泥岩变形特性与能量特征的试验研究

泥岩变形特性与能量特征的试验研究
泥岩变形特性与能量特征的试验研究

湿化问题及其研究进展

湿化问题及其研究进展 一湿化变形及湿化机理 1.1 湿化变形 地基基础工程以及土石坝等重要的水工建筑物,不可避免地要与水发生直接的接触,水位的上升使建筑物局部开始浸水,浸水后的土体由非饱和状态变为饱和状态,这时土体的结构发生变化,其应力应变关系也随之改变,各项物理力学指标有所降低,这个过程称为湿化过程。土体受湿化过程的影响,一般都要发生土体体积的改变,这种在湿化过程中的体积变化称之为湿化变形。土体产生湿化变形的原因通常有如下几种:土石坝初次蓄水;由毛细现象等引起的水位上升;大气降雨等等。 一些学者对土体的湿化和湿化变形进行了研究,对堆石料、土坝坝料土和膨胀土等分别进行了湿化试验,建立了一些土体湿化的数学模型。 1.2 湿化机理及防治 土体产生湿化变形的大小与土的三相组成和构成土的固体颗粒的结构形式具有密切的联系。 土是由固体的土颗粒、水和气体等所组成的三相体系。固相土颗粒构成土体的骨架,是土体的主要部分,一般为粘土矿物颗粒或砂粒;土颗粒之间的孔隙充满了水和气体,饱和土体,为两相体系;孔隙中水、气并存,为三相体系。 (1) 固体土颗粒 土体中的固体土颗粒是决定土的物理性质和工程性质的主要因素。一般情况下,矿物颗粒之间的作用比较稳定,具有较强的联系,因而土体的强度也比较高。土体浸水湿化后受水分子的润滑作用,矿物颗粒间的联系发生改变,土颗粒之间的作用也被削弱,土体的强度也随之降低。 土颗粒之间的关系可以从土体的狭义结构即构成土的固体颗粒的结构形式得到,它取决于土体固体颗粒的大小、形状、表面特性、相对位置和相互之间的联结等等。 目前研究比较多的还是土体固体颗粒的狭义结构以及由此建立的结构类型。 固体土颗粒按基本结构要素分为简单颗粒、团聚体和半团

重塑黄土变形特性

重塑黄土变形特性 作者:程海涛, 刘保健, 谢永利, CHENG Hai-tao, LIU Bao-jian, XIE Yong-li 作者单位:长安大学,公路学院,陕西,西安,710064 刊名: 长安大学学报(自然科学版) 英文刊名:JOURNAL OF CHANG'AN UNIVERSITY(NATURAL SCIENCE EDITION) 年,卷(期):2008,28(5) 被引用次数:2次 参考文献(8条) 1.孙钧岩土材料流变及其工程应用 1999 2.李传勋压实黄土荷载、变形与时间关系及应用问题的研究[学位论文] 2003 3.陈晓平.白世伟软土蠕变-固结特性及计算模型研究[期刊论文]-岩石力学与工程学报 2003(05) 4.龚晓南高等土力学 1996 5.程海涛.刘保健.谢永利压实黄土应力-应变-时间特性[期刊论文]-长安大学学报(自然科学版) 2008(01) 6.刘保健.支喜兰.谢永利公路工程中黄土湿陷性问题分析[期刊论文]-中国公路学报 2005(04) 7.石刚.王晋国.支喜兰黄土地区公路工程地基承载力分区计算方法[期刊论文]-交通运输工程学报 2005(04) 8.张玉芬.张志权.赵桂娟二灰黄土力学性能试验[期刊论文]-长安大学学报(自然科学版) 2007(05) 引证文献(2条) 1.王松鹤.骆亚生.李焱黄土固结蠕变特性试验研究[期刊论文]-工程地质学报 2009(5) 2.李喜安.黄润秋.彭建兵黄土崩解性试验研究[期刊论文]-岩石力学与工程学报 2009(z1) 本文链接:https://www.360docs.net/doc/6d18347810.html,/Periodical_xagljtdx200805008.aspx 授权使用:西安理工大学(xalgdx),授权号:439dfc3b-d297-4a39-b336-9e400130f9ab 下载时间:2010年12月2日

