、不良原因分析: PC灯罩开裂的主要原因是PC分子链结构受到破坏,分子链断开,导致产品开裂或者说表面有裂纹。 影响分子链结构的因素有以下三种: 1、反复使用。(反复使用是最常见的问题。很多老板为了节约成本,使用回收料、水口料、废料,以次充好、坑蒙客户、扰乱市场)反复使用时,产品在不断的高温作用下,产品的分子就会发生裂变。分子链就会发生断裂、裂解。由高分子物质变成低分子物质,材料变脆。 该实验数据由深圳某塑胶科技有限公司提供,主要说明杂料对产品内应力开裂时间的影响。 2、应力过大,分为两种:应力过大是设计和使用问题。首先,产品本身形状以及模具本身设计的尺寸及脱模所产生的应力。(1.材料的结构决定材料的性能,材料的性能反映材料的结构。内应力开裂原理:在成型聚碳酸酯PC时,分子链被迫取向,但是由于聚碳酸酯分子链上具有苯环,所以取向比较困难,而在成型后,被取向的链有恢复自然状态的趋势,但是由于整个分子链已经被冻结和大分子链之间的相互作用,从而造成制品存在残留应力,而残余应力的存在,就造成产品可能出现应力开裂,注意,这里说的是可能,为什么是可能呢?这是因为聚碳酸酯内部还存在很多力,而其中比较重要的是:抗开裂力,这个力的大小取决分子链的长短,链间的缠结数目,分子之间的作用力。当抗开裂能力和内应力平衡时,产品不会出现开裂现象,而当抗开裂能力小于内应力时,就会出现。简单来说就是:分子链上苯环——成型取向——制品成型后出现内应力——当内应力和抗开裂能力平衡——好制品——当内应力大于抗开裂能力——产品开裂。可以通过改性,加入抗应力开裂剂,其作用是:在成型PC或PC/ABS合金时,快速恢复被迫取向分子链回复自然状态,消除残留应力,防止应力开裂现象的发生。 2.模具温度。内应力是因为成型时候分子链被冻结引起的,模具的温度对冻结和分子链的解取向有很大影响,很明显,模具温度越高,分子链肯定容易运动,所以,提高模具温度,不仅对充模有利,并且可以调整制品冷却速度,使其变得更均匀,从而有利于聚碳酸酯中取向分子的松弛,也就是解取向。模具温度假如能控制,在100—120度是成型聚碳酸酯的最佳温度了。2.成型条件。在成型时:成型温度、成型压力、成型速度、保压时间、保压压力五点很重要。聚碳酸酯的加

腐蚀疲劳与应力腐蚀开裂的关系

腐蚀疲劳与应力腐蚀开裂的关系 河南邦信防腐材料有限公司 2017年3月整理

尽管腐蚀疲劳和腐蚀开裂在许多不同的情况下都可能发生,但是在某种程度上,它们被认为具有很大的相关性。当这两者同时发生时,会在许多行业内造成不可估量的经济损失。 近一个世纪以来,工程材料(主要是金属材料)的腐蚀疲劳已成为全球最重要的研究主题之一。第一次世界大战期间,这种腐蚀疲劳失效现象首先是在英国皇家海军某个设备的电缆中观察到的。如今,腐蚀疲劳已被认为是研究最为广泛的腐蚀失效类型之一。而自1960年代初以来,应力腐蚀开裂(SCC)也逐渐引起了人们的广泛关注。尽管在许多不同情况下腐蚀疲劳和应力腐蚀开裂会单独发生,但它们仍然被认为具有很大的相关性。众所周知,当这两种现象同时发生时,会在许多行业中导致设备失效并带来巨大的经济损失。这些失效都是突发性的和灾难性的,是近年来人们进行广泛的科学和工程研究的重要主题。但是,要了解腐蚀疲劳和应力腐蚀开裂如何相互作用,必须首先了解每种腐蚀类型涉及的机理。 什么是应力腐蚀开裂? 应力腐蚀开裂(SCC)被定义为由于机械应力和腐蚀的相互作用而发生的开裂现象。造成应力腐蚀开裂有很多因素,但与其中任何一种单独作用的因素相比,腐蚀性环境这一因素在材料中引起的应力产生的破坏一般更大。尽管SCC最常见于金属中,但它也可以存在于一些其他材料中,例如聚合物和玻璃等。 SCC带来的结果通常被认为是灾难性的,因为材料的强度会因此发生降低,随后材料的结构也可能发生破坏。 通常情况下,细微的腐蚀裂纹仅在材料的晶界处形成,而其余的区域则不受破坏。因此,在临时检查中通常很难检测到SCC损伤现象,并且不容易预测损伤的程度。 导致SCC进一步发展的原因之一是某些金属的晶界缺乏钝性。由于杂质在这些位置的偏析现象改变了材料的微观结构,使材料的表面钝化难以在边界界面处发生。

