(完整版)正弦定理和余弦定理知识点总结(学案)附答案

(完整版)正弦定理和余弦定理知识点总结(学案)附答案
(完整版)正弦定理和余弦定理知识点总结(学案)附答案

高频考点一 利用正弦定理、余弦定理解三角形

例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个

D .无法确定

(2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2=b 2+2bc ,则三内角A ,B ,C 的度数依次是________.

(3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1

2,C =π

6,则b =________.

答案 (1)B (2)45°,30°,105° (3)1

解析 (1)∵b sin A =6×2

2=3,∴b sin A

(2)由题意知a =2b ,a 2=b 2+c 2-2bc cos A , 即2b 2=b 2+c 2-2bc cos A , 又c 2=b 2+2bc ,

∴cos A =22,A =45°,sin B =1

2,B =30°,∴C =105°.

【感悟提升】(1)判断三角形解的个数的两种方法

①代数法:根据大边对大角的性质、三角形内角和公式、正弦函数的值域等判断. ②几何图形法:根据条件画出图形,通过图形直观判断解的个数.

(2)已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( )

A .x >2

B .x <2

C .2<x <22

D .2<x <23

(2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1

解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2

2<1, 可得x <22,

∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2-2x +1=0, ∴x =1,即AB =1.

高频考点二 和三角形面积有关的问题

例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π

4,b 2-a 2=12c 2.

(1)求tan C 的值;

(2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2=1

2c 2及正弦定理得 sin 2B -12=1

2sin 2C . 所以-cos2B =sin 2C .① 又由A =π4,即B +C =3

4π,得

-cos2B =-cos2????34π-C =-cos ???

?32π-2C

=sin2C =2sin C cos C ,② 由①②解得tan C =2.

【感悟提升】

(1)对于面积公式S =12ab sin C =12ac sin B =1

2bc sin A ,一般是已知哪一个角就使用哪一个公式.

(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. 【变式探究】四边形ABCD 的内角A 与C 互补,AB =1,BC =3,CD =DA =2. (1)求C 和BD ;

(2)求四边形ABCD 的面积.

解 (1)由题设A 与C 互补及余弦定理得 BD 2=BC 2+CD 2-2BC ·CD cos C =13-12cos C ,① BD 2=AB 2+DA 2-2AB ·DA cos A =5+4cos C .② 由①②得cos C =1

2,BD =7, 因为C 为三角形内角,故C =60°. (2)四边形ABCD 的面积 S =12AB ·DA sin A +1

2BC ·CD sin C =????12×1×2+12×3×2sin60°

=2 3.

高频考点三 正弦、余弦定理的简单应用

例3、(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若c

b

D .等边三角形

(2)在△ABC 中,cos 2B 2=a +c

2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( ) A .等边三角形 B .直角三角形

C .等腰三角形或直角三角形

D .等腰直角三角形 答案 (1)A (2)B

【举一反三】(2015·课标全国Ⅱ)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.

(1)求sin B sin C ;

(2)若AD =1,DC =2

2,求BD 和AC 的长. 解 (1)S △ABD =1

2AB ·AD sin ∠BAD , S △ADC =1

2AC ·AD sin ∠CAD .

因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .

由正弦定理可得sin B sin C =AC AB =1

2.

(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理,知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6, 由(1)知AB =2AC ,所以AC =1. 【感悟提升】(1)判断三角形形状的方法

①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. ②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用A +B +C =π这个结论.

(2)求解几何计算问题要注意

①根据已知的边角画出图形并在图中标示; ②选择在某个三角形中运用正弦定理或余弦定理.

【变式探究】(1)在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为( )

A .等腰三角形

B .直角三角形

C .等腰直角三角形

D .等腰或直角三角形

(2)如图,在△ABC 中,已知点D 在BC 边上,AD ⊥AC ,sin ∠BAC =22

3,AB =32,AD =3,则BD 的长为______.

答案 (1)D (2)3

(2)sin ∠BAC =sin(π

2+∠BAD )=cos ∠BAD , ∴cos ∠BAD =22

3.

BD 2=AB 2+AD 2-2AB ·AD cos ∠BAD =(32)2+32-2×32×3×22

3, 即BD 2=3,BD = 3.

1.已知△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若A =π

3,b =2a cos B ,c =1,则△ABC 的面积等于( )

A .32

B .34

C .36

D .38

2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若C =2B ,则c

b 为( ) A .2sin C B .2cos B C .2sin B D .2cos C

解析:由于C =2B ,故sin C =sin 2B =2sin B cos B ,所以sin C sin B =2cos B ,由正弦定理可得c b =sin C

sin B

=2cos B ,故选B 。

答案:B

3.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且c -b c -a =sin A

sin C +sin B ,则B =( )

A .π6

B .π4

C .π3

D .3π4

解析:由sin A =a 2R ,sin B =b 2R ,sin C =c 2R ,代入整理得:c -b c -a =a

c +b ?c 2-b 2=ac -a 2,

所以a 2+c 2-b 2=ac ,即cos B =12,所以B =π

3。

答案:C

4.在△ABC 中,若lg (a +c)+lg (a -c)=lg b -lg 1

b +

c ,则A =( )

A .90°

B .60°

C .120°

D .150°

5.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c.若3a =2b ,则2sin 2B -sin 2A

sin 2A 的值为( )

A .-19

B .13

C .1

D .7

2

解析:由正弦定理可得2sin 2B -sin 2A sin 2A =2????sin B sin A 2-1=2???