d395橡胶压缩永久变形特性试验方法

Designation:D395–02 Standard Test Methods for Rubber Property—Compression Set1 This standard is issued under the?xed designation D395;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval. This standard has been approved for use by agencies of the Department of Defense. 1.Scope 1.1These test methods cover the testing of rubber intended for use in applications in which the rubber will be subjected to compressive stresses in air or liquid media.They are applicable particularly to the rubber used in machinery mountings,vibra-tion dampers,and seals.Two test methods are covered as follows: Test Method Section A—Compression Set Under Constant Force in Air7–10 B—Compression Set Under Constant De?ection in Air11–14 1.2The choice of test method is optional,but consideration should be given to the nature of the service for which correlation of test results may be sought.Unless otherwise stated in a detailed speci?cation,Test Method B shall be used. 1.3Test Method B is not suitable for vulcanizates harder than90IRHD. 1.4The values stated in SI units are to be regarded as the standard. 1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. 2.Referenced Documents 2.1ASTM Standards: D1349Practice for Rubber—Standard Temperatures for Testing2 D3182Practice for Rubber—Materials,Equipment,and Procedures for Mixing Standard Compounds and Prepar-ing Standard Vulcanized Sheets2 D3183Practice for Rubber—Preparation of Pieces for Test Purposes from Products2 D3767Practice for Rubber—Measurement of Dimensions2 D4483Practice for Determining Precision for Test Meth-ods Standards in the Rubber and Carbon Black Industries2 E145Speci?cation for Gravity-Convection and Forced-Ventilation Ovens3 3.Summary of Test Methods 3.1A test specimen is compressed to either a de?ection or by a speci?ed force and maintained under this condition for a speci?ed time and at a speci?ed temperature. 3.2The residual deformation of a test specimen is measured 30min after removal from a suitable compression device in which the specimen had been subjected for a de?nite time to compressive deformation under speci?ed conditions. 3.3After the measurement of the residual deformation,the compression set,as speci?ed in the appropriate test method,is calculated according to Eq1and Eq2. 4.Signi?cance and Use 4.1Compression set tests are intended to measure the ability of rubber compounds to retain elastic properties after pro-longed action of compressive stresses.The actual stressing service may involve the maintenance of a de?nite de?ection, the constant application of a known force,or the rapidly repeated deformation and recovery resulting from intermittent compressive forces.Though the latter dynamic stressing,like the others,produces compression set,its effects as a whole are simulated more closely by compression?exing or hysteresis tests.Therefore,compression set tests are considered to be mainly applicable to service conditions involving static stresses.Tests are frequently conducted at elevated tempera-tures. 5.Test Specimens 5.1Specimens from each sample may be tested in duplicate (Option1)or triplicate(Option2).The compression set of the sample in Option1shall be the average of the two specimens expressed as a percentage.The compression set of the sample in Option2shall be the median(middle most value)of the three specimens expressed as a percentage. 5.2The standard test specimen shall be a cylindrical disk cut from a laboratory prepared slab. 5.2.1The dimensions of the standard specimens shall be: 1These test methods are under the jurisdiction of ASTM Committee D11on Rubber and are the direct responsibility of Subcommittee D11.10on Physical Testing. Current edition approved Dec.10,2002.Published January2003.Originally approved https://www.360docs.net/doc/6d18347810.html,st previous edition approved in2001as D395–01. 2Annual Book of ASTM Standards,V ol09.01.3Annual Book of ASTM Standards,V ol14.04. 1 Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

