高考物理后期复习的建议

高考物理后期复习的建议
高考物理后期复习的建议

2019年高考物理后期复习的建议各版块知识应融会贯通

在后期的复习中,对于主干性知识,考生要认真钻研教材,把学习的基点放在基本概念、基本规律和原理的理解上,总结典型试题中重要的物理模型、物理过程,拓展问题情景,变换思维角度,反复评估,从而掌握物理学的重要思想和方法;对于非主干性知识,则应充分重视、全面复习,不应存在侥幸心理而产生知识盲点。

对高中物理各板块的知识,能够综合的地方要有充分的认识和准备,特别是力学和电磁学两大版块内容的综合练习应该达到一定的深度,应该将运动和力、功和能量变化、守恒思想、场的观念、电磁感应等主干知识有机地融合起来,从不同的角度深入剖析,融会贯通,形成整体认识。

从高考(精品课)阅卷场反馈的情况来看,由于书写不规范造成失分的现象是比较严重的,因此养成良好的书写习惯,是高考得高分的关键。规范的解题,要注意以下方面:规范画出过程或情境示意图;字母、符号书写要规范,大小写要区分;写出必要的文字说明,主要是研究对象、过程或状态;方程式要用规律、定理的原始表达式,不要用推论等。

物理考前几点重要的提示:选择题中如果选“不正确”的,别把“正确”的选上;左右手(定则)别混淆;实验题做图先用铅笔试画,确定后用签字笔描好,别忘了坐标轴上的数量级;实验题目计算结果中一定要注意有效数字,计算做功别忘了考虑正、负;求“矢量”时别忘求方

向。

重点把握中、低难度题

1.回顾试卷检查错误。将做过的试卷找出来,温习“错题”,思考当初出现问题的原因。利用最后几天,弥补知识上的漏洞,纠正思维方式上的偏差,规范解题程序上的疏漏。并有针对性地精练一些训练题。避免同样的错误在高考中重现,让失误减小到最低程度。

2.回归教材。有很多同学做了大量的题目,而忽视了课本,导致某些简单知识、概念和规律的适用条件记不清。尤其光学、热学、近代物理方面更加需要看看课本。另外还要重点看看课后的实验,包括实验原理、器材、步骤、数据处理方法、电路图等都要详细地看。

3.主攻中、低难度题。高考试卷易、中、难的题目比例规定为3:5:2,显而易见高考试题的主体是中低难度题,有些难题也是中、低档题重新组合,其本质并不会变化。因此,考生应该把主要力量放在提高中低档题的正确率上,而不要过多地追求那些新题型、新思路、新概念、难题。

4.练习高考题并研究高考评分标准。练习近3年的高考物理试题,在此基础上明确高考中的重点、难点和热点。对高考评分标准进行细致研究,明确解题过程中哪些是得分点,并掌握如何准确表达得分点;明确怎样答题更简捷有效,从而养成规范解题的习惯,提高得分率。

高考物理重点专题突破 (70)

1.正确、灵活地理解应用折射率公式 (1)公式为n=sin i sin r(i为真空中的入射角,r为某介质中的折射角)。 (2)根据光路可逆原理,入射角、折射角是可以随光路的逆向而“换位”的,我们可以这样来理解、记忆:折射率等于真空中光线与法线夹角的正弦跟介质中光线与法线夹角的正弦之比,再简单一点说就是大角的正弦与小角的正弦之比。 2.n的应用及有关数学知识 (1)同一介质对紫光折射率大,对红光折射率小,着重理解两点:第一,光的频率由光源决定,与介质无关;第二,同一介质中,频率越大的光折射率越大。 (2)应用n=c v,能准确而迅速地判断出有关光在介质中的传播速度、波长、入射光线与 折射光线偏折程度等问题。 3.产生全反射的条件 光从光密介质射入光疏介质,且入射角大于或等于临界角。 1.半径为R、介质折射率为n的透明圆柱体,过其轴线OO′的截面如图所示。位于截面所在的平面内的一细束光线,以入射角i0由O点入射,折射光线由上边界的A点射出。当光线在O点的入射角减小至某一值时,折射光线在上边界的B点恰好发生全反射。求A、B两点间的距离。 解析:当光线在O点的入射角为i0时,设折射角为r0,由折射定律得sin i0 sin r0=n① 设A点与左端面的距离为d A,由几何关系得