PC开裂知识

PC/ABS或PC内应力开裂测试方法 PC/ABS或PC内应力开裂测试方法 概述:PC, PC加纤,PC/ABS应用的领域非常广泛,比如 LED大小框架,手机外科,电脑外壳,国网电表外壳,产品有可能有打螺丝或涂抹胶水,这样都可能诱发PC及PC合金材料内应力开裂,致使次品率很高。为此我们对 PC应力开裂问题从下面几点进行一个简单的阐述。(铨盛化工原创,转载请注明出处)一. PC内应力开裂测试:在室温下用冰醋酸或四氯化碳溶剂浸泡未经退火处理的带螺丝部件的注塑制品,从放入溶剂中到出现裂纹的时间,记为应力开裂时间。 内应力开裂测试方法举例: 醋酸浸泡法: 将做好带有螺丝槽或柱的PC制品完全浸泡于25OC的冰醋酸中3 0 S, 取出后晾干后检查表面, 仔细检查外观,如有细小致密的裂纹,说明此处有内应力存在,裂纹越多,内应力越大。 因为各种产品要求规格不一,具体浸泡时间长短、要求冰醋酸浓度大小、有细小裂纹可不可接受(该类产品算不算合格),还是要看客户对具体某产品要求而定。这里不作一概而论的应力开裂具体标准阐述。 二?内应力开裂原因分析: 前一篇我们简单介绍了内应力开裂测试的一些方法,现在我们分析一下应力开裂的各种原因,首先进行一下基本知识铺垫: 1)PC基本结构介绍: 聚碳酸酯PC是分子主链中含有[O-R-O-C=O]链节的热塑性树脂,按分子结构中酯基不同可分为脂肪族、脂环族、脂肪芳香族型,其中最具有价值是芳香族型聚碳酸酯PC,且以双酚A型聚碳酸酯PC为最重要。 2)结构决定性质,性质决定外在现象 A. PC微观结构导致PC内应力开裂 PC材料容易内应力开裂是它本身分子结构决定,那就是聚碳酸酯分子结构中有苯环,所以取向比较困难,在成型后,被取向的链节有恢复自然状态的趋势,但是由于分子链节已被冻结和分子链之间作用力,从而可能造成制品存在应力,这就是大家常说的应力开裂现象,尤其是回收的PC,由于回收PC 的相对分子质量下降,相对分子质量分布变宽,少量存在的水分、颜料、杂质、溶剂等极易引发开裂现象。(铨盛化工原创,转载请保留出处) B.应力分类 剪切应力:指塑料加工过程中由于剪切流动造成应力,它受塑料熔融态下流动速率与

管道的应力腐蚀断裂参考文本

管道的应力腐蚀断裂参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月 管道的应力腐蚀断裂参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 四川省的天然气管线由于介质未处理好,在被输送的天然气中H2S大大超过规走的含量,曾发生多次爆破事故。 据国外文献介绍,美国1955年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词Stress Corrosion CracKing而来的,其定义为:在应力和介质联合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a小时临界裂纹长度2ac时,管线是不会断裂的’但由于疲劳或(和)环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac时”则管道产生断