?b a 2-1,

因为3a =2b ,所以b a =32,

所以2sin 2B -sin 2A sin 2A =2×???

?322-1=72

。 答案:D

6.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )

A .1

B .2

C . 3

D .3

解析:由c sin A =3a cos C ,所以sin C sin A =3sin A cos C ,即sin C =3cos C ,所以tan C =3,C =π3,A =2π3-B ,所以sin A +sin B =sin ????2π3-B +sin B =3sin ???

?B +π6,

∵0<B <2π3,∴π6<B +π6<5π6, ∴当B +π6=π

2,

即B =π

3时,sin A +sin B 的最大值为 3.故选C 。 答案:C

7.在△ABC 中,若A=π3,B=π

4

,BC=3√2,则AC=( )

A.√32

B.√3

C.2√3

D.4√ 【答案】C 。

【解析】由正弦定理可得:BC sinA =AC

sinB ,

即有AC=BC·sinB sinA =3√2×sin π

4

sin π3

=2√3.

8.在△ABC 中,若a 2+b 2

D.不能确定

【答案】C

【解析】由余弦定理:a 2+b 2-2abcosC=c 2, 因为a 2+b 2

9.已知△ABC 的内角A,B,C 的对边分别为a,b,c,且c?b c?a =sinA

sinC+sinB ,则B= ( )

A.π6

B.π4

C.π3

D.3π4

【答案】C.

10.在△ABC 中,角A,B,C 所对的边长分别为a,b,c.若C=120°,c=√2a,则 ( ) A.a>b B.a

D.a 与b 的大小关系不能确定 【答案】A

【解析】由余弦定理得2a 2=a 2+b 2-2abcos120°,b 2+ab -a 2=0, 即(b a )2+b a -1=0,b a =?1+√52

<1,故b

11.在△ABC 中,a=15,b=10,A=60°,则cosB= . 【解析】由正弦定理可得√32

=10sinB ,所以sinB=√33

,

再由b

√63

. 答案:√6

3

12.在△ABC 中,三个内角A,B,C 所对的边分别为a,b,c,若sin 2A+sin 2C -sin 2B=√3sinAsinC,则B= .

【解析】在△ABC 中,因为sin 2A+sin 2C -sin 2B=√3sinAsinC, 所以利用正弦定理得:a 2+c 2-b 2=√3ac, 所以cosB=a 2+c 2?b 22ac =√32,所以B=π

6

.

答案:π6

13.△ABC 中,点D 是BC 上的点,AD 平分∠BAC,BD=2DC.

(1)求sinB sinC

.

(2)若∠BAC=60°,求B.

【解析】(1)如图,由正弦定理得: AD

sinB =BD

sin∠BAD ,AD

sinC =DC

sin∠CAD , 因为AD 平分∠BAC,BD=2DC, 所以sinB sinC =DC BD =12

.

(2)因为C=180°-(∠BAC+B),∠BAC=60°, 所以sinC=sin(∠BAC+B) =

√3

2cosB+12sinB, 由(1)知2sinB=sinC,所以tanB=√3

3

,即B=30°.

14.在△ABC 中,角A,B,C 的对边分别为a,b,c,且bcosC=3acosB -ccosB. (1)求cosB 的值.

(2)若BA →

·BC →

=2,且b=2√2,求a 和c 的值.

【解析】(1)由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC, 则2RsinBcosC=6RsinAcosB -2RsinCcosB, 故sinBcosC=3sinAcosB -sinCcosB, 可得sinBcosC+sinCcosB=3sinAcosB, 即sin(B+C)=3sinAcosB, 可得sinA=3sinAcosB.又sinA≠0, 因此cosB=1

3.

(2)由BA →·BC →

=2,可得accosB=2, 又cosB=1

3

,故ac=6,

由b 2=a 2+c 2-2accosB,可得a 2+c 2=12, 所以(a -c)2=0,即a=c,所以a=c=√6.

15.在△ABC 中,角A,B,C 所对的边分别为a,b,c,点(a,b)在直线x(sinA -sinB)+ysinB=csinC 上. (1)求角C 的值.

(2)若2cos 2

A 2-2sin 2

B 2=√32,且A

a

.

(2)因为

2cos 2

A 2-2sin 2

B 2=1+cosA -1+ cosB=cosA+cos (

2π3

?