岩块的变形与强度性质

岩块的力学属性: 1.弹性(elasticity):在一定的应力范围内,物体受外力产生的全部变形当去除外力后能够立即恢复其原有的形状和大小的性质。 2.塑性(plasticity):物体受力后产生变形,在外力去除(卸荷)后不能完全恢复原状的性质。不能恢复的变形叫塑性变形或永久变形、残余变形。 3.粘性(viscosity):物体受力后变形不能在瞬时完成,且应变速率随应力增加而增加的性质。应变速率随应力变化的变形叫流动变形。 4.脆性(brittle):物质受力后,变形很小时就发生破裂的性质。 5.延性(ductile):物体能承受较大塑性变形而不丧失其承载力的性质。 第一节岩块的变形性质 一、单轴压缩条件下的岩块变形性质 1.连续加载下的变形性质 (1)加载方式: 单调加载(等加载速率加载和等应变速率加载) 循环加载(逐级循环加载和反复循环加载) (2)四个阶段: ①Ⅰ:OA段,孔隙裂隙压密阶段; ②Ⅱ:AC段,弹性变形至微破裂稳定发展阶段(AB段和BC段) 弹性极限→屈服极限 ③Ⅲ:CD段,非稳定破裂发展阶段(累进破裂阶段)→“扩容”现象发生 “扩容”:在岩石的单轴压缩试验中,当压力达到一定程度以后,岩石中的破裂(裂纹)继续发生和扩展,岩石的体积应变增量由压缩转为膨胀的力学过程。 —峰值强度或单轴抗压强度 ④Ⅳ:D点以后阶段,破坏后阶段(残余强度) 以上说明: 岩块在外荷作用下变形→破坏的全过程,具有明显的阶段性,总体上可分为两个阶段: 1)峰值前阶段(前区) 2)峰值后阶段(后区) (3)峰值前岩块的变形特征(Miller,1965) ①应力—应变曲线类型 米勒(Miller,1965)6类(σ—εL曲线),如图4.3所示: Ⅰ:近似直线型(坚硬、极坚硬岩石):如玄武岩、石英岩等; Ⅱ:下凹型(较坚硬、少裂隙岩石):如石灰岩、砂砾岩; Ⅲ:上凹型(坚硬有裂隙发育):如花岗岩、砂岩; Ⅳ:陡“S”型(坚硬变质岩):如大理岩、片麻岩; Ⅴ:缓“S”型(压缩性较高的岩石):如片岩; Ⅵ:下凹型(极软岩)。 法默(Farmer,1968),根据峰前σ—ε曲线把岩石划分三类,如图4.4所示: 准弹性岩石:细粒致密块状岩石,如无气孔构造的喷出岩、浅成岩浆岩和变质岩等。 具弹脆性性质。 半弹性岩石:空隙率低且具有较大内聚力的粗粒岩浆岩和细粒致密的沉积岩。 非弹性岩石:内聚力低,空隙率大的软弱岩石,如泥岩、页岩、千枚岩等。

第三章 土的变形特性

第三章 土的变形特性 3.1 应力-应变试验与试验曲线 目前,为了测定土的变形和强度特性,在土工试验方面经常使用的土工仪器有固结仪、直剪仪和常规三轴仪。另外,还有真三轴仪、平面应变仪和扭剪仪等,但使用不很普遍。由于能施加复合应力的试验设备的设计、制造和使用都比较困难,因此目前通常采用的研究方法是通过少量简单的试验,求取在比较简单的应力状态下的应力应变关系试验曲线,然后利用一些理论,如增量弹塑性理论,把这些试验结果推广应用到复杂的应力状态上去,建立所需要的应力-应变模型。土的应力-应变模型建立后,再用应力路径不同的试验以及用复杂应力状态的试验来验证模型的正确性。必要时,可对建立的应力应变模型进行修正。 下面简要介绍各向等压力固结试验和三轴压缩试验的情况,以及相应的试验曲线的特性。 3.1.1 各向等压力固结试验和土的固结状态 各向等压力固结试验,即123σσσ==条件下的排水压缩试验,可用常规三轴仪进行。 试验得到的应力-应变关系曲线,通常称为压缩和回弹曲线,如图3-1 所示。一般情况下,土体压缩时,土体孔隙比e 与平均有效应力p '的关系在半对数坐标图上可简化为直线关系,压缩曲线的方程可表示为: 0ln e e p λ'=- (3.1.1) 式中0e ——p '等于单位应力时土体的孔隙比; λ——半自然对数坐标图上压缩曲线的斜率。 当卸荷及重复加荷时,土体孔隙比与平均有效应力的关系在半对数坐标上也可近似表示为直线关系,回弹曲线的方程可表示为: ln e e p κκ'=- (3.1.2) 式中e κ——回弹曲线上p ′等于单位压力时土体的孔隙比; κ——半自然对数坐标图上压缩曲线的斜率。

