(经典)正弦定理、余弦定理知识点总结及最全证明

(经典)正弦定理、余弦定理知识点总结及最全证明
(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法

——王彦文青铜峡一中

1.掌握正弦定理、余弦定理,并能解决一

些简单的三角形度量问题.

2.能够运用正弦定理、余弦定理等知识和

方法解决一些与测量和几何计算有关的实际问

题.

主要考查有关定理的应用、三角恒等变换

的能力、运算能力及转化的数学思想.解三角

形常常作为解题工具用于立体几何中的计算或

证明,或与三角函数联系在一起求距离、高度

以及角度等问题,且多以应用题的形式出现.

1.正弦定理

(1)正弦定理:在一个三角形中,各边和它

所对角的正弦的比相等,即.其

中R是三角形外接圆的半径.

(2)正弦定理的其他形式:

①a=2R sin A,b=,c

=;

②sin A=a

2R

,sin B=,

sin C=;

③a∶b∶c=______________________.

2.余弦定理

(1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即

a2=,b2=,

c2= .

若令C=90°,则c2=,即为勾股定理.

(2)余弦定理的变形:cos A =,cos B=,cos C= .

若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角.

(3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A =sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π.

3.解斜三角形的类型

(1)已知三角形的任意两个角与一边,用____________定理.只有一解.

(2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a,

解时,只有一解.

(4)已知两边及夹角,用____________定理,必有一解.

4.三角形中的常用公式或变式

(1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径.

(2)A+B+C=π,则A=__________,

A

2

=__________,从而sin A=____________,

cos A=____________,tan A=

____________;

sin A 2=__________,cos A

2

=__________, tan A

2=________.tan A +tan B +tan C =__________.

(3)若三角形三边a ,b ,c 成等差数列,则2b =____________?2sin B =____________?2sin B 2=cos A -C 2?2cos A +C 2=cos A -C 2?tan

A

2tan C 2=1

3

.

【自查自纠】

1.(1)a sin A =b sin B =c

sin C =2R

(2)①2R sin B 2R sin C ②

b 2R

c 2R

③sin A ∶sin B ∶sin C

2.(1)b 2+c 2-2bc cos A c 2+a 2

-2ca cos B a 2+b 2-2ab cos C a 2+b 2

(2)b 2+c 2-a 22bc c 2+a 2-b 22ca a 2+b 2-c 2

2ab >

<

(3)互化 sin 2

C +sin 2

A -2sin C sin A cos

B sin 2A +sin 2

B -2sin A sin B cos

C 3.(1)正弦 (2)正弦 一解、两解或无解 ①一解 ②二解 ③一解 ④一解 (3)余弦 (4)余弦 4.(1)12ab sin C 12bc sin A 12ac sin B abc

4R

1

2

(a +b +c )r (2)π-(B +C )

π2-B +C 2

sin(B +C ) -cos(B +C )

-tan(B +C ) cos

B +

C 2

sin

B +

C 2

1

tan

B +

C 2

tan A tan B tan C (3)a +c sin A +sin C

在△ABC 中,A >B 是sin A >sin B 的( )

A .充分不必要条件

B .必要不充分条件

C .充要条件

D .既不充分也不必要条件

解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C .

在△ABC 中,已知b =6,c =10,B =30°,则解此三角形的结果有( )

A .无解

B .一解

C .两解

D .一解或两解

解:由正弦定理知sin C =

c ·sin B b =5

6

,又由c >b >c sin B 知,C 有两解.也可依已知条件,画

出△ABC ,由图知有两解.故选C .

(2013·陕西)设△ABC 的内角A, B, C

所对的边分别为a, b, c, 若b cos C +c cos B =

a sin A, 则△ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定 解:由已知和正弦定理可得sin B cos C +sin C cos B =sin A ·sin A ,即sin(B +C )=

sin A sin A ,亦即sin A =sin A sin A .因为0

2

.所以三角形为直角

三角形.故选B .

(2012·陕西)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =2,B =

π

6

,c

=23,则b =________.

解:由余弦定理知b 2=a 2+c 2-2ac cos B =22

+()

232

-2×2×23×cos π

6

=4,b =2.

故填2.

在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.

解:∵sin B +cos B =2,

∴2sin ? ????B +π4=2,即sin ? ?

???B +π4=1.