A)=1

2cosA+√3

2

sinA=sin (A +

π

6)=√3

2

, 因为A+B=2π

3,且A

所以0

3,

所以π6

所以A=π6,B=π2,C=π

3,

则c a =sinC sinA =√3

2

1

2=√3. 16.如图,在平面四边形ABCD 中,AD=1,CD=2,AC=√7.

(1)求cos ∠CAD 的值.

(2)若cos ∠BAD=-√714,sin ∠CBA=√21

6

,求BC 的长.

于是sinα=sin(∠BAD -∠CAD)

=sin ∠BADcos ∠CAD -cos ∠BADsin ∠CAD =

3√2114×2√77-(?√714)×√217=√3

2

. 在△ABC 中,由正弦定理得,BC sinα=AC

sin∠CBA .

故BC=AC·sinαsin∠CBA =√7×√3

2

√21

6=3.

1.2.2正弦、余弦定理应用

1.2.2解斜三角形 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题, 要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用二:测量高度 例1 如图,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点。设计一种测量建筑物高度AB 的方法 分析:由于建筑物的底部B 是不可到达的,所以不能直接测量建筑物的高。由解直角三角形的知识,只要能测出一点C 到建筑物的顶部A 的距离CA ,并测出由点C 观察A 的仰角,就可以计算出建筑物的高。所以应该设法借助解三角形的知识测出CA 的长。 解:选择一条水平基线HG , 使H 、G 、B 三点在同一条直线上,由在H, G 两点用测角仪器测得A 的仰角分别为α,β,CD=a. 测角仪器的高为h, 那么,在△ACD 中,根据正弦定理可得: sin sin() a AC βαβ= - sin asin sin = sin(-) AB AE h AC h h ααβαβ=+=++ 例2 如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=54°40′, 在塔底C 处测得A 处的俯角β=50°1′ 。已知铁塔BC 部分的高为27.3m, 求出山高CD (精确到1m ) 分析:根据已知条件,应该设法计算出AB 或AC 的长 解:在△ABC 中, ∠BCA=90°+ β , ∠ABC=90°-α, , ∠BAC= α -β, ∠BAD=α. 根据正弦定理得: E D G H C A B A α β

人教版高中数学必修5正弦定理和余弦定理测试题及答案教学内容

人教版高中数学必修5正弦定理和余弦定理测试题及答案

人教版高中数学必修5正弦定理和余弦定理测试题及答案 一、选择题 1.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =3, cos C =- 41,则c 等于( ) (A)2 (B)3 (C)4 (D)5 2.在△ABC 中,若BC =2,AC =2,B =45°,则角A 等于( ) (A)60° (B)30° (C)60°或120° (D)30°或150° 3.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,已知B =30°,c = 150,b =503,那么这个三角形是( ) (A)等边三角形 (B)等腰三角形 (C)直角三角形 (D)等腰三角形或直角三角形 4.在△ABC 中,已知3 2sin ,53cos ==C B ,AC =2,那么边AB 等于( ) (A )45 (B)35 (C)920 (D)5 12 5.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C = 1∶2∶3,那么a ∶b ∶c 等于( ) (A)1∶2∶3 (B)1∶3∶2 (C)1∶4∶9 (D)1∶2∶3 二、填空题 6.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,B = 45°,C =75°,则b =________. 7.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =23,c =4,则A =________.

8.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若2cos B cos C=1-cos A,则△ABC形状是________三角形. 9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,若a=3,b=4,B =60°,则c=________. 10.在△ABC中,若tan A=2,B=45°,BC=5,则AC=________. 三、解答题 11.在△ABC中,三个内角A,B,C的对边分别是a,b,c, 若a=2,b=4,C=60°,试解△ABC. 12.在△ABC中,已知AB=3,BC=4,AC=13. (1)求角B的大小; (2)若D是BC的中点,求中线AD的长. 13.如图,△OAB的顶点为O(0,0),A(5,2)和B(-9,8),求角A的大小.