sin r 0= R d A 2+R 2 ② 若折射光线恰好发生全反射,则在B 点的入射角恰好为临界角C ,设B 点与左端面的距离为d B ,由折射定律得 sin C =1n ③ 由几何关系得 sin C = d B d B 2+R 2 ④ 设A 、B 两点间的距离为d ,可得d =d B -d A ⑤ 联立①②③④⑤式得 d =? ????1 n 2-1-n 2-sin 2i 0sin i 0R 。⑥ 答案:? ????1 n 2-1-n 2-sin 2i 0sin i 0R 1.测玻璃的折射率 常用插针法:运用光在玻璃两个界面处的折射。 如图所示为两面平行的玻璃砖对光路的侧移。用插针法找出与入 射光线AO 对应的出射光线O ′B ,确定出O ′点,画出折射光线OO ′,量出入射角i 和折射角r ,根据n = sin i sin r 计算出玻璃的折射率。 2.测水的折射率 常见的方法有成像法、插针法、观察法、视深法等。 (1)成像法 原理:利用水面的反射成像和水面的折射成像。 方法:如图所示,在一盛满水的烧杯中,紧挨杯口竖直插一直尺,在直尺 的对面观察水面,能同时看到直尺在水中的部分和露出水面部分的像,若从点P 看到直尺在水下最低点的刻度B 的像B ′(折射成像)恰好跟直尺在水面上刻度A 的像A ′(反射成像)重合,读出AC 、BC 的长,量出烧杯内径d ,即可求 出水的折射率 n = (BC 2+d 2)(AC 2+d 2) 。

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

2019年高考物理专题复习:力学题专题

力学题的深入研究 最近辅导学生的过程中,发现几道力学题虽然不是特别难,但容易错,并且辅导书对这几道题或语焉不详,或似是而非,或浅尝辄止,本文对其深入研究,以飨读者。 【题1】(1)某同学利用图甲所示的实验装置,探究物块在水平桌面上的运动规律。物块在重物的牵引下开始运动,重物落地后,物块再运动一段距离停在桌面上(尚未到达滑轮处)。从纸带上便于测量的点开始,每5个点取1个计数点,相邻计数点间的距离如图1所示。打点计时器电源的频率为50Hz 。 ○ 1通过分析纸带数据,可判断物块在相邻计数点 和 之间某时刻开始减速。 ○ 2计数点5对应的速度大小为 m/s ,计数点6对应的速度大小为 m/s 。(保留三位有效数字)。 ○3物块减速运动过程中加速度的大小为a = m/s 2,若用a g 来计算物块与桌面间的动摩擦因数(g 为重力加速度),则计算结果比动摩擦因数的真实值 (填“偏大”或“偏小”)。 【原解析】一般的辅导书是这样解的: ①和②一起研究:根据T s s v n n n 21++=,其中s T 1.050 15=?=,得

1.0210)01.1100.9(25??+=-v =s m /00.1,1 .0210)28.1201.11(2 6??+=-v =s m /16.1, 1 .0210)06.1028.12(2 7??+=-v =s m /14.1,因为56v v >,67v v <,所以可判断物块在两相邻计数点6和7之间某时刻开始减速。 这样解是有错误的。其中5v 是正确的,6v 、7v 是错误的。因为公式T s s v n n n 21++=是匀变速运动的公式,而在6、7之间不是匀变速运动了。 第一问应该这样解析: ①物块在两相邻计数点6和7之间某时刻开始减速。 根据1到6之间的cm 00.2s =?,如果继续做匀加速运动的话,则6、7之间的距离应该为01.1300.201.11s 5667=+=?+=s s ,但图中cm s 28.1267=,所以是在6和7之间开始减速。 第二问应该这样解析: ②根据1到6之间的cm 00.2s =?,加速度s m s m T s a /00.2/1 .01000.222 2=?=?=- 所以s m aT v v /20.11.000.200.156=?+=+=。 因为s m T s s v /964.01 .0210)61.866.10(22 988=??+=+=- aT v v -=87=s m /16.11.0)2(964.0=?--。 ③ 首先求相邻两个相等时间间隔的位移差,从第7点开始依次为,cm s 99.161.860.101=-=?,cm s 01.260.661.82=-=?, cm s 00.260.460.63=-=?,求平均值cm s s s s 00.2)(3 1321=?+?+?=?,所以加速度222 2/.1 .01000.2s m T s a -?=?==2/00.2s m 根据ma =mg μ,得g a μ=这是加速度的理论值,实际上'ma f mg =+μ(此式中f 为纸带与打点计时器的摩擦力),得m f g a + =μ',这是加速度的理论值。因为a a >'所以g a =μ的测量值偏大。

高考物理重点专题突破 (57)