又∵B ∈(0,π),∴B +

π4=π2,B =π

4. 根据正弦定理

a sin A

b sin B

,可得sin A =

a sin B

b =1

2

. ∵a <b ,∴A <B .∴A =

π6.故填π

6

.

类型一 正弦定理的应用

△ABC 的内角A ,B ,C 的对边分别

为a ,b ,c ,已知A -C =90°,a +c =2b ,求C .

解:由a +c =2b 及正弦定理可得sin A +sin C =2sin B .

又由于A -C =90°,B =180°-(A +C ),故cos C +sin C =sin A +sin C =2sin(A +C )=

2sin(90°+2C )=2sin2(45°+C ). ∴

2sin(45°+C )=2

2sin(45°+

C )cos(45°+C ),

即cos(45°+C )=1

2

.

又∵0°<C <90°,∴45°+C =60°,C =15°.

【评析】利用正弦定理将边边关系转化为角角关系,这是解此题的关键.

(2012·江西)在△ABC 中,角A ,

B ,

C 的对边分别为a ,b ,c .已知A =π

4

b sin ? ????π4+C -

c sin ? ??

??π4+B =a .

(1)求证:B -C =

π

2

; (2)若a =2,求△ABC 的面积. 解:(1)证明:对b sin ? ??

??

π4+C -

c sin ? ??

??

π4+B =a

应用正弦定理得

sin B sin ? ????π4+C -sin C sin ? ??

??

π4+B =sin A ,

sin B

? ??

?

?22sin C +2

2cos C -

sin C ? ????22sin B +2

2cos B =22,

整理得sin B cos C -sin C cos B =1,即sin ()B -C =1.

由于B ,C ∈?

?

???0,3π4,∴B -C =π2.

(2)∵B +C =π-A =3π

4,又由(1)知B -C

=π2

, ∴B =

5π8,C =π8

. ∵a =2,A =π

4

,∴由正弦定理知b =

a sin B sin A =2sin 5π8,c =a sin C sin A =2sin π

8

. ∴S △ABC =12bc sin A =12×2sin 5π8×2sin

π

8×2

2

=2sin 5π8sin π8=2cos π8sin π8=2

2

sin

π4=12

. 类型二

余弦定理的应用

在△ABC 中,a ,b ,c 分别是角A ,

B ,

C 的对边,且

cos B cos C =-b

2a +c

. (1)求B 的大小;

(2)若b =13,a +c =4,求△ABC 的面积.

解:(1)由余弦定理知,cos B =a 2+c 2-b 2

2ac ,

cos C =a 2+b 2-c 22ab ,将上式代入cos B cos C =-

b 2a +

c 得

a 2+c 2-

b 22a

c ·2ab a 2+b 2-c 2=-b

2a +c , 整理得a 2+c 2-b 2=-ac .

∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.

∵B 为三角形的内角,∴B =2

3π.

(2)将b =13,a +c =4,B =2

3π代入b 2

=a 2+c 2-2ac cos B ,得13=42-2ac -2ac cos 2

3

π,解得ac =3.

∴S △ABC =12ac sin B =33

4

.

【评析】①根据所给等式的结构特点利用

余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.

若△ABC 的内角A ,B ,C 所对的边

a ,

b ,

c 满足(a +b )2-c 2=4,且C =60°,则

ab 的值为( )

A.4

3 B .8-

4 3

C

1

D.23

解:由余弦定理得c 2=a 2+b 2-2ab cos C =

a 2+

b 2-ab ,代入(a +b )2-

c 2=4中得(a +b )2-(a 2+b 2-ab )=4,即3ab =4,∴ab =4

3.故选

A .

类型三 正、余弦定理的综合应用

(2013·全国新课标Ⅱ)△ABC 的内

角A 、B 、C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .

(1)求B ;

(2)若b =2,求△ABC 面积的最大值. 解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B .①

又A =π-(B +C ),故

sin A =sin(B +C )=sin B cos C +cos B sin C .②

由①,②和C ∈(0,π)得sin B =cos B .

又B ∈(0,π),所以B =

π4

. (2)△ABC 的面积S =12ac sin B =2

4ac .

由已知及余弦定理得4=a 2+c 2-2ac cos π

4

.