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

正弦定理、余弦定理在生活中的应用

正弦定理、余弦定理在生活中的应用 正弦定理、余弦定理是解三角形得重要工具,解三角形在经济生活和工程测量中的重要应用,使高考考查的热点和重点之一,本文将正弦定理、余弦定理在生活中的应用作以简单介绍,供同学们学习时参考. 一、在不可到达物体高度测量中的应用 例1 如图,在河的对岸有一电线铁塔AB ,某人在测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测量点C 与D ,现测得 BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶 A 的仰角为θ,求塔高A B . 分析:本题是一个高度测量问题,在?BCD 中,先求 出CBD ∠,用正弦定理求出BC ,再在ABC Rt △中求出 塔高AB. 解析:在BCD △中,CBD ∠=παβ--. 由正弦定理得 sin BC BDC ∠=sin CD CBD ∠. 所以BC =sin sin CD BDC CBD ∠∠=sin sin()s βαβ+·. 在ABC Rt △中,AB =tan BC ACB ∠= tan sin sin()s θβαβ+·. 点评:对不可到达的物体的高度测量问题,可先在与物体底部在同一平面内找两点,测出这两点间的距离,再测出这两点分别与物体底部所在点连线和这两点连线所成的角,利用正弦定理或余弦定理求出其中一点到物体底部的距离,在这一点测得物体顶部的仰角,通过解直角三角形,求得物体的高. 二、在测量不可到达的两点间距离中的应用 例2某工程队在修筑公路时,遇到一个小山 包,需要打一条隧道,设山两侧隧道口分别为A 、B , 为了测得隧道的长度,在小山的一侧选取相距3km 的C 、D 两点高,测得∠ACB=750, ∠BCD=450 , ∠ADC=300,∠ADC=450(A 、B 、C 、D ) ,试求隧道的长度. 分析:根据题意作出平面示意图,在四边形 ABCD 中,需要由已知条件求出AB 的长,由图可知,在?ACD 和?BCD 中,利用正弦定理可求得AC 与BC ,然后再在?ABC 中,由余弦定理求出AB. 解析:在?ACD 中,∵∠ADC=300,∠ACD=1200,∴∠CAD=300,∴AC=CD=3. 在?BCD 中,∠CBD==600 由正弦定理可得,BC=003sin 75sin 60=26)2 +

正弦定理与余弦定理地综合应用

正弦定理与余弦定理的综合应用 (本课时对应学生用书第页 ) 自主学习回归教材 1.(必修5P16练习1改编)在△ABC中,若sin A∶sin B∶sin C=7∶8∶13,则cos C=. 【答案】-1 2 【解析】由正弦定理知a∶b∶c=7∶8∶13,再由余弦定理得cos C= 222 78-13 278 + ??=- 1 2. 2.(必修5P24复习题1改编)在△ABC中,角A,B,C的对边分别为a,b,c.若a2-b23bc,sin C3B,则角A=. 【答案】π6 【解析】由sin C 3B得c3b,代入a2-b23得a2-b2=6b2,所以a2=7b2,a7b, 所以cos A= 222 - 2 b c a bc + = 3 ,所以角A= π 6.

3.(必修5P20练习3改编)如图,一船自西向东匀速航行,上午10时到达一座灯塔P的南偏西75°方向、距塔68 n mile的M处,下午2时到达这座灯塔的东南方向的N处,则这只船的航行速度 为n mile/h. (第3题) 【答案】 176 4.(必修5P26本章测试7改编)设△ABC的角A,B,C的对边分别为a,b,c.若a sin A+c sin C2sin C=b sin B,则角B=. 【答案】45° 【解析】由正弦定理得a2+c22ac=b2,再由余弦定理得b2=a2+c2-2ac cos B,故cos B=2 , 因此B=45°. 5.(必修5P19例4改编)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等比数列,则角B的取值围为. 【答案】 π0 3?? ???,

正弦定理和余弦定理的应用

第二节应用举例 题型一 测量距离问题 A 、 B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点 C ,测出 AC 的距离是55m, 51=∠BAC , 75=∠ACB .求A 、B 两点间的距离(精 确到1.0m ). 分析 所求的边AB 的对角是已知的,又已知三角形的一边AC ,根 据三角形内角和定理可计算出AC 的对角,根据正弦定理,可以计算出边AB . 解答 根据正弦定理,得 ABC AC ACB AB ∠= ∠sin sin ABC ACB ABC ACB AC AB ∠∠= ∠∠=sin sin 55sin sin 76554 sin 75sin 55)7551180sin(75sin 55?≈=--= (m) 点拨 本题是测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决。 本题型的解题关键在于明确:(1)测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决。(2)测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化 A B C

为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题。 衍生1★★ 如图所示,客轮以速度v 2由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度V 沿直线匀速航行,将货物送达客轮,已知BC AB ⊥,且50=-BC AB 海里。若两船同时启航出发,则两船相遇之处距C 点 海里。(结果精确到小数点后1位) 解析 AB DB 2< ∴两船相遇点在BC 上,可设为E ,设x CE =,则 V BE AB DE 22+= 故 V x x 45cos 2252)225(22??-+V x 2)50(50-+= 得 3 5000 2= x ,∴8.40≈x 答案 8.40 点拨 本题考查了测量距离问题。 衍生2★★★如图所示,B A ,两点都在河的对岸(不可到达),设计一种测量B A , 两点间距离的方法。 分析 可以先计算出河的这一岸的一点C 到对岸两点的距离, 再测 A B C D α β A γ δ