第3节洛伦兹力的应用 1.带电粒子在匀强磁场中做匀速圆周运动时,轨道 半径与粒子的运动速度成正比,与粒子质量成正 比,与电荷量和磁感应强度成反比,即r=m v Bq。 2.带电粒子在匀强磁场中做匀速圆周运动时,运 动周期与质量成正比,与电荷量和磁感应强度 成反比,与轨道半径和运动速率无关,即T= 2πm Bq。 3.回旋加速器的电场周期和粒子运动周期相同。 4.质谱仪把比荷不相等的粒子分开,并按比荷顺 序的大小排列,故称之为“质谱”。 一、带电粒子在磁场中的运动 1.用洛伦兹力演示仪显示电子的运动轨迹 (1)当没有磁场作用时,电子的运动轨迹为直线。 (2)当电子垂直射入匀强磁场中时,电子的运动轨迹为一个圆,所需要的向心力是由洛伦兹力提供的。 (3)当电子斜射入匀强磁场中时,电子的运动轨迹是一条螺旋线。 2.带电粒子在洛伦兹力作用下的圆周运动 (1)运动性质:匀速圆周运动。

(2)向心力:由洛伦兹力提供。 (3)半径:r =m v Bq 。 (4)周期:T =2πm Bq ,由周期公式可知带电粒子的运动周期与粒子的质量成正比,与电荷量和磁感应强度成反比,而与运动半径和运动速率无关。 二、回旋加速器和质谱仪 1.回旋加速器 (1)主要构造:两个金属半圆空盒,两个大型电磁铁。 (2)工作原理(如图所示) ①磁场作用:带电粒子垂直磁场方向射入磁场时,只在洛伦兹力作用下做匀速圆周运动,其周期与半径和速率无关。 ②交变电压的作用:在两D 形盒狭缝间产生周期性变化的电场,使带电粒子每经过一次狭缝加速一次。 ③交变电压的周期(或频率):与带电粒子在磁场中做圆周运动的周期(或频率)相同。 2.质谱仪 (1)功能:分析各化学元素的同位素并测量其质量、含量。 (2)工作原理(如图所示) 带电粒子在电场中加速:Uq =1 2m v 2① 带电粒子在磁场中偏转:x 2=r ② Bq v =m v 2 r ③ 由①②③得带电粒子的比荷:q m =8U B 2x 2。 由此可知,带电离子的比荷与偏转距离x 的平方成反比,凡是比荷不相等的离子都被分

备战高考物理法拉第电磁感应定律(大题培优)附答案

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度 12sin v gl θ 则ab 棒开始下滑的位置离EF 的距离

备战2021新高考物理重点专题:受力分析与平衡练习(二)

备战2021新高考物理-重点专题-受力分析与平衡练习(二) 一、单选题 1.一条形磁体静止在斜面上,固定在磁体中心的竖直上方的水平导线中通有垂直纸面向里的恒定电流,如图所示.若将磁体的N极位置与S极位置对调后,仍放在斜面上原来的位置,则磁体对斜面的压力F N和摩擦力F f的变化情况分别是() A.F N增大,F f减小 B.F N减小,F f增大 C.F N与F f都增大 D.F N与F f都减小 2.如图所示,有8个完全相同的长方体木板叠放在一起,每个木板的质量为100 g,某人用手在这叠木板的两侧加一水平压力F,使木板水平静止.若手与木板之间的动摩擦因数为0.5,木板与木板之间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力,g取10 m/s2.则水平压力F至少为() A.8 N B.16N C.15 N D.30 N 3.如图所示,在竖直平面内一根不可伸长的柔软轻绳通过光滑的轻质滑轮悬挂一重物。轻绳一端固定在墙壁上的A点,另一端从墙壁上的B点先沿着墙壁缓慢移到C点,后由C点缓慢移到D点,不计一切摩擦,且墙壁BC段竖直,CD段水平,在此过程中关于轻绳的拉力F 的变化情况,下列说法正确的是() A.F一直减小 B.F一直增小 C.F先增大后减小 D.F先不变后增大 4.如图所示,倾角为的粗糙斜劈放在粗糙水平面上,物体a放在斜劈上,轻质细线一端固定在物体a上,另一端绕过光滑的滑轮固定在c点,滑轮2下悬挂物体b,系统处于静止状态若将固定点c向左移动少许,而a与斜劈始终静止,则()

A.斜劈对物体a的摩擦力减小 B.斜劈对地面的压力减小 C.细线对物体a的拉力增大 D.地面对斜劈的摩擦力减小 5.如图所示,体操运动员在保持该姿势的过程中,以下说法中错误的是() A.环对人的作用力保持不变 B.当运动员双臂的夹角变小时,运动员会相对轻松一些 C.环对运动员的作用力与运动员受到的重力是一对平衡力 D.运动员所受重力的反作用力是环对运动员的支持力 6.如图所示,用一水平力将木块压在粗糙的竖直墙面上,现增加外力,则关于木块所受的静摩擦力和最大静摩擦力,说法正确的是() A.都变大 B.都不变 C.静摩擦力不变,最大静摩擦力变大 D.静摩擦力增大,最大静摩擦力不变 7.如图所示,A、B两物体靠在一起静止放在粗糙水平面上,质量分别为kg, kg,A、B与水平面间的滑动摩擦因数均为0.6,g取10m/s2,若用水平力F A=8N推A物体。则下列有关说法不正确的是() A.A对B的水平推力为8N B.B物体受4个力作用 C.A物体受到水平面向左的摩擦力,大小为6N D.若F A变为40N,则A对B的推力为32N 8.如图所示,一只可视为质点的蚂蚁在半球形碗内缓慢从底部经过a点爬到最高点b点,之后开始沿碗下滑并再次经过a点滑到底部,蚂蚁与碗内各处的动摩擦因数均相同且小于1,若最大静摩擦力等于滑动摩擦力,下列说法正确的是()