又a 2+c 2≥2ac ,故ac ≤

4

2-2

, 当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为2+1. 【评析】(1)化边为角与和角或差角公式的

正向或反向多次联用是常用的技巧;(2)已知边及其对角求三角形面积最值是高考中考过多次的问题,既可用三角函数求最值,也可以用余弦定理化边后用不等式求最值.

(2013·山东)设△ABC 的内角A ,

B ,

C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =7

9

.

(1)求a ,c 的值;

(2)求sin(A -B )的值.

解:(1)由余弦定理b 2=a 2+c 2-2ac cos B , 得b 2=(a +c )2-2ac (1+cos B ),又a +c =6,b =2,

cos B =7

9

,所以ac =9,解得a =3,c =3.

(2)在△ABC 中,sin B =1-cos 2B =

42

9

, 由正弦定理得sin A =

a sin B

b =22

3

. 因为a =c ,所以A 为锐角, 所以cos A =1-sin 2A =1

3

.

因此sin(A -B )=sin A cos B -cos A sin B =10

2

27

. 类型四 判断三角形的形状 在三角形ABC 中,若tan A ∶tan B =

a 2∶

b 2,试判断三角形ABC 的形状.

解法一:由正弦定理,得a 2b 2=sin 2A

sin 2B ,

所以tan A tan B =sin 2A sin 2B

所以sin A cos B cos A sin B =sin 2A sin 2B ,即sin2A =sin2B .

所以2A =2B ,或2A +2B =π,因此A =B 或A +B =

π

2

,从而△ABC 是等腰三角形或直角三角形.

解法二:由正弦定理,得a 2b 2=sin 2A

sin 2B ,所以

tan A tan B =sin 2A sin 2B ,所以cos B cos A =sin A

sin B

,再由正、余弦定理,得a 2+c 2-b 2

2ac b 2+c 2-a 22bc =a b ,化简得(a 2-b 2)(c 2

a 2-

b 2)=0,即a 2=b 2或

c 2=a 2+b 2.

从而△ABC 是等腰三角形或直角三角形.

A +sin 2A .锐角三角形C .钝角三角形解:在△艇送到一艘正在航行的轮船上.轮船位于港口n mile 的沿正东方向匀速行驶.假设该小艇沿直线方向故当t =13时,S min =103,此时v =103

1

3=

30 3.

即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.

(2)设小艇与轮船在B 处相遇,则 v 2t 2=400+900t 2

2·20·30t ·cos(90°-30°),

故v 2=900-

600

t

400

t 2

.

∵0

600

t +400

t

2

≤900,即

2

t 2

-3

t

≤0,

解得t ≥23.又t =2

3

时,v =30.故v =30时,

t 取得最小值,且最小值等于23

.

此时,在△OAB 中,有OA =OB =AB =20,

故可设计航行方案如下:航行方向为北偏东30°,航行速度为30 n mile/h ,小艇能以最短时间与轮船相遇.

解法二:(1)若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.

设小艇与轮船在C 处相遇.

在Rt△OAC 中,OC =20cos30°=103,

AC =20sin30°=10.

又AC =30t ,OC =vt ,

此时,轮船航行时间t =

1030=13,v =103

1

3

=30 3.

即小艇以30 3 n mile/h 的速度航行,相遇时小艇的航行距离最小.

(2)假设v =30时,小艇能以最短时间与轮船在D 处相遇,此时AD =DO =30t .

又∠OAD =60°,所以AD =DO =OA =20,解得t =2

3

.

据此可设计航行方案如下:

航行方向为北偏东30°,航行速度的大小为30 n mile/h.这样,小艇能以最短时间与轮船相遇.

证明如下:

如图,由(1)得OC =

103,AC =10,

故OC >AC ,且对于线段AC 上任意点P ,有OP ≥OC >AC .

而小艇的最高航行速度只能达到30 n mile/h ,故小艇与轮船不可能在A ,C 之间(包含C )的任意位置相遇.

设∠COD =θ(0°<θ<90°),则在Rt△COD 中,

CD =103tan θ,OD =

103

cos θ

. 由于从出发到相遇,轮船与小艇所需要的时间分别为t =10+103tan θ30和t =103

v cos θ,

所以

10+103tan θ30=103v cos θ.

由此可得,v =153sin (θ+30°)

.

又v ≤30,故sin(θ+30°)≥

3

2

,从而,30°≤θ<90°.