《正弦定理、余弦定理》单元测试题

高一数学《正弦定理、余弦定理》单元测试题(1) 班级 姓名 1.在ABC ?中,?=∠?=∠=15,30,3B A a ,则=c ( ) A .1 B. 2 C .3 2 D. 3 2.在ABC ?中,若 B b sin 2=,则∠A 等于( ) A .30°或60° B .45°或60° C .120°或60° D .30°或150° 3.在ABC ?中,?=∠==60,10,15A b a ,则B cos =( ) A .-223 B.223 C .-63 D.63 4.在ABC ?中,角A 、B 、C 所对的边分别为a 、b 、c ,若B b A a sin cos =,则 B A A 2cos cos sin +=( ) A .-12 B.1 2 C .-1 D .1 5.在ABC ?中,若A b a sin 23=,则B 等于 ( ) A. 30 B. 60 C. 30或 150 D. 60或 1206.在ABC ?中,已知 45,1,2=== B c b ,则a 等于 ( ) A. 226- B. 2 2 6+ C. 12+ D. 23- 7.不解三角形,确定下列判断中正确的是 ( ) A. 30,14,7===A b a ,有两解 B. 150,25,30===A b a ,有一解 C. 45,9,6===A b a ,有两解 D. 60,10,9===A c b ,无解 8.在ABC ?中,?===30,3,1A b a ,则c =( ) A .1 B .2 C .1或2 D .无解 9.在ABC ?中,已知B a b sin 323=,C B cos cos =,则ABC ?的形状是( ) A. 直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形 10.在ABC ?中, 60=A ,3=a ,则 =++++C B A c b a sin sin sin ( ) A. 338 B.3392 C.3 3 26 D. 32 11.在ABC ?中,已知3,45,60=?=∠?=∠C ABC BAC ,则AC =________;

正弦定理知识点总结与复习

在△ABC ,已知A =60°,B =45°,c =2,解三角形 [解题过程] 在△ABC 中,C =180°-(A +B ) =180°-(60°+45°)=75°. sin 75°=sin(45°+30°) =sin 45°cos 30°+cos 45°sin 30° =22×32+22×12 =2(3+1)4=6+24 根据正弦定理: a =c sin A sin C =2sin 60°sin 75°=2×3 2 2(3+1)4=6(3-1)=32- 6, b = c sin B sin C =2sin 45° sin 75°=2× 222(3+1) 4 =2(3-1). [题后感悟] 已知两角和一边(如A ,B ,c ),求其他角与边的步骤是: (1)C =180°-(A +B ); (2)用正弦定理,a =c sin A sin C ; (3)用正弦定理,b =c sin B sin C . ,

思路点拨: 已知两边及一边对角,先判断三角形解的情况, ∵a>b ,∴A>B ,B 为锐角,故有一解,先由正弦定理求角B , 然后由内角和定理求C ,然后再由正弦定理求边 c. 1.(1)已知A =45°,B =30°,c =10.求b . (2)在△ABC 中,若A =105°,B =45°,b =22,求c . 解析: (1)∵A +B +C =180,∴C =105°. 又∵sin 105°=sin(45°+60°) =sin 45°·cos 60°+cos 45°·sin 60° =2+64, ∴b =c sin B sin C =10×sin 30° sin 105°=10× 122+64 =5(6-2). (2)∵A +B +C =180°,∴C =30°. 又∵b sin B =c sin C , ∴c =b sin C sin B =22×sin 30°sin 45°= 22×12 2 2 =2. 在△ABC 中,A =60°,a =43,b =42,解三角形.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时

需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△AB C的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a-4,a ,a +4,则(a+4)2=(a -4)2+a2-2a (a-4) co s 120°,解得a =10,故S =12×10×6×s in 120°=15错误!. 答案 15错误! 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C间的距离是________海里. 解析 由正弦定理,知 B Csi n 60° =错误!.解得BC =5错误!(海里). 答案 5错误! 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68si n 120°si n 45° =34\r(6)(海里),船的航行速度为错误!=错误!(海里/时). 答案 错误! 4.在△ABC 中,若2错误!abs in C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a2+b 2+c 2,a 2+b2-c 2=2ab cos C 相加,得a 2+b 2=2ab sin 错误!.又a2+b 2≥2ab ,所以 sin 错误!≥1,从而s in 错误!=1,且a =b,C =错误!时等号成立,所以△ABC 是等边三角形. 答案 等边三角形 5.(2010·江苏卷)在锐角△A BC中,角A,B ,C 的对边分别为a ,b ,c.

(完整版)正弦定理余弦定理应用实例练习含答案

课时作业3应用举例 时间:45分钟满分:100分 课堂训练 1.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B、C间的距离是() A.103海里B.106海里 C.52海里D.56海里 【答案】 D 【解析】如图,∠A=60°,∠B=75°, 则∠C=45°, 由正弦定理得: BC=AB·sin A sin C =10×sin60° sin45° =5 6. 2.如图所示,设A、B两点在河的两岸,一测量者在A所在的河岸边选定一点C,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A、B两点的距离为()

A .502m B .503m C .252m D.2522m 【答案】 A 【解析】 因为∠ACB =45°,∠CAB =105°,所以∠ABC =30°,根 据正弦定理可知,AC sin ∠ABC =AB sin ∠ACB ,即50sin30°=AB sin45°,解得AB =502m ,选A. 3.从某电视塔的正东方向的A 处,测得塔顶仰角是60°;从电视塔的西偏南30°的B 处,测得塔顶仰角为45°,A ,B 间距离是35m ,则此电视塔的高度是________m. 【答案】 521 【解析】 如图所示,塔高为OC ,则∠OAC =60°,∠AOB =180°-30°=150°,∠CBO =45°,AB =35,