2019版高考物理培优一轮计划全国创新版培优讲义:第13

第48课时原子结构 考点1原子的核式结构 1.电子的发现:英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型”。 2.原子的核式结构 (1)1909~1911年,英籍物理学家卢瑟福进行了α粒子散射实验,提出了核式结构模型。 (2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞了回来”。 (3)原子的核式结构模型:原子中带正电部分的体积很小,但几乎占有全部质量,电子在正电体的外面运动。 1.下列四个示意图表示的实验中能说明原子核式结构的是() 答案 A 解析α粒子散射实验说明原子的核式结构,故A正确;双缝干

涉实验证明光具有波动性,故B错误;光电效应说明光具有粒子性,故C错误;放射线在磁场中偏转是根据带电粒子的偏转方向确定放射线的电性,故D错误。 2.(多选)关于原子核式结构理论说法正确的是() A.是通过发现电子现象得出来的 B.原子的中心有个核,叫做原子核 C.原子的正电荷均匀分布在整个原子中 D.原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外旋转 答案BD 解析原子的核式结构模型是在α粒子的散射实验结果的基础上提出的,A错误。原子中绝大部分是空的,带正电的部分集中在原子中心一个很小的范围,称为原子核,B正确、C错误。原子核集中了原子全部正电荷和几乎全部质量,带负电的电子在核外旋转,D正确。 3. 根据α粒子散射实验,卢瑟福提出了原子的核式结构模型,如图所示虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹。在α粒子从a运动到b、再运动到c的过程中,下列说法中正确的是() A.动能先增大,后减小 B.电势能先减小,后增大 C.电场力先做负功,后做正功,总功等于零 D.加速度先变小,后变大

高考物理专题物理学史知识点全集汇编

高考物理专题物理学史知识点全集汇编 一、选择题 1.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.伽利略利用“理想斜面”得出“力是维持物体运动的原因”的观点 B.牛顿提出了行星运动的三大定律 C.英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了万有引力常量 D.开普勒从理论和实验两个角度,证明了轻、重物体下落一样快,从而推翻了古希腊学者亚里士多德的“小球质量越大下落越快”的错误观点 2.伽利略是实验物理学的奠基人,下列关于伽利略在实验方法及实验成果的说法中不正确的是 A.开创了运用逻辑推理和实验相结合进行科学研究的方法 B.通过实验发现斜面倾角一定时,不同质量的小球从不同高度开始滚动,加速度相同C.通过实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础 D.为了说明力是维持物体运动的原因用了理想实验法 3.下列选项不符合历史事实的是() A.富兰克林命名了正、负电荷 B.库仑在前人工作的基础上通过库仑扭秤实验确定库仑定律 C.麦克斯韦提出电荷周围存在一种特殊的物质--电场 D.法拉第为了简洁形象描述电场,提出电场线这一辅助手段 4.2014年,我国在实验中发现量子反常霍尔效应,取得世界级成果。实验在物理学的研究中有着非常重要的作用,下列关于实验的说法中正确的是() A.在探究求合力的方法的实验中运用了控制变量法 B.密立根利用油滴实验发现电荷量都是某个最小值的整数倍 C.牛顿运用理想斜面实验归纳得出了牛顿第一定律 D.库仑做库仑扭秤实验时采用了归纳的方法 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 7.下列描述中符合物理学史的是() A.开普勒发现了行星运动三定律,从而提出了日心说 B.牛顿发现了万有引力定律并测定出引力常量G C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流 D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场

高考物理选择题专题突破--第三套(共五套)