由于θ=30°时,tan θ取得最小值,且最小值为

33

. 于是,当θ=30°时,t =10+103tan θ

30

取得最小值,且最小值为23

.

【评析】①这是一道有关解三角形的实际应用题,解题的关键是把实际问题抽象成纯数学问题,根据题目提供的信息,找出三角形中的数量关系,然后利用正、余弦定理求解.②解三角形的方法在实际问题中,有广泛的应用.在物理学中,有关向量的计算也要用到解三角形的方法.近年的高考中我们发现以解三角形为背景的应用题开始成为热点

问题之一.③不管是什么类型的三角应用问题,解决的关键都是充分理解题意,将问题中的语言叙述弄明白,画出帮助分析问题的草图,再将其归结为属于哪类可解的三角形.④本题用几何方法求解也较简便.

(2012·武汉5月模拟)如图,渔船

甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲

同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.

(1)求渔船甲的速度; (2)求sin α的值.

解:(1)依题意,∠BAC =120°,AB =12,

AC =10×2=20,在△ABC 中,由余弦定理知BC 2=AB 2+AC 2-2AB ·AC ·cos∠BAC =122+202-2×12×20×cos120°=784,BC =28.

所以渔船甲的速度为v =

28

2

=14(海里/小时).

(2)在△ABC 中,AB =12,∠BAC =120°,BC =28,

∠BCA =α,由正弦定理得

AB sin α

BC

sin∠BAC ,即12sin α=28sin120°,从而sin α=

12sin120°28=

33

14

.

1.已知两边及其中一边的对角解三角形时,要注意解的情况,谨防漏解.

2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转化为角角关系(注意应用A +B +C =π这个结论)或边边关系,再用三角变换或代数式的恒等变形(如因式分解、配方等)求解,注意等式两边的公因式不要约掉,要移项提取公因式,否则有可能漏掉一种形状.

3.要熟记一些常见结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与诱导公式结合产生的结论:sin A =sin(B +C ),cos A =-cos(B +C ),sin A 2=cos B +C

2,

sin2A =-sin2(B +C ),cos2A =cos2(B +C )等.

4.应用正、余弦定理解斜三角形应用题的一般步骤:

(1)分析:理解题意,分清已知与未知,画出示意图;

(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中到一个三角形中,建立一个解斜三角形的模型;

(3)求解:利用正、余弦定理有序地解出三

角形,求得数学模型的解;

(4)检验:检验上述所求得的解是否符合实际意义,从而得出实际问题的解.

5.正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

(完整版)正弦定理练习题经典

正弦定理练习题 1.在△ABC 中,A =45°,B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( ) A .1 B.12 C .2 D.14 4.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,A =60°,a =43,b =42,则角B 为( ) A .45°或135° B .135° C .45° D .以上答案都不对 5.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .若c =2,b =6,B =120°,则a 等于( ) A. 6 B .2 C. 3 D. 2 6.在△ABC 中,a ∶b ∶c =1∶5∶6,则sin A ∶sin B ∶sin C 等于( ) A .1∶5∶6 B .6∶5∶1 C .6∶1∶5 D .不确定 7.在△ABC 中,若cos A cos B =b a ,则△ABC 是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .等腰三角形或直角三角形 8.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若a =1,c =3,C =π3 ,则A =________. 9.在△ABC 中,已知a =433 ,b =4,A =30°,则sin B =________. 10.在△ABC 中,已知∠A =30°,∠B =120°,b =12,则a +c =________. 11.在△ABC 中,b =43,C =30°,c =2,则此三角形有________组解. 12 . 判断满足下列条件的三角形个数 (1)b=39,c=54,? =120C 有________组解 (2)a=20,b=11,?=30B 有________组解 (3)b=26,c=15,?=30C 有________组解 (4)a=2,b=6,?=30A 有________组解 正弦定理 1.在△ABC 中,∠A =45°,∠B =60°,a =2,则b 等于( ) A.6 B. 2 C. 3 D .2 6 解析:选A.应用正弦定理得:a sin A =b sin B ,求得b =a sin B sin A = 6. 2.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( ) A .4 2 B .4 3 C .4 6 D.323 解析:选C.A =45°,由正弦定理得b =a sin B sin A =4 6. 3.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若A =105°,B =45°,b =2,则c =( )

《正弦定理和余弦定理》典型例题.

