视觉显著性检测:一种融合长期和短期特征的信息论算法

视觉显著性检测:一种融合长期和短期特征的信息论算法
视觉显著性检测:一种融合长期和短期特征的信息论算法

相似性和相异性的度量

相似性和相异性的度量 相似性和相异性是重要的概念,因为它们被许多数据挖掘技术所使用,如聚类、最近邻分类和异常检测等。在许多情况下,一旦计算出相似性或相异性,就不再需要原始数据了。这种方法可以看作将数据变换到相似性(相异性)空间,然后进行分析。 首先,我们讨论基本要素--相似性和相异性的高层定义,并讨论它们之间的联系。为方便起见,我们使用术语邻近度(proximity)表示相似性或相异性。由于两个对象之间的邻近度是两个对象对应属性之间的邻近度的函数,因此我们首先介绍如何度量仅包含一个简单属性的对象之间的邻近度,然后考虑具有多个属性的对象的邻近度度量。这包括相关和欧几里得距离度量,以及Jaccard和余弦相似性度量。前二者适用于时间序列这样的稠密数据或二维点,后二者适用于像文档这样的稀疏数据。接下来,我们考虑与邻近度度量相关的若干重要问题。本节最后简略讨论如何选择正确的邻近度度量。 1)基础 1. 定义 两个对象之间的相似度(similarity)的非正式定义是这两个对象相似程度的数值度量。因而,两个对象越相似,它们的相似度就越高。通常,相似度是非负的,并常常在0(不相似)和1(完全相似)之间取值。 两个对象之间的相异度(dissimilarity)是这两个对象差异程度的数值度量。对象越类似,它们的相异度就越低。通常,术语距离(distance)用作相异度的同义词,正如我们将介绍的,距离常常用来表示特定类型的相异度。有时,相异度在区间[0, 1]中取值,但是相异度在0和之间取值也很常见。 2. 变换 通常使用变换把相似度转换成相异度或相反,或者把邻近度变换到一个特定区间,如[0, 1]。例如,我们可能有相似度,其值域从1到10,但是我们打算使用的特定算法或软件包只能处理相异度,或只能处理[0, 1]区间的相似度。之所以在这里讨论这些问题,是因为在稍后讨论邻近度时,我们将使用这种变换。此外,这些问题相对独立于特定的邻近度度量。 通常,邻近度度量(特别是相似度)被定义为或变换到区间[0, 1]中的值。这样做的动机是使用一种适当的尺度,由邻近度的值表明两个对象之间的相似(或相异)程度。这种变换通常是比较直截了当的。例如,如果对象之间的相似度在1(一点也不相似)和10(完全相似)之间变化,则我们可以使用如下变换将它变换到[0, 1]区间:s' = (s-1)/9,其中s和s'分别是相似度的原值和新值。一般来说,相似度到[0, 1]区间的变换由如下表达式给出:s'=(s-min_s) / (max_s - min_s),其中max_s和min_s分别是相似度的最大

视觉测量系统技术及应用

视觉测量系统技术及应用 1 引言 基于计算机的视觉检测系统是指通过计算机视觉产品将被摄取目标转换成图像信号,传送给图像处理系统,图像处理系统再根据像素分布和亮度、颜色等信息,转变成数字化信号,计算机图像系统对这些信号进行复杂运算来抽取目标的特征,进而根据判别的结果来控制设备动作。它具有非接触、速度快等优点,是一种先进的检测手段,非常适合现代制造业。可用于视觉检测的试验原理很多,如纹理梯度法、莫尔条纹法、飞行时间法等,然而诸多测试原理中,尤其基于三角法的主动和被动视觉测量原理具有抗干扰能力强、效率高、精度合适等优点,非常适合在线非接触测量。本文主要从视觉测量系统在实际中应用出发,展示视觉检测技术在制造业中的广阔应用[1-4]。 2 视觉测量系统技术的应用 2.1 汽车车身视觉检测系统 在汽车制造过程中,车身上总有很多关键的三维尺寸进行测量,采用传统的三坐标测量机只能离线抽样检测,效率低,更不能满足现代汽车制造在线检测的需要,而视觉检测系统能很好的适应该需要,典型的汽车车身视觉检测系统如图1所示[5]。 图1 车身视觉检测系统 车身检测系统主要依靠的是数个视觉传感器,其中还包括传送机构、定位机构,计算机图像采集、网络控制部分。每个传感器对应一个被测区域,然后通过传输总线传至计算机,通过计算机对每个视觉传感器进行过程控制。 汽车车身检测系统的测量效率很高,精度式中,并且可以在完全自动情况下完成,这个包含几十个测点的系统都能再几分钟内测量完成,因此可以适应汽车制造的在线检测。而且传感器的布置可以根据不同车型来布置,增加了应用要求,