选择题突破—专项训练(三) 训练重点:利用牛顿运动定律或功能关系分析实际问题 1.某学校物理兴趣小组用 空心透明塑料管制作了如图所示的竖直“60”造型。两个“0”字型的半径均为R 。让一质量为m 、直径略小于管径的光滑小从入口A 处射入,依次经过图中的B 、C 、D 三点,最后从E 点飞出。已知BC 是“0”字型的一条直径,D 点是该造型最左侧的一点,当地的重力加速度为g ,不 计一切阻力,则小球在整个运动过程中:( ) A.在B 、C 、D 三点中,距A 点位移最大的是B 点,路程最大的是D 点 B.若小球在C 点对管壁的作用力恰好为零,则在B 点小球对管壁的压力大小为6mg C.在B 、C 、D 三点中,瞬时速率最大的是D 点,最小的是C 点 D.小球从E 点飞出后将做匀变速运动 2.静止在地面上的一小物体,在竖直向上的拉力作用下开始运动,在向上运动的过程中,物体的机械能与位移的关系图象如图所示,其中0~s 1,过程的图线是曲线,s 1~s 2:过程的图线为平行于横轴的直线.关于物体上升过程(不计空气阻力)的下列说法正确的是( ) A .0~s 1过程中物体所受的拉力是变力,且不断减小 B .s 1~s 2过程中物体做匀速直线运动 C .0~s 2过程中物体的动能先增大后减小 D .0~s 2过程中物体的加速度先减小再反向增大,最后 保持不变且等于重力加速度 3.如图所示,重1 0N 的滑块在倾角为30 o 的斜面上,从a 点由静止开始下滑,到b 点开始压缩轻弹簧,到c 点时达到最大速度,到d 点(图中未画出)开始弹回,返回b 点离开弹簧,恰能再回到口点.若bc=0.1 m ,弹簧弹性势能的最大值为8J ,则 A .轻弹簧的劲度系数是50N /m B .从d 到c 滑块克服重力做功8J C .滑块动能的最大值为8J D .从d 到c 弹簧的弹力做功8J 4.DIS 是由传感器、数据采集器、计算机组成的信息采集处理系统.某课外实验小组利用DIS 系统研究电梯的运动规律,他们在电梯内做实验,在电梯天花板上固定一个力传感器,传感器的测量挂钩向下,在挂钩上悬挂一个质量为1.0kg 的钩码.在电梯由静止开始上升的过程中,计算机屏上显示如图所示的图象, 则 (g 取10m /s 2) ( ) A .t 1到t 2时间内,电梯匀速上升 B .t 2到t 3时间内,电梯处于静止状态 C .t 3到t 4时间内,电梯处于失重状态 D .t 1到t 2时间内,电梯的加速度大小为5m /S 2 8.有关超重和失重的说法,正确的是( ) A .物体处于超重状态时,所受重力增大;处于失重状态时,所受重力减少 B .竖直上抛运动的物体处于完全失重状态 C .在沿竖直方向运动的升降机中出现失重现象时,升降机一定处于上升过程 D .在沿竖直方向运动的升降机中出现失重现象时,升降机一定处于下降过程

高考物理法拉第电磁感应定律(大题培优)及详细答案

高考物理法拉第电磁感应定律(大题培优)及详细答案 一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

高考物理重点专题突破 (50)

第1节光的干涉 1.杨氏双缝干涉实验证明光是一种波。 2.要使两列光波相遇时产生干涉现象,两光源必须具有相同的频率和振动方向。 3.在双缝干涉实验中,相邻两条亮纹或暗纹间的距离Δy=l d λ,可利用λ= d l Δy测定 光的波长。 4.由薄膜两个面反射的光波相遇而产生的干涉现象叫薄膜干涉。 [自读教材·抓基础] 1.实验现象 在屏上出现明暗相间的条纹。相邻两条亮纹或暗纹间的距离Δy=l dλ,式中的d表示两缝间距,l表示两缝到光屏的距离,λ为光波的波长。 2.实验结论 证明光是一种波。 3.光的相干条件 相同的频率和振动方向。 [跟随名师·解疑难] 1.杨氏双缝干涉实验原理透析 (1)双缝干涉的装置示意图:实验装置如图所示,有光源、单缝、双缝和光屏。

(2)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况,如果用激光直接照射双缝,可省去单缝,杨氏那时没有激光,因此他用强光照亮一条狭缝,通过这条狭缝的光再通过双缝发生干涉。 (3)双缝的作用:平行光照射到单缝S 上,又照到双缝S 1、S 2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光。 2.光屏上某处出现亮、暗条纹的条件 频率相同的两列波在同一点引起的振动发生叠加,如亮条纹处某点同时参与的两个振动步调总是一致,即振动方向总是相同,总是同时过最高点、最低点、平衡位置;暗条纹处振动步调总相反,具体产生亮、暗条纹的条件为: (1)亮条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是波长的整数倍或半波长的偶数倍。 即|PS 1-PS 2|=kλ=2k ·λ2 (k =0,1,2,3,…) (2)暗条纹的条件:光屏上某点P 到两缝S 1和S 2的路程差正好是半波长的奇数倍。 即|PS 1-PS 2|=(2k +1)λ2 (k =0,1,2,3,…) 3.双缝干涉图样的特点 (1)单色光的干涉图样:若用单色光作光源,则干涉条纹是明暗相间的 条纹,且条纹间距相等。如图所示中央为亮条纹,两相邻亮纹(或暗纹)间 距离与光的波长有关,波长越大,条纹间距越大。 (2)白光的干涉图样:若用白光作光源,则干涉条纹是彩色条纹,且中 央条纹是白色的,这是因为: ①从双缝射出的两列光波中,各种色光都能形成明暗相间的条纹,各种色光都在中央条纹处形成亮条纹,从而复合成白色条纹。 ②两相邻亮(或暗)条纹间距与各色光的波长成正比,即红光的亮条纹间距宽度最大,紫光的亮条纹间距宽度最小,即除中央条纹以外的其他条纹不能完全重合,这样便形成了彩色干涉条纹。 [特别提醒] (1)双缝干涉实验的双缝必须很窄,且双缝间的距离必须很小。 (2)双缝干涉中,双缝的作用主要就是用双缝获得相干光源。 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)