《正弦定理和余弦定理》典型例题透析 类型一:正弦定理的应用: 例1.已知在ABC ?中,10c =,45A = ,30C = ,解三角形. 思路点拨:先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出边a ,然后用三角形内角和求出角B ,最后用正弦定理求出边b . 解析:sin sin a c A C = , ∴sin 10sin 45sin sin 30c A a C ?=== ∴ 180()105B A C =-+= , 又sin sin b c B C =, ∴sin 10sin10520sin 7520sin sin 304 c B b C ?====?= 总结升华: 1. 正弦定理可以用于解决已知两角和一边求另两边和一角的问题; 2. 数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从而恰当地选择解答方式. 举一反三: 【变式1】在?ABC 中,已知032.0=A ,081.8=B ,42.9a cm =,解三角形。 【答案】根据三角形内角和定理,0180()=-+C A B 000180(32.081.8)=-+066.2=; 根据正弦定理,0 sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ; 根据正弦定理,0 sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A 【变式2】在?ABC 中,已知075B =,0 60C =,5c =,求a 、A . 【答案】00000180()180(7560)45A B C =-+=-+=, 根据正弦定理5sin 45sin 60o o a =,∴a =【变式3】在?ABC 中,已知sin :sin :sin 1:2:3A B C =,求::a b c 【答案】根据正弦定理sin sin sin a b c A B C ==,得::sin :sin :sin 1:2:3a b c A B C ==. 例2.在60,1ABC b B c ?=== 中,,求:a 和A ,C . 思路点拨: 先将已知条件表示在示意图形上(如图),可以确定先用正弦定理求出角C ,然后用三角形内角和求出角A ,最后用正弦定理求出边a .

解三角形高考典型例题汇编

《解三角形》 一、 正弦定理:sin sin sin a b c A B C ===2R 推论:(1) ::sin :sin :sin a b c A B C = (2) a=2RsinA b=2RsinB c=2RsinC (3) sin =,sin =,sin = 222a b c A B C R R R 1. 在△中,若,则= 2. 在△中,a =b=6, A=300 ,则B= 3. 【2013山东文】在中,若满足,,,则 4.【2010山东高考填空15题】在△ABC 中a ,b=2,sinB+cosB ,则A=? 5.【2017全国文11】△ABC 中,sin sin (sin cos )0B A C C +-=,a =2,c ,则C =? 6. 在△ABC 中, C =90o , 角A ,B ,C 的对边分别是a ,b ,c.则 a b c +的取值范围是? 二、余弦定理:222222 2222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ?=+-?=+-??=+-? 推论 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ?+-=?? +-?=???+-= ?? 1. 在△ABC 中,如果sin :sin :sin 2:3:4A B C =,求cos C 的值 2. 在△ABC 中,若则A= 3. 【2012上海高考】在中,若,则的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 4.【2016山东文科】ABC △中角A ,B ,C 的对边分别是a ,b ,c ,,b c = 22 2(1sin )a b A =-, 则A =? (A )3π4 (B )π3 (C )π4 (D )π6

正弦定理、余弦定理经典练习题

学科数学版本人教版大开本、3+x 期数2339 年级高一编稿老师梁文莉审稿教师 【同步教育信息】 一. 本周教学内容: §5.9正弦定理、余弦定理 目标:使学生理解正弦定理、余弦定理的证明和推导过程,初步运用它们解斜三角形。并会利用计算器解决解斜三角形的计算问题。培养学生观察、分析、归纳等思维能力、运算能力、逻辑推理能力,渗透数形结合思想、分类思想、化归思想,以及从特殊到一般、类比等方法,进一步提高学生分析问题和解决问题的能力。 二. 重点、难点: 重点: 正弦定理、余弦定理的推导及运用。 难点: (1)正弦定理、余弦定理的推导过程; (2)应用正弦定理、余弦定理解斜三角形。 [学法指导] 学习本节知识时可采用向量法、等积法(面积相等)等不同方法来推导正弦定理,以加深对定理的理解和记忆,由于已知两边及其中一边的对角,不能唯一确定三角形,此时三角形可能出现两解、一解、无解三种情况,因此解此类三角形时,要注意讨论。 深刻领会向量的三角形法则及平面向量的数量积是用向量法推导余弦定理的关键。注意余弦定理的每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,便可求得第四个量。当有一个角为90°时,即为勾股定理。因此,勾股定理可看作是余弦定理的特例。 正弦定理和余弦定理是解斜三角形和判定三角形类型的重要工具,其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系。一般地,利用公式a=2RsinA,b=2RsinB,c=2RsinC(R 为ΔABC外接圆半径),可将边转化为角的三角函数关系,然后利用三角函数知识进行化简,其中往往用到三角形内角和定理A+B+C=π。 可将有关三角形中的角的余弦转化为边的关系,然后充分利用代数知识来解决问题。在三角形中,有一个角的余弦值为负值,该三角形为钝角三角形;有一个角的余弦值为零,便是直角三角形;三个角的余弦值都为正值,便是锐角三角形。 【例题分析】