因此减少了车身视觉系统的维护费用。 2.2 拔丝模孔形视觉检测系统 使用计算机视觉检测技术开发出的拔丝模孔形检测系统由光学成像系统、工业用摄像机图像采集卡、计算机及监视器组成,可以解决生产实际中的模具孔形检测问题.工作原理如下:先采用注入硅胶方法获得反映待检拔丝模尺寸及形状的硅胶凸模,然后把硅胶凸模放在光学系统的载物台上.硅胶凸模经光学成像放大,成像于CCD像面上,然后用图像采集卡采集CCD图像信息,最后由计算机视觉检测软件完成对孔形尺寸的自动计算,此时图像采集时需要配置特殊的光照系统.系统实现了自动数据采集、处理,实现采样、进样、结果一条龙,形成检测的自动化. 2.3 无缝钢管直线度和截面在线视觉检测 无缝钢管是一类重要的工业产品,在反应无缝钢管质量中,钢管直线度及截面尺寸是主要的几何参数。现代工业已经可以实现无缝钢管的大批量大规模生产,并且并无成熟的直线度、截面尺寸高效率的检测系统,主要原因为:无缝钢管空间尺寸大,需要很大的测量空间,一般的检测手段很难实现如此大尺度的检测。然而视觉检测却非常适合无缝钢管及截面尺寸的测量,其测量原理图如图2所示。 多个传感器组成了视觉检测系统,传感器的结构光所投射的光平面与被测钢管相交,从而得到钢管的部分圆周,传感器测量圆周在传感器三维空间位置,每一个传感器实现一个截面圆周测测量,然后通过拟合得到截面的圆心和其空间位置,从而实现对无缝钢管截面和直径的测量。 图2 无缝钢管在线检测 2.4 视觉测量在逆向工程中的应用 逆向工程是针对现有的工件,利用3D数字化测量仪准确快速地测量出轮廓坐标值,并建构曲面,经过编辑、修改后,将图形存档形成一般的CAD/CAM系统,再由CAM所产生刀具的NC加工路径送至CNC加工机制所需模具,或者以快速成型将物品模型制作出来。视觉测量一般使用三种激光光源:点结构光、线结构光、面结构光,图3为使用线结构光测量物体表面轮廓的结构示意图[6]。

相似度测度总结汇总

1 相似度文献总结 相似度有两种基本类别: (1)客观相似度,即对象之间的相似度是对象的多维特征之间的某种函数关系,比如对象之间的欧氏距离;(2)主观相似度,即相似度是人对研究对象的认知关系,换句话说,相似度是主观认知的结果,它取决于人及其所处的环境,主观相似度符合人眼视觉需求,带有一定的模糊性[13]。 1.1 客观相似度 客观相似度可分为距离测度、相似测度、匹配测度。它们都是衡量两对象客观上的相近程度。客观相似度满足下面的公理,假设对象 A 与B 的相似度判别为(,)A B δ,有: (1) 自相似度是一个常量:所有对象的自相似度是一个常数,通常为 1,即 (,)(,)1A A B B δδ== (2) 极大性:所有对象的自相似度均大于它与其他对象间的相似度,即 (,)(,)(,)(,)A B A A A B B B δδδδ≤≤和。 (3) 对称性:两个对象间的相似度是对称的,即(,)(,)A B B A δδ=。 (4) 唯一性:(,)1A B δ=,当且仅当A B =。 1.1.1 距离测度 这类测度以两个矢量矢端的距离为基础,因此距离测度值是两矢量各相应分量之差的函数。设{}{}'' 1212,,,,,,,n n x x x x y y y y == 表示两个矢量,计算二者之间距离测度的具体方式有多种,最常用的有: 1.1.1.1 欧氏距离:Euclidean Distance-based Similarity 最初用于计算欧几里德空间中两个点的距离,假设 x ,y 是 n 维空间的两个点,它们之间的欧几里德距离是: 1/221(,)()n i i i d x y x y x y =??=-=-????∑(1.1)