关注碱性应力腐蚀开裂

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

ABS注塑件应力开裂原因及解决措施

ABS注塑件应力开裂原因及解决措施 (丙烯腈/丁二烯/苯乙烯)共聚物(ABS)树脂经共混改性后,形成了多种不同的牌号,其成型方法有注射、挤出、吸塑等,其中注射成型是主要的成型加工方法。注射成型主要有可成型复杂、尺寸精密的制件,易于实现自动化,操作简单等优点,但也存在注塑件会出现各种各样质量问题的缺点。ABS注塑件质量分为内部质量和外部质量两方面的内容。内部质量包括制件内部的材料组织结构形态,制件的密度、强度、应力等;外部质量即为制件表面质量,常见的有欠注(未注满)、分型线明显(跑料)、凹陷(塌坑或缩痕)、变色(分解纹)、暗纹(黑印)、熔接痕(合料纹)、银丝(水纹)、剥层(起皮)、流动痕(水波纹)、喷射流(蛇行纹)、变形(翘曲、扭曲)、光洁程度差(划伤、划痕)、龟裂(裂纹)、无光泽(不亮)、气泡(空洞或中空)、白化(有白印)等。影响ABS注塑件质量问题的因素很多,其中应力开裂是常见的致命缺陷之一,严重阻碍了ABS注塑件的应用 1 ABS注塑件应力开裂原因分析 1.1 应力分类及产生过程 聚合物受力后,内部会产生与外力相平衡的内力,单位面积上的内力即称为应力。根据形成的原因应力可分为内应力和外应力。内应力包括主动应力和诱发应力两种类型。主动应力是与外力(注塑压力、保压压力等)相平衡的内力,故也称为成型应力。成型应力的大小取决于聚合物的大分子结构、链段的刚性、熔体的流变学性质及制件形状的复杂程度和壁厚大小等许多因素。成型应力值过大,很容易使制件发生应力开裂和熔体破裂等成型缺陷。诱发应力的形成原因很多,诸如塑料熔体或注塑件内部温差或收缩不均匀引起的内力;制件脱模时因为模腔压力和外界压力的差值所引起的内力;塑料熔体因为流动取向引起的内力等。显然,诱发应力一般都无法与外力平衡,并且很容易保留在冷却后的制件内部,成为残余应力,从而对制件质量产生影响。外应力主要指注塑件使用中因受到外力的作用而产生的应变力。对于塑料结构件,使用中往往与金属固定件连接,为达到紧固、牢靠,从而使制件受到较大的剪切、挤压,制件内部必然产生与外力相平衡的内力。 应力在注射过程中对制件质量的影响从理论上讲,当聚合物注射充模后,如能在保压压力作用下以极其缓慢的冷却速率固化,则聚合物大分子在模腔内就有充分的时间进行变形和重排,从而可使变形量逐渐与注塑压力和保压压力的作用达到平衡,脱模后制件中无残余应力,尺寸和形状稳定。然而,在实际生产中,出于对生产率的要求,上述方法几乎是不可能的。即使生产中采用缓冷措施,所得到的冷却速率对于大分子的变形和重排来讲,仍然非常剧烈。故充模后的聚合物在保压压力作用下冷却固化时,大分子只能简单地按照模腔形状堆积在一起,而没有时间进行趋向于稳定状态的排列。所以,变形量与注塑压力和保压压力的作用不相适应,脱模后制件内仍将存在较大的残余应力。大分子还将随时间的延长继续进行变形和重排,以便和成型时的应力作用结果相适应(消除残余应力)。带有较大残余应力的制件经常会在不大的外力或溶剂作用下脆化开裂,即应力开裂。应力开裂是注塑件常出现的质量问题之一,尤其是在气候温差变化较大的北方地区,应力开裂现象更为突出。裂纹多出现在制件的浇口、棱边、熔接痕等应力较集中的部位。另外,由于应力的作用,制

应力腐蚀断裂

应力腐蚀断裂 一.概述 应力腐蚀 是材料、或在静 (主要是拉应力 )和腐蚀的共同作用下产生的失效现 象。 它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧 急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜 被腐蚀而受 到破坏 , 破坏的表面和未破坏的表面分别形成阳极和阴极 , 阳极处的金属 成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电 流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹, 裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还 能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应 力腐蚀, 不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合 避免使用对应力腐蚀敏感的材料 , 可以采用抗应力腐蚀开裂的不锈钢系列 工作状态下构件所承受的外加载荷形成的抗应力。 加工,制造,热处理 引起的内应力。 装配,安装形成的内应力。 温差引起的热应力。 裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要 的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开 裂,合金比纯金属更易发生应力腐蚀开裂。 下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金 可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有害物 质浓度往往很低,如大气中微量的 H 2S 和NH 可分别引起钢和铜合金的应力腐蚀开裂。 空气中少量NH 是鼻子嗅不到 而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响 理选材, 如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构 件,减 少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。 采用金属或 非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也 可减小或停止应力 腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究, 并分析比较应力腐蚀断裂 其他环境作用条件下发生失效的特征。,由于应力腐蚀的 测试方法与本文中重点分析之处 结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1. 2. 3 . 4 .