设电视塔高度为h m,则OA=3 3h,OB=h,在△AOB中由余弦定理可得AB2=OA2+OB2-2OA·OB·cos∠AOB, 即352=(3 2+h2-2×33h×h×(-32) 3h) 解得h=521. 4.如图所示,海中小岛A周围38海里内有暗礁,一船正向南航行,在B处测得小岛A在船的南偏东30°,航行30海里后,在C处测得小岛在船的南偏东45°,如果此船不改变航向,继续向南航行,有无触礁的危险? 【分析】船继续向南航行,有无触礁的危险,取决于A到直线BC的距离与38海里的大小,于是我们只要先求出AC或AB的大小,再计算出A到BC的距离,将它与38海里比较大小即可.

正弦定理和余弦定理知识点总结附答案

高频考点一 利用正弦定理、余弦定理解三角形 例1、(1)在△ABC 中,已知a =2,b =6,A =45°,则满足条件的三角形有( ) A .1个 B .2个 C .0个 D .无法确定 (2)在△ABC 中,已知sin A ∶sin B =2∶1,c 2 =b 2 +2bc ,则三内角A ,B ,C 的度数依次是________. (3)(2015·广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =1 2 , C =π6 ,则b =________. 答案 (1)B (2)45°,30°,105° (3)1 解析 (1)∵b sin A =6× 2 2 =3,∴b sin A

【变式探究】(1)已知在△ABC 中,a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围是( ) A .x >2 B .x <2 C .2<x <2 2 D .2<x <23 (2)在△ABC 中,A =60°,AC =2,BC =3,则AB =________. 答案 (1)C (2)1 解析 (1)若三角形有两解,则必有a >b ,∴x >2, 又由sin A =a b sin B =x 2×2 2 <1, 可得x <22, ∴x 的取值范围是2<x <2 2. (2)∵A =60°,AC =2,BC =3, 设AB =x ,由余弦定理,得 BC 2=AC 2+AB 2-2AC ·AB cos A , 化简得x 2 -2x +1=0, ∴x =1,即AB =1. 高频考点二 和三角形面积有关的问题 例2、(2015·浙江)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知A =π 4 , b 2-a 2=12 c 2. (1)求tan C 的值; (2)若△ABC 的面积为3,求b 的值. 解 (1)由b 2-a 2 =12 c 2及正弦定理得

正弦定理、余弦定理单元测试及答案

正弦定理、余弦定理 一、选择题 1.在△ABC 中,已知,30,10,25?===A c a 则B= ( ) (A )105° (B )60° (C )15° (D )105°或15° 2.在△ABC 中,已知a=6,b=4,C=120°,则sinB 的值是 ( ) (A ) 7 21 (B ) 19 57 (C ) 383 (D )19 57- 3.在△ABC 中,有a=2b ,且C=30°,则这个三角形一定是 ( ) (A )直角三角形 (B )钝角三角形 (C )锐角三角形 (D )以上都有可能 4.△ABC 中,已知b=30,c=15,C=26°,则此三角形的解的情况是 ( ) (A )一解 (B )二解 (C )无解 (D )无法确定 5.在△ABC 中,中,若2 cos sin sin 2 A C B =,则△ABC 是 ( ) (A )等边三角形 (B )等腰三角形 (C )直角三角形 (D )等腰直角三角形 6.在△ABC 中,已知13 5 cos ,53sin == B A ,则 C cos 等于 ( ) (A ) 6556 (B ) 65 16 (C ) 6516或65 56 (D ) 65 33 7.直角△ABC 的斜边AB=2,内切圆的半径为r ,则r 的最大值是 ( )

(A )2 (B )1 (C ) 2 2 (D )12- 8.若△ABC 的三边长为a ,b ,c ,且,)()(2 2 2 2 2 2 c x a c b x b x f +-++=则f (x )的图 象是 ( ) (A )在x 轴的上方 (B )在x 轴的下方 (C )与x 轴相切 (D )与x 轴交于两点 二、填空题 9.在△ABC 中,∠C=60°,c=22,周长为),321(2++则∠A= . 10.三角形中有∠A=60°,b ∶c=8∶5,这个三角形内切圆的面积为12π,则这个三角形 面积为 . 11.平行四边形ABCD 中,∠B=120°,AB=6,BC=4,则两条对角线的长分别是 . 12.在60°角内有一点P ,到两边的距离分别为1cm 和2cm ,则P 到角顶点的距离为 . 三、解答题 13.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,A <B <C ,B=60°,且满足 ).13(2 1 )2cos 1)(2cos 1(-= ++C A 求:(1)A 、B 、C 的大小; (2)c b a 2+的值.