高考物理-计算题专题突破

计算题专题突破 计算题题型练3-4 1.一列横波在x轴上传播,t1=0和t2=0.005 s时的波形如图中的实线和虚线所示. (1)设周期大于(t2-t1),求波速; (2)设周期小于(t2-t1),并且波速为6 000 m/s,求波的传播方向. 解析:当波传播时间小于周期时,波沿传播方向前进的距离小于一个波长;当波传播时间大于周期时,波沿传播方向前进的距离大于一个波长,这时从波形的变化上看出的传播距离加上n个波长才是波实际传播的距离. (1)因Δt=t2-t1T,所以波传播的距离大于一个波长,在0.005 s内传播的距离为 Δx=vΔt=6 000×0.005 m=30 m. 而Δx λ= 30 m 8 m=3 3 4,即Δx=3λ+ 3 4λ.

因此可得波的传播方向沿x轴负方向. 答案:(1)波向右传播时v=400 m/s;波向左传播时v=1 200 m/s(2)x轴负方向 2. (厦门一中高三检测)如图所示,上下表面平行的玻璃砖折射率为n=2,下表面镶有银反射面,一束单色光与界面的夹角θ=45°射到玻璃表面上,结果在玻璃砖右边竖直光屏上出现相距h=2.0 cm的光点A和B(图中未画出). (1)请在图中画出光路示意图(请使用刻度尺); (2)求玻璃砖的厚度d. 解析:(1)画出光路图如图所示. (2)设第一次折射时折射角为θ1,

高中物理全套培优讲义

U x 第1讲 运动的描述 质点、参考系 (考纲要求 Ⅰ) 1.质点 (1)定义:忽略物体的大小和形状,把物体简化为一个有质量的物质点,叫质点. (2)把物体看做质点的条件:物体的大小和形状对研究问题的影响可以忽略. 2.参考系 (1)定义:要描述一个物体的运动,首先要选定某个其它的物体做参考,这个被选作参考的物体叫参考系. (2)选取:可任意选取,但对同一物体的运动,所选的参考系不同,运动的描述可能会不同,通常以地面为参考系. 判断正误,正确的划“√”,错误的划“×”. (1)质点是一种理想化模型,实际并不存在. ( ) (2)只要是体积很小的物体,就能被看作质点. ( ) (3)参考系必须要选择静止不动的物体. ( ) (4)比较两物体的运动情况时,必须选取同一参考系. ( ) 答案 (1)√ (2)× (3)× (4)√ 位移、速度 (考纲要求 Ⅱ) 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程:是物体运动轨迹的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 判断正误,正确的划“√”,错误的划“×”. (1)一个物体做单向直线运动,其位移的大小一定等于路程.( ) (2)一个物体在直线运动过程中路程不会大于位移的大小. ( ) (3)平均速度的方向与位移的方向相同. ( ) (4)瞬时速度的方向就是该时刻(或该位置)物体运动的方向.( ) 答案 (1)√ (2)× (3)√ (4)√

高考物理重点专题突破 (113)