土石坝地震永久变形计算方法_李湛

土石坝地震永久变形计算方法 李 湛1,3,栾茂田2,3 (11中国建筑科学研究院,北京 100013; 21大连理工大学海岸和近海工程国家重点实验室,辽宁大连 116024; 31大连理工大学土木水利学院岩土工程研究所,辽宁大连 116024) 摘 要:对于土石坝的地震永久变形,本文提出等效结点力-逐步软化有限元计算模型。首先根据坝体地震动力响应的 非线性有限元分析确定各时段坝体单元可能发生的残余应变、振动孔隙水压力增量及累积振动孔隙水压力,以此对静变 形模量和强度及静应力-应变关系进行修正,并应用于下一时段计算中;同时基于所确定的与上一时段地震作用所产生 的潜在残余应变增量和静应力-应变关系确定地震作用相应的等效结点力。在每一时段末根据上述所确定的等效结点 力和应力-应变关系,运用整体有限元分析确定坝休的残余变形增量,将各个时段计算所确定的残余位移累加得到地震 作用后坝体的残余变形量。这种方法能够同时考虑地震惯性力效应和土的软化效应对土石坝地震永久变形的影响。 关键词:水工结构;地震永久变形;等效结点力-逐步软化有限元模型;土石坝;抗震稳定性 中图分类号:TV312文献标识码:A 收稿日期:2008-03-03 基金项目:国家自然科学基金(50179006),教育部跨世纪优秀人才培养计划研究基金和中国科学院武汉岩土力学研究所前沿领域基础研究基金 (Q110305) 作者简介:李湛(1975)),男,博士.E -mail:lz -xj@https://www.360docs.net/doc/6d18347810.html, Computation method for seismically -induced permanent deformation of earth -rock dams LI Zhan 1,3,LUAN Maotian 2,3 (1.China Academy o f Building Research ,Beijing 100013; 2.State Key Laboratory o f Coastal and O ffshore Engineering ,Dalian University o f Technology ,Dalian 116024; 3.Institute o f Geotechnical Engineering ,School o f Civil and Hydraulic Engineering , Dalian University o f Technology ,Dalian 116024) Abstract :This paper presents a finite element procedure for evaluating seismically -induced permanent deformation of earth -rock da ms.In the proposed procedure,both concepts of equivalent nodal forces and step -by -step gradually softening moduli are integrated together.The earthquake duration is divided into a certain number of time incre ments.And for each time increment the residual strain and dyna mic pore water pressure which is likely induced during previous time increments under undrained condition are estimated on the basis of the stress condition obtained by the dyna mic analysis and the empirical patterns of both residual strain and pore water pressure achieved e xperimentally.Then,the computed accumulative pore -water pressure at the end o f each time increment is used directly to modify the static hyperbolic relationship between stress and strain which is to be used for the next time period.And at the same time,the equivalent nodal forces equivalent to incremental residual strain potential are defined.B y using the modified stress -strain relationship,the incremental deformations are computed when the nodal forces equivalent to earthquake effect on the dam defined as above are imposed on the earth -rock dam.The computed incremental displacements of the earth -rock dam for each time incre ment are accumulated and the accumulative displacements can be regarded as approximation of the residual deformation which is to be initiated by earthquake shaking.In fact,the proposed numerical procedure has taken into c onsideration both the inertia effect 第28卷第4期 2009年8月水 力 发 电 学 报JOURNAL OF HYDROELEC TRIC ENGINEERING Vol.28 No.4Aug.,2009