浅谈正弦、余弦定理在中考中的应用.doc

浅谈正弦、余弦定理在中考中的 应用 (1)余弦定理:c2=a2+b2-2ab*cosC 文字表述:三角形任何一边的平方等于其他两边平方的和减去这两边 与它们夹角的余弦的积的两倍。 (2)正弦定理:a/sinA=b/sinB=c/sinC=2r(r 为Z\ABC 外接圆的 半径) 文字表述:在一个三角形中,各边和它所对角的正弦的比值相等。 F面我们来证明: 证明:(1)作BC上的高AD=h,设CD二x,则BD=a-x 贝ij b2=h2+x2=c2- (a~x) 2+x2=c2-a2+2ax-x2+ x2 又x二b*cosC 所以c2=a2+b2-2ab*cosC (2)因为sinB=h/c, sinC=h/b 所以h二b*sinC二c*sinB 所以b/sinB=c/sinC 同理可得:a/si nA二b/s i nB二c/sinC 下面我们来看如何运用正弦、余弦定理解题: 例1: 25-右「/XABC 中,AC-BC. ZACB^90: , D、E 是用线AB 上两点.ZDCE^45c (1)当CE丄AB时,点D与点A晅合?能然DE‘=AD ‘十BE’(不必证明) (2)如图,当点D不与点A直合时,求证:DE2=AD-4-BE2 (3 )当点D衽BA的延L3上时.(2 )中的结论是否成立?训山图形.说明理由? (2)证明:令ZACD二Zl, ZBCE=Z2,则Z1 + Z2=ZACB~ZDCE=45° 因为AD/sinZl=CD/sinZA, BE/sinZ2=CE/sinZB, sinZA= sinZB= sin45° C 所以AD2+ BE2 = (CD:f:sinZl/sinZA) 2+ (CE* sinZ2/sinZB) 2 =(CD2* sin2Z 1+ CE2* sin2Z2)/ sin245°又 CD/sin(45°+Z2)= CE/sin(45°+ Z1 )=DE/sin45°所以AD2+ BE2={[ DE* sin(45°+ Z2) *sinZl/sin450]2 + A [DE* sin(45°+Zl) *sinZ2 /sin450]2}/ sin245°因为sin(45°+Z2) *sinZl = sin(45°+Z2) *sin (Z45°-Z2) =cos2Z2/2, sin(45°+Zl) *sinZ2= sin(45°+Zl) *sin (Z45°-Z1) =cos2Zl/2, 2 (Z1+Z2) =90° 所以AD2+ BE2 =DE2 cos22Z2+ DE2COS22Z1= DE2(cos22Z2+sin22Z2)= DE2 即DE2=

正弦定理和余弦定理测试题

正弦定理和余弦定理测试题 1.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足(a +b )2-c 2=4,且C =60°,则ab 的值为( ) A.4 3 B .8-4 3 C .1 D.2 3 2.(文)在△ABC 中,已知A =60°,b =43,为使此三角形只有一解,a 满足的条件是( ) A .0

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳 Pleasure Group Office【T985AB-B866SYT-

●高考明方向 掌握正弦定理、余弦定理, 并能解决一些简单的三角形度量问题. ★备考知考情 1.利用正、余弦定理求三角形中的边、角问题是高考 考查的热点. 2.常与三角恒等变换、平面向量相结合出现在解答题 中,综合考查三角形中的边角关系、三角形形状的 判断等问题. 3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62 知识点一 正弦定理 (其中R 为△ABC 外接圆的半径) 变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222= ==a b c A B C R R R 变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充) 关于边的齐次式或关于角的正弦的齐次式 均可利用正弦定理进行边角互化。 知识点二 余弦定理

222 222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2?+-=??=+-?+-??=+-?=??=+-???+-?=?? b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充) (1)关于边的二次式或关于角的余弦 均可考虑利用余弦定理进行边角互化。 (2)勾股定理是余弦定理的特例 (3)在?ABC 中,222090?? <+?<

正弦、余弦定理应用

1.2.3正弦、余弦定理应用 学习目的: 1进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用; 2熟练掌握实际问题向解斜三角形类型的转化; 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力 学习重点:1实际问题向数学问题的转化;2解斜三角形的方法 学习难点:实际问题向数学问题转化思路的确定 课堂过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧这一节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决 二、讲解范例: 应用三:测量角度 例1 如图 一艘海轮从A 出发,沿北偏东75°的方向航行67.5 n mile 后到达海岛C. 如果下次航行直接从A 出发到达C, 此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1°,距离精确到0.01 n mile ) 0000 ABC ABC=1807532137∠-+=解:在中, 220 AC AB BC 2AB BC cos 67.554267.554cos137 =113.15 ABC +-??∠+-???22根据余弦定理可知: =BC sin AC CAB ABC =∠∠根据正弦定理可知:sin 0 sin 54sin137sin 0.3255113.15 BC ABC CAB AC ∠∠==≈ 00019 7556CAB CAB ∠=-∠= 答:此船应该沿北偏东56°的方向航行,需要航行113.15 n mile. 应用四:有关三角形计算 知识1:在△ABC 中,边BC,CA,AB 上的高分别记为h a , h b ,h c ,那么容易证明: h a =bsinC=csinB h b =csinA=asinC h c =bsinC=csinB 32C B 0