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

正弦定理、余弦定理综合应用典型例题

正弦定理、余弦定理综合应用 例1.设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. 解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1 sin 2 B = , 由ABC △为锐角三角形得π6B = . (Ⅱ)cos sin cos sin A C A A π?? +=+π-- ?6?? cos sin 6A A π??=++ ???1cos cos 2A A A =++ 3A π? ?=+ ???. 由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336 A πππ <+<, 所以1sin 23A π??+< ???. 3A π??<+< ?? ? 所以,cos sin A C +的取值范围为322?? ? ?? ?,. 例2.已知ABC △1,且sin sin A B C +=. (I )求边AB 的长; (II )若ABC △的面积为1 sin 6 C ,求角C 的度数. 解:(I )由题意及正弦定理,得1AB BC AC ++=, BC AC +=, 两式相减,得1AB =. (II )由ABC △的面积11sin sin 26BC AC C C =g g ,得1 3 BC AC =g , 由余弦定理,得222cos 2AC BC AB C AC BC +-=g 22()21 22 AC BC AC BC AB AC BC +--= =g g , 所以60C =o . 例3.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(1,3-),n =(cos A ,sin A ).若m ⊥n , 且a cos B +b cos A =c sin C ,则角B = 6 π . 例4.设ABC ?的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o ,c =3b.求a c 的值; 解:由余弦定理得2222cos a b c b A =+-=2221117 ()2,3329 c c c c c +-=g g g 故3a c = 例5.在△ABC 中,三个角,,A B C 的对边边长分别为3,4,6a b c ===, 则cos cos cos bc A ca B ab C ++的值为 . 61 2 例6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若() C a A c b cos cos 3=-, 则=A cos _________________. 3 例7.(2009年广东卷文)已知ABC ?中, C B A ∠∠∠,,的对边分别为,,a b c 若a c ==75A ∠=o ,则b = 【解析】0000000 sin sin 75sin(3045)sin 30cos 45sin 45cos30A ==+=+=

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

正弦定理典型例题与知识点

正弦定理 教学重点:正弦定理 教学难点:正弦定理的正确理解和熟练运用,边角转化。多解问题 1.正弦定理:在任一个三角形中,各边和它所对角的正弦比相等, 即 A a s i n = B b sin =C c sin 2. 三角形面积公式 在任意斜△ABC 当中S △ABC =A bc B ac C ab sin 2 1sin 2 1sin 2 1== 3.正弦定理的推论: A a sin = B b sin =C c sin =2R (R 为△ABC 外接圆半径) 4.正弦定理解三角形 1)已知两角和任意一边,求其它两边和一角; 2)已知两边和其中一边对角,求另一边的对角,进而可求其它的边和角。 3)已知a, b 和A, 用正弦定理求B 时的各种情况:(多解情况) ○ 1若A 为锐角时: ??? ?? ? ?≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a 已知边a,b 和∠A 有两个解 仅有一个解无解 CH=bsinA≤) ( b a 锐角一解无解 b a 1、已知中,,,则角等于 ( D) A . B . C . D .

2、ΔABC的内角A、B、C所对的边分别为a、b、c,若sin A=,b=sin B,则a等于 ( D ) A.3B.C. D.