膨胀土的浸水变形特性

2005年11月水利学报 SHUIUXUEBAO第36卷第11期 文章编号:0559.9350(2005)11.1385—07 膨胀土的浸水变形特性 李振1,邢义川2,张爱军1 (1西北农林科技大学水利与建筑工程学院。陕西杨陡712l呻;2中国水利水电科学研究院综合事业部。北京100蝉4) 摘要:使用压缩仪,对不同起始密度及不同起始含水率的膨胀土进行了分级浸水和一次性浸水膨胀变形试验,同时测试了试样在最水前后不同压力下膨胀变形量的变化过程。试验结果表明,不同浸水路径在浸水的初期阶段对膨胀土的膨胀变形速率有一定的影响,但膨胀率最终值基本一致;浸水膨胀再压缩试验中压缩稳定后的膨胀率比先压缩再{曼水膨胀试验膨胀稳定后的膨胀率要小,但变化较快,并随着压力的增大,加压后膨胀率逐渐减小,最终两种试验的膨胀率趋于一致;压力对不同初始含水率试样膨胀率的影响较小,对不同初始干密度试样的影响较大;在浸水单向膨胀试验过程中试样的干密度与膨胀率呈双曲线变化规律。 关键词:膨胀土;浸水;压缩;变形;膨胀率 中圈分类号:TU4儿.2文献标识码:A 1研究背景 在膨胀土地区的工程建设中,常用膨胀土作为建筑物的地基,由于膨胀土含有强亲水性黏土矿物成分如蒙脱石和伊利石,使得膨胀土吸水膨胀,失水收缩,从而引起建筑物的开裂、倾斜破坏,或使开挖体的边坡产生滑移失稳等现象,对工程建筑产生极大的危害。据统计,全世界每年由于膨胀土造成的损失可达近百亿元“]。加强对膨胀土工程特性的研究,总结探讨其内在的变形规律性,对工程建设具有十分重要的经济意义和工程实践价值。研究表明,影响膨胀土变形的因素较多,膨胀土的变形不仅与应力路径有关,而且与起始含水率和干密度有关”o。许多学者对膨胀土的结构特性、遇水作用后产生膨胀变形的机理、膨胀土的本构关系及在不同初始状态下的膨胀变形进行了深入的研究”“,从中得到了许多能很好解释膨胀土工程特性的结论,但对于在不同浸水路径下膨胀土遇水增湿而产生膨胀变形的研究却不多。针对这一点,本文在不同的浸水路径和加荷方式下,采用压缩仪对膨胀土浸水变形特性进行试验探讨。 2试验材料与方法 2.1试验试样试验土样取白安康工业开发区某工程地基膨胀土,其物理性质试验结果见表l。 表1膨胀土的物理性质试验结果 2.2试验方法“1按试验方案所需的含水率配制土料,制备试样时采用千斤顶一次压实至控制高度收稿日期:2005_01-27 基金项目:水利部“舛8”计划技术创新与转化项目(c渊8) 作者简介:李振(1969一),男,陕西华县人,工程师,主要从事岩土工程试验研究。E.md:Iidmn898@126.一 1385