课时跟踪检测(七)波的干涉和衍射多普勒效应及其应用 一、选择题 1.“闻其声而不见其人”是因为一般障碍物的尺寸() A.跟声波波长相差不多,声波发生明显衍射 B.比声波波长大得多,声波不能发生衍射 C.跟光波波长相差不多,光波也发生明显衍射 D.比光波波长大得多,光波不能发生衍射 解析:选A发生明显衍射现象的条件为障碍物或孔的尺寸比波长小,或与波长相差不多,故C错误;任何波都能发生衍射,衍射是波特有的现象,与障碍物大小无关,故B、D错误。 2.利用水波发生仪得到的水面波形如图中甲、乙所示,则() A.图甲、乙均显示了波的干涉现象 B.图甲、乙均显示了波的衍射现象 C.图甲显示了波的干涉现象,图乙显示了波的衍射现象 D.图甲显示了波的衍射现象,图乙显示了波的干涉现象 解析:选D由波的干涉和衍射概念知,图甲是一列波的传播,显示了波的衍射现象,图乙是两列波的传播,显示了波的干涉现象。 3.有一障碍物的尺寸为10 m,下列哪些波在遇到它时衍射现象最明显() A.波长为4 m的机械波 B.波长为10 m的机械波 C.频率为40 Hz的声波 D.频率为5 000 MHz的电磁波(波速为3×108 m/s) 解析:选B空气中声波波速大约为340 m/s,由λ=v/f可算出声波的波长为8.5 m;频率为5 000 MHz的电磁波的波长为0.06 m。所以选项B中波长与障碍物尺寸最接近,衍射现象最明显。 4.消除噪声污染是当前环境保护的一个重要课题。内燃机、通风机等在排放各种高速气流的过程中都发出噪声,干涉型消声器可以用来消弱高速气流产生的噪声,干涉型消声器的结构及气流运行如图所示,波长为λ的声波沿水平管道自左向右传播,当声波到达a 处时,分成两束相干波,它们分别通过r1和r2的路程,再在b处相遇,即可达到消弱噪声

高考物理专题复习讲义

动量 知识网络: 单元切块: 按照考纲的要求,本章内容可以分成两部分,即:动量、冲量、动量定理;动量守恒定律。其中重点是动量定理和动量守恒定律的应用。难点是对基本概念的理解和对动量守恒定律的应用。 动量冲量动量定理 教学目标: 1.理解和掌握动量及冲量概念; 2.理解和掌握动量定理的内容以及动量定理的实际应用; 3.掌握矢量方向的表示方法,会用代数方法研究一维的矢量问题。 教学重点:动量、冲量的概念,动量定理的应用 教学难点:动量、冲量的矢量性 教学方法:讲练结合,计算机辅助教学 教学过程: 一、动量和冲量 1.动量 按定义,物体的质量和速度的乘积叫做动量:p=mv (1)动量是描述物体运动状态的一个状态量,它与时刻相对应。

(2)动量是矢量,它的方向和速度的方向相同。 (3)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 2.动量的变化: = ? p-' p p 由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。 (1)若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 (2)若初末动量不在同一直线上,则运算遵循平行四边形定则。 【例1】一个质量为m=40g的乒乓球自高处落下,以速度v=1m/s碰地,竖直向上弹回,碰撞时间极短,离地的速率为v'=0.5m/s。求在碰撞过程中,乒乓球动量变化为多少? 2.冲量 按定义,力和力的作用时间的乘积叫做冲量:I=Ft (1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (2)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (3)高中阶段只要求会用I=Ft计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (4)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。 【例2】质量为m的小球由高为H的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大? m 点评:特别要注意,该过程中弹力虽然不做功,但对物体有冲量。 二、动量定理 1.动量定理 物体所受合外力的冲量等于物体的动量变化。既I=Δp (1)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

高考物理比例法解决物理试题(大题培优 易错 难题)及答案

高考物理比例法解决物理试题(大题培优 易错 难题)及答案 一、比例法解决物理试题 1.一列火车有n 节相同的车厢,一观察者站在第一节车厢的前端,当火车由静止开始做匀加速直线运动时( ) A .每节车厢末端经过观察者时的速度之比是1:2:3:L :n B .每节车厢经过观察者所用的时间之比是1:-1):):L : C .在相等时间里,经过观察者的车厢节数之比是1:2:3:L :n D .如果最后一节车厢末端经过观察者时的速度为v ,那么在整个列车经过观察者的过程中,平均速度为 v n 【答案】B 【解析】 【详解】 A 、根据匀变速直线运动的速度位移公式得,v 2=2ax ,x 为每节车厢的长度,知每节车厢末 端经过观察者时的速度之比为1L ,故A 错误。 B 、每节车厢的长度相同,初速度为零的匀加速直线运动,在相等时间内通过的时间之比为 1:-1)::L :,故B 正确。 C 、初速度为零的匀加速直线运动,在连续相等时间内的位移之比为1:3:5L ∶(2n-1),则在相等时间里,通过观察者的车厢节数之比为1:3:5L (2n-1),故C 错误。 D 、如果最后一节车厢末端经过观察者时的速度为v ,那么在整个列车经过观察者的过程中,根据匀变速运动的推论,平均速度为 2 v ,故D 错误。 故选:B 2.一个由静止开始做匀加速直线运动的物体,从开始运动起连续发生 3 段位移,在这 3 段位移中所用的时间分别是 1 s ,2 s,3 s ,这 3 段位移的大小之比和这 3 段位移上的平均速度之比分别为( ) A .1∶8∶27;1∶2∶3 B .1∶8∶27;1∶4∶9 C .1∶2∶3;1∶1∶1 D .1∶3∶5;1∶2∶3 【答案】B 【解析】 【分析】 【详解】 根据212x at =可得物体通过的第一段位移为:211122 a x a =?=; 又前3s 的位移减去前1s 的位移就等于第二段的位移,故物体通过的第二段位移为:

2021新高考物理二轮总复习专题分层突破练打包19份(付,127)

专题分层突破练1力与物体的平衡 A组 1.对下列四幅图分析正确的是() A.图甲:被推出的冰壶能继续前进,是因为一直受到手的推力作用 B.图乙:电梯在加速上升时,电梯里的人处于失重状态 C.图丙:汽车过凹形桥最低点时,速度越大,对桥面的压力越大 D.图丁:汽车在水平路面转弯时,受到重力、支持力、摩擦力、向心力四个力的作用 2. (2020福建泉州高三测试)如图所示,条形磁铁静止放在粗糙的水平桌面上,当在其左上方放一电流方向垂直纸面向里的通电直导线后,磁铁受到的摩擦力和弹力() A.摩擦力为零 B.摩擦力方向向左 C.弹力保持不变 D.摩擦力方向向右 3.(2020山东潍坊高三期末)质量为50 kg的货物静置于水平地面上,货物与地面间的动摩擦因数为0.5。某同学用大小为240 N的恒力使货物运动,g取10 m/s2,则物块和地面间滑动摩擦力的大小可能是() A.250 N B.240 N C.200 N D.100 N 4. 如图所示,两个小球a、b的质量均为m,用细线相连并悬挂于O点。现用一轻质弹簧给小球a 施加一个拉力F,使整个装置处于静止状态,且Oa与竖直方向夹角为30°,已知弹簧的劲度系数为k,重力加速度为g,则弹簧的最短伸长量为() A. B. C. D.

5.(2020广东佛山高三质检)如图,用一根不可伸长的轻绳绕过两颗在同一水平高度的光滑钉子悬挂一幅矩形风景画。现若保持画框的上边缘水平,将两颗钉子之间的距离由图示位置逐渐增大到不能再增大为止(不考虑画与墙壁间的摩擦),则此过程中绳的张力大小() A.逐渐变大 B.逐渐变小 C.先变大,后变小 D.先变小,后变大 6.(2020山东青岛第十七中学高三摸底考试)如图所示,在竖直平面内一根不可伸长的柔软轻绳通过光滑的轻质滑轮悬挂一重物。轻绳一端固定在墙壁上的A点,另一端从墙壁上的B点先沿着墙壁缓慢移到C点,后由C点缓慢移到D点,不计一切摩擦,且墙壁BC段竖直,CD段水平,在此过程中关于轻绳的拉力F的变化情况,下列说法正确的是() A.F一直减小 B.F一直增大 C.F先增大后减小 D.F先不变后增大 7.(2020宁夏石嘴山第三中学高三模拟)叠放在水平地面上的四个完全相同的排球如图所示,质量均为m,相互接触,球与地面间的动摩擦因数均为μ,则() A.上方球与下方3个球间均没有弹力 B.下方三个球与水平地面间均没有摩擦力 C.水平地面对下方三个球的支持力均为 D.水平地面对下方三个球的摩擦力均为 B组 8.(2020山东济南高三下学期模拟)如图所示为剪式千斤顶的截面图。四根等长的支持臂用光滑铰链连接,转动手柄,通过水平螺纹轴减小MN间的距离,以抬高重物。保持重物不变,MP和PN夹角为120°时N点受到螺纹轴的作用力为F1;MP和PN夹角为60°时N点受到螺纹轴的作用力为F2。不计支持臂和螺纹轴的重力,则F1与F2大小之比为()

高考物理培优易错试卷(含解析)之临界状态的假设解决物理试题附答案

高考物理培优易错试卷(含解析)之临界状态的假设解决物理试题附答案 一、临界状态的假设解决物理试题 1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求: (1)两板间电压的最大值U m ; (2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。 【答案】(1)两板间电压的最大值m U 为22 2qB L m ; (2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为m qB π。 【解析】 【分析】 (1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小; (2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度. (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。 【详解】 (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因 2 11 v qvB m R = 2m 11 2 qU mv = 所以

22 m 2qB L U m = (2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中: 2 2 sin 45R R L ?= - 所以 2(21)R L =- 即KC 长等于2(21)R L =- 所以CD 板上可能被粒子打中的区域即为HK 的长度 12(21)(22)x HK R R L L L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期: 2m T qB π= 所以 m 12m t T qB π== 【点睛】 本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。 2.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。设小球在水平:面内做匀速圆周运动的角速度为ω,线所受拉力为T ,则下列T 随2ω变化的图像可能正确的是( )

相关文档
最新文档