正弦定理余弦定理练习题及答案

正弦定理、余弦定理练习题 年级__________ 班级_________ 学号_________ 姓名__________ 分数____ 一、选择题(共20题,题分合计100分) 已知在△ABC中,sin A:sin B:sin C=3:2:4,那么cos C的值为 1.A.- B. C.- D.λλ则满足此==中,在△ABCa,b,°=45A,2.条件的三角形的个数是 D.无数个A.0B. 1 C.2,则三角形为a cos Bb在△ABC中,cos A=3. D.C.锐角三角形等边三角形等腰三角形. A.直角三角形 B 22,则最大角为x2x+1(>1)x已知三角形的三边长分别为+1,+xx和-14.° C.60 D.75° 120B A.150° .° 在△ABC中,=1,5.,=2. +((·)+ )则=5+2边等于|| A. 5-2.B.

C. D.,b°BABC在△中,已知=30,=50=150c,6.那么这个三角形是

等腰三角形或直角等边三角形 B. 直角三角形 C.D. 等腰三角形A.三角形2222C+c, 则此三角形为sin B=2bc cos B cos C在△ABC中,若b sin7.等腰直角三角形 C.D.等边三角形 A. 直角三角形 B.等腰三角形 正弦定理适应的范围是8. D.任意△钝角△ A.Rt△B.锐角△ C.= =45°,则c°a已知△ABC中,=10,B=60,C9.B. 10 A.10+ C. )-1(. (+1 )D.10A sin<a<b,则此三角形有ABC在△中,b10.无解 C. 两解 D.不确定. A.一解B 5和3,它们夹角的余弦是方程5x-7x-6=0的根,则三角形的另一11.边 2三角形的两边分别为 长为

正弦定理、余弦定理检测题

正弦定理、余弦定理检测题 、 知识点摘要 1. 正弦定理公式: 2. S?ABC 的面积公式: 3. 余弦定理公式:① ;② 4. 解三角形的两种思想:① :② _ 、 选择题 1 在?ABC 中,若..3a 2bsinA ,则 B =() 2 5 A. - B . — C .—或 D 或工 3 6 3 3 6 6 2 .在?ABC 中,已知b J2c 1,B 45o ,则 a=() A 拆 <2 . B .恵 4 C . <2 1 D . 3 42 2 2 3. ?ABC 中,已知 A B 2, AC 3, AB ? AC 3,则 A ( ) A . 60 0 B . 1200 C . 300 D . 1500 4.在?ABC 中, / B=30°,AB=2 J3,AC=2,则厶 ABC 的面积为( ) A . 2 . 3 B . ,3 C . 2,3 或 4.3 D . 3 或 2 . 3 5.在?ABC 中,2cosBsinA=sinC ,贝U ?ABC 形状一定是( ) A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形 2 39 V39 .39 4厢 A.- B. C. D. 3 3 3 7.海面上有 A,B 两个小岛相距 10nmile ,从A 岛望 B 岛和 C 岛都成60o 的视角,从B 岛望A 岛和C 岛成 75o 的视角, 则B,C 间的距离是 ( ) A. 5、2nmile B. 5 6nmile C. 10 . 3nmile c 106 D. n mile 3 8. 在?ABC 中,已知a=x,b=2,B=45 如果利用正弦定理解三角形时有两解,则 x 的取值范围是( ) A. 2 x 2、2 B. 2 x 2 . 2 C. x>2 D.x<2 2 2 2 9. 在厶 ABC 中,a -c +b =ab,则/ C=() A.60o B.45 或 135o C.120 D.30 10. 在锐角△ ABC 中,若a=1,b=2,则边c 的取值范围是( ) A. (0,、一5) B. (1, ■■ 5) C. ( - 3, 一5) D.(1,3) 6.在?ABC 中,A = 60o , b=1 ,S △ AB K 3,则 a b c sin A sin B sin C

经典正弦定理、余弦定理知识点总结及证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中 1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等,即.其 中R是三角形外接圆的半径. (2)正弦定理的其他形式: ①a =2R sin A,b=,c =; ②sin A=a 2R ,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2= . 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C= . 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A =sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B +C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, A为锐角 A为钝角 或直角图 形 关 系 式 a= b sin A b sin Ab 解 的 个 数 ①②③④ 解时,只有一解. (4)已知两边及夹角,用____________定理,必有一解. 4.三角形中的常用公式或变式 (1)三角形面积公式S△===____________=____________=____________.其中R,r分别为三角形外接圆、内切圆半径. (2)A+B+C=π,则A=__________, A 2 =__________,从而sin A=____________, cos A=____________,tan A=____________;

相关文档
最新文档