浅谈土的变形特性

2010年 第4期(总第194期) 黑龙江交通科技 HEIL ONGJI A NG JI A OTONG KEJI No .4,2010(Sum No .194) 浅谈土的变形特性 李连志1,王 佳2 (1 黑龙江工程学院土木与建筑工程学院;2 黑龙江省公路局) 摘 要:土的力学性质研究是建立在三大力学基础之上,但又因为土的多相性、散体性和自然变异性,使其与 金属材料有着本质的区别。在土的非线性、剪胀性、硬化与软化、应力路径和应力历史等方面分析了土有别于金属材料的变形特性。 关键词:土体;变形特性;本构关系 中图分类号:U 416 1 文献标识码:C 文章编号:1008-3383(2010)04-0004-01 收稿日期:2010-02-08 0 概 述 土是一种具有多相性、散体性和自然变异性的材料,与材料力学中的金属有着本质的区别。为了研究土的变形往往应用压缩固结仪、三轴压缩仪、平面应变仪、真三轴仪等进行试验,得出土的应力 应变关系。这种关系反映了土体变形的特性。但试验有一定的局限性,试验总是在某种简化条件下进行的,即使真三轴仪能考虑三维受力状态,试验也只能按某种应力状态,某种加荷方式进行。为了更好的了解土的变形特性,仅就土区别于金属材料的变形特性阐述。1 非线性和非弹性 大部分坚硬材料,如金属和混凝土,在受轴向拉压时,应力 应交关系如图1(a)所示,初始阶段为直线,材料处于弹性变形状态。当应力达到某一临界值时,应力 应交关系明显地转为曲线,材料同时存在弹性变形和塑性变形。土体也有类似的特性,图1(b)为土的三轴试验得出的轴向应力 1- 3与轴向应变 之间的关系曲线。与金属等材料不同的是,初始的直线阶段很短,对于松砂和正常固结黏土,几乎没有直线阶段,加荷一开始就呈非线性。土体的非线性变形特性比其他材料明显得多。 这种非线性变化的产生,就是因为除弹性变形以外还出现了不可恢复的塑性变形。土体是松散介质,受力后颗粒之间的位置调整在荷载卸除后,不能恢复,形成较大的塑性变形。如果加荷到某一应力后再卸荷,曲线将如图1(b)虚线所示。oa 为加荷段,ab 为卸荷段。卸荷后能恢复的应变 e 即弹性应变。不可恢复的那部分应变 p 为塑性应变。经过一个加荷退荷循环后,再加荷,将如图1(b)中的bc 段所示,它并不与ab 线重合,而存在一个环,叫回滞环。回滞环的存在表示卸荷再加荷过程中能量消耗了,要给以能量的补充。再加荷还会产生新的不可恢复的变形,不过同一荷载多次重复后塑性变形逐渐减小。 土体在各种应力状态下都有塑性变形,甚至在加荷初始应力 应变关系接近直线的阶段,变形仍然包含弹性和塑性两部分。卸荷后不能恢复到原点。非线性和非弹性是土体变形的突出特点。 2 塑性体积应变和剪胀性 土体受力后会有明显的塑性体积变形。由土样在三轴仪中逐步施加各向相等的压力P 后,再卸除,所得到的P 与体积应变 v 之间的关系曲线,可见存在不可恢复的塑性体积应变,而且它往往比弹性体积应变更大。这一点与金属不同,金属被认为是没有塑性体积变形的。塑性变形是由于晶格之间的错动滑移而造成的,它只体现形状改变,不产生体积变化。土体的塑性变形也与颗粒的错位滑移有关。在各向相等的压力作用下,从宏观上来说,是不受剪切的,但在微 观上,颗粒间是有错动的。压缩前,颗粒架空,存在较大孔隙,压缩后,有些颗粒挤入原来的孔隙中,颗粒错动,相对位置调整,颗粒之间发生着剪切位移。当荷载卸除后,不能再使它们架空,无法恢复到原来的体积,就形成较大的塑性体 积变形。 (a)金属;(b)土体 图1 材料的应用 应变关系 不仅压力会引起塑性体积变形,而且剪切也会引起塑性体积变形。剪切引起的体积收缩叫剪缩。软土和松砂常表现为剪缩。若剪切引起体积膨胀,则称之为剪胀。紧密砂土,超固结黏土,常表现为剪胀。文献中常把剪切引起的体积变化,不管剪缩还是剪胀,统称为剪胀性,剪缩是负的剪胀。剪胀性是散粒体材料的一个非常重要的特性。3 硬化和软化 三轴试验测得的轴向应力 1- 3与轴向应变 a 的关系曲线有两种形态。图2(a)所示曲线有一直上升的趋势直至破坏,这种形状的应力应变关系称为硬化型。软土和松砂表现为这种形态,图2(b)所示曲线前面部分是上升的,应力达到某一峰值后转为下降曲线,即应力在降低,而应变却在增加,这种形态称之为软化型。紧密砂和超压密黏土表现为这种形态。 密砂受剪时,由于顺位排列紧密,一部分颗粒要滚过另一部分颗粒而产生相对错动,须克服较大的 咬合 作用力,故表现为较高的抗剪强度。而一旦一部分颗粒绕过了另一部分颗粒,结构便变松,抗剪能力减小了,因而表现为软化。超固结黏土剪切破坏后结构黏聚力丧失,也降低强度,表现为软化。对于松砂和软土,剪切过程中结构变得紧密,一般表现为剪缩,因而强度也在提高,呈现硬化特性。硬化和软化与剪缩和剪胀,常有一定联系,但也不是必然联系,软化类型的土往往是剪胀的,剪胀土未必都是软化的。 (下转第7页) 4