1. 在ABC ?中,若sin 2sin 2A B =,则ABC ?一定是( ) 3.在Rt △ABC 中,C= 2 π ,则B A sin sin 的最大值是_______________. [解析] ∵在Rt △ABC 中,C= 2 π ,∴sin sin sin sin( )2 A B A A π =-sin cos A A = 1sin 22A = ,∵0,2A π<<∴02,A π<<∴4A π=时,B A sin sin 取得最大值12 。 4. 若ABC ?中,10 10 3B cos ,21A tan == ,则角C 的大小是__________ 解析 11 tan ,cos ,sin tan 23A B O B B B π==<<∴=∴= tan tan 3tan tan()tan()1,tan tan 14 A B C A B A B O C C A B π ππ+∴=--=-+= =-<<∴=- 7.在△ABC 中,已知2a b c =+,2 sin sin sin A B C =,试判断△ABC 的形状。 解:由正弦定理 2sin sin sin a b c R A B C ===得:sin 2a A R =,sin 2b B R =, sin 2c C R = 。 所以由2sin sin sin A B C =可得:2()222a b c R R R =?,即:2 a bc =。 又已知2a b c =+,所以224()a b c =+,所以24()bc b c =+,即2()0b c -=, 因而b c =。故由2a b c =+得:22a b b b =+=,a b =。所以a b c ==,△ABC 为等边三角形。 6.在ABC ?中, b A a B sin sin <是B A >成立的 ( C ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件 1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则 a 等于 ( ) A.6 B.2 C.3 D.2 答案 D 3.下列判断中正确的是 ( )

正弦定理、余弦定理单元测试及答案

正弦定理、余弦定理 一、选择题 1.在△ABC 中,已知,30,10,25?===A c a 则B= ( ) (A )105° (B )60° (C )15° (D )105°或15° 2.在△ABC 中,已知a=6,b=4,C=120°,则sinB 的值是 ( ) (A ) 7 21 (B ) 19 57 (C ) 383 (D )19 57- 3.在△ABC 中,有a=2b ,且C=30°,则这个三角形一定是 ( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )以上都有可能 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是 ( ) (A )一解 (B )二解 (C )无解 (D )无法确定 5.在△ABC 中,中,若2 cos sin sin 2 A C B =,则△ABC 是 ( ) (A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形 6.在△ABC 中,已知13 5 cos ,53sin == B A ,则 C cos 等于 ( ) (A ) 6556 (B ) 65 16 (C ) 6516或65 56 (D ) 65 33 7.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值是 ( )

(A )2 (B )1 (C ) 2 2 (D )12- 8.若△ABC 的三边长为a ,b ,c ,且,)()(2 2 2 2 2 2 c x a c b x b x f +-++=则f (x )的图 象是 ( ) (A )在x 轴的上方 (B )在x 轴的下方 (C )与x 轴相切 (D )与x 轴交于两点 二、填空题 9.在△ABC 中,∠C=60°,c=22,周长为),321(2++则∠A= . 10.三角形中有∠A=60°,b ∶c=8∶5,这个三角形内切圆的面积为12π,则这个三角形 面积为 . 11.平行四边形ABCD 中,∠B=120°,AB=6,BC=4,则两条对角线的长分别是 . 12.在60°角内有一点P ,到两边的距离分别为1cm 和2cm ,则P 到角顶点的距离为 . 三、解答题 13.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,A <B <C ,B=60°,且满足 ).13(2 1 )2cos 1)(2cos 1(-= ++C A 求:(1)A 、B 、C 的大小; (2)c b a 2+的值.

正弦定理知识点与典型例题

正弦定理 【基础知识点】 1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==2 1ca sin B ; sin(A+B)=sinC, cos(A+B)=-cosC, sin(A+B)/2=cosC/2, cos(A+B)/2=sinC/2 2.三角形中的边角不等关系: A>B ?a>b,a+b>c,a-bb 时有一解. 也可利用正弦定理a A b B sin sin =进行讨论. 如果sinB>1,则问题无解;如果sinB =1,则问题有一解; 如果求出sinB<1,则可得B 的两个值,但要通过“三角形内角和定理”或“大边对大角”

余弦定理教学设计经典

1.1.2余弦定理教学设计 一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的内容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题;情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的内容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股02220定理的知识,即当∠C=90时,有c=a+b。作为一般的情况,当∠C≠90时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学内容分析 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的内容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

正弦定理和余弦定理测试题

正弦定理和余弦定理测试题 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.4 3 B .8-4 3 C .1 D.2 3 2.(文)在△ABC 中,已知A =60°,b =43,为使此三角形只有一解,a 满足的条件是( ) A .0

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

相关文档
最新文档