环境应力开裂

6.1.3聚乙烯环境应力开裂试验(G B1842——1999) 应力开裂是指材料受到低于其屈服点的应力或者说低于其短期强度的应力(包括内应力、外应力以及两种应力的组合)的长期作用下发生开裂而破坏的现象。但这种应力开裂,可能需要很长时间才会发生,当材料暴露于化学介质中,发生应力开裂而破坏的时间就会大大地缩短,因此环境应力开裂就是指材料暴露于化学介质中,受到低于其屈服点的应力或者说低于其短期强度的应力(包括内、外应力以及两种应力的组合)的较长期作用下,发生开裂而破坏的现象。 一、培训准备 1.理论准备 的定义。 掌握应力开裂、应力开裂破损、环境应力开裂时间F 50 了解环境应力开裂试验设备的结构。 2.仪器准备 环境应力开裂试验仪器、测定所需试剂及相应设备。 二、操作步骤 1.试剂 壬基酚聚氧乙烯醚(TX-10,也称OP-10、Oπ-10)或其10%(V/V)水溶液。壬基酚聚氧乙烯醚应贮存在密闭的金属或玻璃容器中以避免其吸湿,TX-10试剂放置时间较长时可进行红外分析,若观察到羰基峰存在,则认为试剂已降解。 配制试剂水溶液时,应将混合液加热到60℃左右,连续搅拌1h。配制好的试剂水溶液应在一个星期内使用,并只使用一次,不得重复使用。 如有特殊需要也可以采用其他表面活性剂、皂类及任何不使试样发生显着溶胀的有机试剂作为试剂。 2.试样制备 按GB/T9352规定采用单功位压机和溢料式模具按照表2-6-1条件制备压塑试片,试片厚度如下:密度小于等于925kg/m3的聚乙烯试片厚度为3.00mm~3.30mm,密度大于925kg/m3的为1.75mm~2.00mm。 表2-6-1试片模塑条件

第_7_章_应力腐蚀

7.1应力腐蚀断裂7.1应力腐蚀断裂 7.2 金属的氢脆和氢损伤7.2 金属的氢脆和氢损伤 7.4 腐蚀疲劳7.4 腐蚀疲劳 7.5 腐蚀磨损7.5 腐蚀磨损 7.3 晶须增强铝复合材料应力腐蚀行为的研究7.3 晶须增强铝复合材料应力腐蚀行为的研究

7.1 应力腐蚀断裂 7.1 应力腐蚀断裂 应力腐蚀-普遍而历史悠久的现象 古代波斯王国青铜少女头像上具有 黄铜弹壳开裂、黄铜冷凝管 蒸汽机车锅炉碱脆 铝合金在潮湿大气中的SCC 奥氏体不锈钢的SCC; 含S的油、气设备出现的SCC 航空技术中出现的钛合金的 腐蚀领域研究最多的课题-应力腐蚀开裂

一. 应力腐蚀断裂产生的条件及特征 1.必须有应力,拉伸应力越大,则断裂所需的时间越短。断裂所需应力,一般低于材料的屈服强度 2.腐蚀介质是特定的,只有某些金属-介质的组合,才会发生应力腐蚀断裂 3.断裂速度介于无应力时的腐蚀速度及单纯力学因素引起的断裂速度拉伸应力来源: 1.残余应力-加工、冶炼、装配过程中产生的 2.外应力及工作所承受的载荷 3.体积效应所造成的不均匀应力 7.1 应力腐蚀断裂7.1 应力腐蚀断裂 应力-力学因素

应力应力在特定破裂体系中起以下作用 应力引起塑性变形; 应力使腐蚀产生的裂纹向纵深扩展 应力使能量集中于局部 工作应力 应力-力学因素 7.1 应力腐蚀断裂7.1 应力腐蚀断裂

腐蚀-电化学因素 凡是能促使钝化膜不稳定的电势区域,都易产生应力腐蚀断裂 在活化-钝化以及钝化-再活化过渡区的很窄电位区内容易发生应力腐蚀 金属断裂-金属学因素 1.晶界吸附-晶界偏聚 2.晶界沉淀-过饱和固溶体脱溶沉淀时,在晶界择优不均匀长大 3.位错与金属结构交互作用 4.表面膜对位错运动的影响