泥岩损伤特性试验研究

Journal of Engineering Geology 工程地质学报1004-9665/2010/18(4)-0534-04 泥岩损伤特性试验研究 许宝田①② 钱七虎① 阎长虹② 许宏发① (①解放军理工大学南京210007) (②南京大学地球科学与工程学院南京210093) 摘 要 以南京长江三桥地基中的泥岩为对象,对泥岩进行三轴试验。试验结果表明:随着侧压的增大,破坏荷载增大,塑性 变形明显增大,岩石破坏后,残余强度随侧压增大而提高。在此基础上研究分析了泥岩微元强度服从Weibull 分布,泥岩微元体破坏服从莫尔-库仑岩石强度判据时的损伤软化参数与围压的关系特征。结合岩石破裂过程应力-应变全过程曲线,讨论了初始损伤特性,分析结果表明:泥岩初始损伤时的主应力差对数随围压增大而增大,两者呈线性关系;分析了泥岩损伤变量随主应力差变化关系,结果表明泥岩损伤变量与主应力差呈双曲线数学关系,通过对双曲线模型作线性化处理,结合试验数据采用回归分析法确定模型参数,分析结果发现F 0随围压的增大而增大,而m 则随压的增大而减小,反映泥岩随围压的增大,脆性度降低。关键词 泥岩 损伤特性 试验研究 中图分类号:TU451 文献标识码:A *收稿日期:2009-08-31;收到修改稿日期:2010-01-12. 第一作者简介:许宝田,主要从事岩石力学方面的教学与研究工作.Email :zhangqingxubt@163.com TRIAXIAL TESTING STUDY ON DAMAGE CHARACTERISTICS OF MUD-STONE XU Baotian ①② QIAN Qihu ①YAN Changhong ②XU Hongfa ① (①PLA University of Science and Technology ,Nanjing 210007) (②School of Earth Sciences and Engineering ,Nanjing University ,Nanjing 210093) Abstract This paper presents the triaxial test results of mudstone from the foundation of the Nanjing third bridge on Yangtse River.It is found that the failure pressure ,the plastic deformation and the residual strength of the mudstone after subversion increase as the confining pressure increases.Then ,it studies and analyses the relation between the damage soften parameters and the confining pressure , when the strength of rock's micro —unit is of the Weibull distri-bution and the strength of rock's micro —unit conformed to the Mohr-Coulomb strength criterion.Connecting with the stress-strain full procedure curves ,the initial damage characteristic is discussed.The results indicate that the relation of logarithm of pressure and confining pressure of initial damage is linear.By studying on the relation between damage variable and main stress ,it is found the relation of damage variable and main stress submits to a hyperbola model.The hyperbola model can be transformed into a linear equation.So the model parameters can be gotten by regressive anal-ysis based on the test results.The results indicate ‘F 0’increases as the confining pressure increases ,but ‘m 'de-clines ,which reflects the brittleness tolerance of the mudstone declines as the confining pressure increases.Key words Mudstone ,Damage characteristic ,Triaxial test ,Rock mechanics

基于实测数据的上海地区超深基坑变形特性研究_江晓峰

第32卷 增刊2 岩 土 工 程 学 报 Vol.32 Supp.2 2010年8月 Chinese Journal of Geotechnical Engineering Aug. 2010 基于实测数据的上海地区超深基坑变形特性研究 江晓峰1,刘国彬1,张伟立2,李翔宇1 (1. 同济大学地下建筑与工程系,上海 200092;2. 上海市政工程设计研究总院,上海 200092) 摘 要:根据58个上海软土地区19 m以上超深基坑数据库,从基坑围护结构水平位移和墙后地表沉降两个方面进行了研究。通过充分的数据挖掘,围护结构水平位移方面,得到了围护结构水平位移曲线形态特征、最大水平位移的位置、归一化的最大水平位移值;墙后地表沉降方面,得到了墙后地表沉降的曲线形态、墙后最大地表沉降值、墙后地表沉降的影响范围。并对这些规律产生的原因进行了机理分析。这些结论可用于超深基坑的变形估算、优化设计以及指导施工。 关键词:超深基坑;实测数据;围护结构水平位移;墙后地表沉降;变形特性 中图分类号:TU473 文献标识码:A 文章编号:1000–4548(2010)S2–0570–04 作者简介:江晓峰(1986–),男,上海人,硕士研究生,主要研究方向为超深基坑工程和地铁及地下工程安全监控技术。E-mail: jiangxiaofengtjdx@https://www.360docs.net/doc/6d18347810.html,。 Deformation characteristics of ultra-deep foundation pit in Shanghai based on measured data JIANG Xiao-feng1, LIU Guo-bin1, ZHANG Wei-li2, LI Xiang-yu1 (1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Shanghai Municipal Engineering Research and Design Institute, Shanghai 200092, China) Abstract: The database of 58 over-19-meters deep foundation pits helps to study the horizontal displacement of supporting structure and the surface settlement behind diaphragm wall. By fully data mining, the curve feature, and normalized maximum value of the horizontal displacement are obtained. The curve feature, maximum location and the influence range of the surface settlement behind diaphragm wall are also analyzed. These conclusions can be used in estimating the deformation, optimizing the design and guiding the construction for ultra-deep foundation pit. Key words: ultra-deep foundation pit; measured data; horizontal displacement of supporting structure; surface settlement behind diaphragm wall; properties of deformation 0 引 言 近年来,由于城市建设和经济发展需要,基坑工程呈现出“深、大、近、紧、难”的特点。深基坑甚至是超深基坑不断涌现。以国内为例[1],北京国际新闻文化中心的基坑开挖深度平均为22.96 m;国家大剧院工程基础埋深最深处为32.5 m;润扬长江大桥北锚碇基坑平均开挖深度达到48 m。上海地区,地铁董家渡修复工程开挖深度平均达到38 m,外环隧道浦西暗埋段基坑、世博变电站等基坑开挖深度都达到了30 m以上。 目前的理论研究仍然多局限与一般的深基坑,超深基坑实践已经超在了理论的前头。徐中华[2]、刘涛[3]等都对上海基坑的变形特性做了统计分析,但都局限于一般深基坑,超深基坑的变形特性与一般深基坑的差异性还没有研究。根据文献[4]将20 m定义为上海软土超深基坑的界限,因此,本文收集了上海地区部分超深基坑(19 m以上)的工程实例,基于统计分析,研究了超深基坑围护墙体和墙后地表沉降变形特性。 1 工程信息采集与符号约定 1.1 工程信息的采集 本文采集的目标源为上海地区开挖深度超过19 m的基坑。本文共收集了58个工程的监测数据。数据的来源为已出版的有关专著、各类期刊、岩土工程领域的硕博士论文以及通过上海地铁远程监控系统所采集的数据信息。本文所收集的监测数据项目仅限于 ─────── 收稿日期:2010–04–21

影响岩石工程地质性质的因素

影响岩石工程地质性质 的因素 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

影响岩石工程地质性质的因素 矿物成分、结构、构造、水、风化作用 1.矿物成分 岩石是由矿物组成的,岩石的矿物成分对岩石的物理力学性质产生直接的影响。 例如,石英岩的抗压强度比大理岩的要高得多,这是因为石英的强度比方解石的强度高的缘故,由此可见,尽管岩类相同,结构和构造也相同,如果矿物成分不同,岩石的物理力学性质会有明显的差别。 对岩石的工程地质性质进行分析和评价时,更应该注意那些可能降低岩石强度的因素。 例如,花岗岩中的黑云母含量过高,石灰岩、砂岩中粘土类矿物的含量过高会直接降低岩石的强度和稳定性。 2.结构 结晶联结是由岩浆或溶液结晶或重结晶形成的。矿物的结晶颗粒靠直接接触产生的力牢固地联结在一起,结合力强,空隙度小,比胶结联结的岩石具有更高的强度和稳定性。 联结是矿物碎屑由胶结物联结在一起的,胶结联结的岩石,其强度和稳定性主要取决于胶结物的成分和胶结的形式,同时也受碎屑成分的影响,变化很大。 例如:粗粒花岗岩的抗压强度一般在120~140Mpa之间,而细粒花岗岩则可达200~250Mpa。 大理岩的抗压强度一般在100~120MPa之间,而坚固的石灰岩则可达 250MPa 。 3.构造 构造对岩石物理力学性质的影响,主要是由矿物成分在岩石中分布的不均匀性和岩石结构的不连续性所决定的。 某些岩石具有的片状构造、板状构造、千枚状构造、片麻状构造以及流纹构造等,岩石的这些构造,使矿物成分在岩石中的分布极不均匀。一些强度低、易风化的矿物,多沿一定方向富集,或成条带状分布,或形成局部聚集体,从而使岩石的物理力学性质在局部发生很大变化。 4.水 实验证明,岩石饱水后强度降低。当岩石受到水的作用时,水就沿着岩石中可见和不可见的孔隙、裂隙侵入,浸湿岩石自由表面上的矿物颗粒,并继续沿着矿物颗粒间的接触面向深部侵入,削弱矿物颗粒间的联结,使岩石的强度受到影响。 如石灰岩和砂岩被水饱和后,其极限抗压强度会降低25%~45%左右。 5.风化 风化作用过程能使岩石的结构、构造和整体性遭到破坏,空隙度增大、容重减小,吸水性和透水性显着增高,强度和稳定性大为降低。随着化学过程的加强,则会使岩石中的某些矿物发生次生变化,从根本上改变岩石原有的工程地质性质。

相关文档
最新文档