混凝土地坪裂缝的成因及预防控制

混凝土地坪裂缝的成因及预防控制 一、裂缝的成因: 造成裂缝的5种主要原因: 1、结构裂缝(结构沉降); 2、伸缩裂缝; 3、养护裂缝; 4、应力裂缝; 5、徐变裂缝 二、裂缝的产生及预防: 1.结构裂缝: a. 主要是由于地基未压实或因受力不均匀导致发生不均匀沉降; b. 表现:通常发生在受力后的相邻板块间、墙边、柱脚等处,开裂处有明显凹凸感; 开口较宽,上宽下窄,贯穿整个板块。 c. 预控措施:按设计要求及施工规范,地基需分层回填、碾压密实(密实度大于0.93); 相邻板块之间添加传力杆;柱脚预设隔离物与地坪脱开等。 2.伸缩裂缝: a.由于混凝土伸缩或配筋不匹配、未合理设置伸缩缝、后切缝未达到设计深度造成为 最常见的裂缝问题; b.表现:在板块1/2 或1/3 处出现规律性裂缝; c.预控措施:合理配置钢筋及在混凝土内添加尼龙纤维、合理设计切割缝、切割深度 到位、严格控制混凝土的塌落度、水灰比即可解决。通常建议在混凝土中加入钢纤 维、尼龙纤维或面层绑扎钢筋或钢丝网片。在配筋量无法改变的情况下,应缩小混 凝土的开缝间距,推荐尺寸: 混凝土厚度5厘米开切不大于3M*3M 切缝深度4厘米以上; 厚度为8-10厘米开切不大于4M*4M;切缝深度5厘米以上; 厚度为15厘米开切不大于4.8M*4.8M;切缝深度6厘米以上 厚度为20厘米,开切不大于6M*6M,切缝深度7厘米以上 面层钢筋为非结构筋时应切断,钢丝网片需切断。 3.养护裂缝: a. 为及时进行水养护或养护不到位,或在尚未达到设计强度就过早使用;

b. 主要表现为龟裂现象,并伴随表面强度降低、起灰、翻砂等现象; c. 养护应根据混凝土反应、天气等情况而定,一般入模后20小时后洒水养护,如 果过早进行水养护会造成混凝土强度不高,过晚则表面出现如龟背般裂纹;合理的养护为前三天内,每两个小时洒水一次,7天后可以每天洒水两次。28天为零期。4.应力裂缝: a. 主要出现在边、角、有挠度等应力集中的区域 b. 表现:在边角等应力处、不同材料处出现有规律的裂缝 c. 预控措施:在裂缝产生之前沿应力发展方向切割引导,或与应力发展垂直方向切 割以横断; 5. 徐变: a. 主要由于地面在使用过程中受到来自叉车、铲车胶轮反复点重压、释放而造成; b. 表现:铲车胶轮反复经过区域产生的细小裂纹,几乎没有宽度,通常是表面裂缝; c.预控措施:设计时需充分考虑轮压(点荷载),适当舔加尼龙纤维。这种裂纹 不会影响地坪的正常使用。 (徐变为混凝土地坪国际一大难题,完全解决的相关方法专业人士尚在研究中)

管道的应力腐蚀断裂.docx

管道的应力腐蚀断裂 四川省的天然气管线由于介质未处理好,在被输送的天然气中 H2S大大超过规定的含量,曾发生多次爆破事故。 据国外文献介绍,美国 1955 年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越 来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词StressCorrosionCracKing而来的,其定义为:在应力和介质联 合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a 小时临界裂纹长度2ac 时,管线是不会断裂的,但由于疲劳或( 和 ) 环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac 时,则管道产生断裂。这里只将讨论后者,即在环境和应力相互作用下引起的应力腐蚀 断裂。一、应力腐蚀的机理 为说明应力腐蚀需先简单的介绍腐蚀反应。大家知道,钢铁 放在潮湿的空气中,就会生锈,锈不断脱落,就会导致截面减小 和重量减轻,这称为钢铁受到了腐蚀。腐蚀是一种电化学过程, 它又可分为阳极过程和阴极过程,这二者是共存的。 金属原子是由带正电的金属离子,对钢来说,就是二价的铁离子 F2+和周围带负电的电子云 ( 用 e- 来表示)构成的,如下所

示: Fe→ Fe2++2e-上式是一个可逆反应。当铁遇到水,铁离子Fe2+ 和水化合的倾向比 Fe2+与 e- 结合成金属的倾向还要强,因此金 属铁遇到水后就会发生如下反应: 上式放出电子e- ,故称为阳极反应。 阳极反应所放出的电子必须通过阴极过程( 即吸收电子的过 程) 被取走,式的反应才能继续存在,否则该式将是可逆的。 一种常见吸收电子的阴极过程是吸氧过程,见下式: O2+2H2O+4e→- 4OH-氢氧根 OH-和铁离子F e2+结合,就会产生铁锈,即 Fe2O3 2Fe2++60H-→ Fe2O3·3H2O综合阳极过程和阴极过程,即联合上两式,可写出下式: 4Fe+nH2O+3O2→ 2Fe2O3·nH2O 由上式可以看出,钢管生锈的条件为第一要接触水( 或潮湿的空气 ) ,第二要接触空气,以提供 O2前者是阳极过程,后者是阴极过程。 实验表明,和腐蚀介质相接触的阳极金属介面上会形成一层 致密的复层,即纯化膜,它能阻碍阳极金属进一步溶解。但金属

金属材料应力腐蚀裂纹的探讨

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

乙烯塑料环境应力开裂的标准试验方法 ASTM D1693-15 (中文翻译版)

乙烯塑料环境应力开裂的标准试验方法ASTM D1693-15 (中文翻译版) 1本试验方法由美国材料与材料学会D20塑料委员会管辖,由D20.15热塑性材料小组委员会直接负责。 现行版本于2015年5月1日批准。2015年6月出版。最初批准于1959年。上一版于2013年批准为D1693-13。DOI: 10.1520/D1693-15。 本标准以固定名称D1693发布;紧跟在名称后面的数字表示最初采用的年份,如果是修订,则表示最后修订的年份。括号中的数字表示上次重新批准的年份。上标(ε)表示自上次修订或重新批准以来的编辑性更改。 本标准经美国国防部机构批准使用。 1、适用范围 1.1本测试方法用于决定如术语D883所定义的乙烯塑料处于此处指定条件下时对环境应力开裂的敏感性。在一定应力条件及诸如肥皂、润湿剂、油或洗涤剂等环境条件下,乙烯塑料可能出现开裂引起的机械性损伤。 1.2以SI单位表述的数值认定为标准值。 1.3本标准无意论及与其使用相关的可能的所有安全事项。本标准的使用者有责任制定适宜的安全和健康操作规程,并在使用前确定规定的适用范围。 注1:没有类似或等效ISO标准。 2、参考文献 2.1 ASTM标准2

2有关参考的ASTM标准,请访问ASTM网站https://www.360docs.net/doc/6c17475161.html,,或通过Service@https://www.360docs.net/doc/6c17475161.html,联系ASTM客户服务。有关ASTM标准年鉴卷信息,请参阅ASTM网站上的标准文件摘要页。D618测试用塑料调整方法 D883塑料相关术语 D1204高温下非硬性热塑塑料薄板或薄膜线性尺寸变化的测试方法 D1248用于线缆的聚乙烯塑料挤出材料规格 D3350聚乙烯塑料管及其配件材料规格 D4703热塑性塑料压缩模制成试样、饰板及薄板的操作方法 D4976聚乙烯塑料模制和挤压材料规格 E691开展实验室间研究以确定测试方法精度的规程 2.2 ASTM附件 仪器制图及设计图3 3仪器的详细图纸可从ASTM总部获得。请求ADJD169301、ADJD169302、ADJD169303和ADJD169304。 3、术语 3.1定义: 3.1.1应力开裂,n——由低于塑料短时机械强度的拉应力引起的塑料外部或内部的开裂。 3.1.1.1讨论——这类开裂常常受塑料所处环境的影响而加速发展。存在于塑料内部或外部的应力或者两种应力的共同作用可以引起开裂。由细小裂纹构成的网络状的开裂称为龟裂。 3.1.2应力开裂破损,n——本实验中凡能用眼睛观察到的裂纹均可认为是整个试样的应力开裂破损。刻痕的延伸不应归为试样破损。单个试样出现多于一个开裂归为单一破损。

相关文档
最新文档