模式识别试题及总结

一、填空与选择填空(本题答案写在此试卷上,30分) 1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择 和模式分类。 2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。 3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。 (1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法 4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。 (1)距离测度(2)模糊测度(3)相似测度(4)匹配测度 5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。 (1)(2) (3) (4) 6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。 (1)二维空间(2)一维空间(3)N-1维空间 7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。 (1)感知器算法(2)H-K算法(3)积累位势函数法 8、下列四元组中满足文法定义的有(1)(2)(4)。 (1)({A, B}, {0, 1}, {A→01, A→ 0A1 , A→ 1A0 , B→BA , B→ 0}, A) (2)({A}, {0, 1}, {A→0, A→ 0A}, A) (3)({S}, {a, b}, {S → 00S, S → 11S, S → 00, S → 11}, S) (4)({A}, {0, 1}, {A→01, A→ 0A1, A→ 1A0}, A) 9、影响层次聚类算法结果的主要因素有(计算模式距离的测度、(聚类准则、类间距离门限、预定的 类别数目))。 10、欧式距离具有( 1、2 );马式距离具有(1、2、3、4 )。 (1)平移不变性(2)旋转不变性(3)尺度缩放不变性(4)不受量纲影响的特性 11、线性判别函数的正负和数值大小的几何意义是(正(负)表示样本点位于判别界面法向量指向的 正(负)半空间中;绝对值正比于样本点到判别界面的距离。)。 12、感知器算法1。 (1)只适用于线性可分的情况;(2)线性可分、不可分都适用。

机器视觉测量技术

机器视觉测量技术 杨永跃 合肥工业大学 2007.3

目录第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD相机类 2.4 彩色数码相机 2.5 常用的图像文件格式 2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征 4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像

5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从x恢复形状的方法 5.6 测距成像 第六章标定 6.1 传统标定 6.2 Tsais万能摄像机标定法 6.3 Weng’s标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术 第八章图像测量软件 (多媒体介绍) 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性,因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观)视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、X射线、CCD、数字扫描仪、 超声成像、CT等 数字化设备 2 低层视觉(预处理):对输入的原始图像进行处理(滤波、增强、边缘检测),提取角 点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理 分析。系统标定 4 高层视觉:在以物体为中心的坐标系中,恢复物体的完整三维图,识别三维物体,并 确定物体的位置和方向。 5 体系结构:根据系统模型(非具体的事例)来研究系统的结构。(某时期的建筑风格— 据此风格设计的具体建筑) 1.3 机器视觉的应用 工业检测—文件处理,毫微米技术—多媒体数据库。 许多人类视觉无法感知的场合,精确定量感知,危险场景,不可见物感知等机器视觉更显其优越十足。 1 零件识别与定位

图像显著性目标检测算法研究

图像显著性目标检测算法研究 随着移动电子设备的不断升级与应用,使用图像来记录或表达信息已成为一种常态。我们要想快速地在海量图像中提取出有价值的信息,那么需要模拟人类视觉系统在机器视觉系统进行计算机视觉热点问题的研究。 图像显著性目标检测对图像中最引人注意且最能表征图像内容的部分进行检测。在图像显著性目标检测任务中,传统的方法一般利用纹理、颜色等低层级视觉信息自下向上地进行数据驱动式检测。 对于含有单一目标或高对比度的自然场景图像,可以从多个角度去挖掘其显著性信息,如先验知识、误差重构等。然而,对于那些具有挑战性的自然场景图像,如复杂的背景、低对比度等,传统的方法通常会检测失败。 基于深度卷积神经网络的算法利用高层级语义信息结合上下文充分挖掘潜在的细节,相较于传统的方法已取得了更优越的显著性检测性能。本文对于图像显著性检测任务存在的主要问题提出了相应的解决方法。 本文的主要贡献如下:为充分挖掘图像多种显著性信息,并使其能够达到优势互补效果,本文提出了一种有效的模型,即融合先验信息和重构信息的显著性目标检测模型。重构过程包括密度重构策略与稀疏重构策略。 密度重构其优势在于能够更准确地定位存在于图像边缘的显著性物体。而稀疏重构更具鲁棒性,能够更有效地抑制复杂背景。 先验过程包含背景先验策略与中心先验策略,通过先验信息可更均匀地突出图像中的显著性目标。最后,把重构过程与先验过程生成的显著特征做非线性融合操作。 实验结果充分说明了该模型的高效性能与优越性能。针对图像中存在多个显

著性目标或者检测到的显著性目标存在边界模糊问题,本文提出了一种基于多层级连续特征细化的深度显著性目标检测模型。 该模型包括三个阶段:多层级连续特征提取、分层边界细化和显著性特征融合。首先,在多个层级上连续提取和编码高级语义特征,该过程充分挖掘了全局空间信息和不同层级的细节信息。 然后,通过反卷积操作对多层级特征做边界细化处理。分层边界细化后,把不同层级的显著特征做融合操作得到结果显著图。 在具有挑战性的多个基准数据集上使用综合评价指标进行性能测试,实验结果表明该方法具有优越的显著性检测性能。对于低对比度或者小目标等问题,本文提出一种新颖模型,即通道层级特征响应模型。 该模型包含三个部分:通道式粗特征提取,层级通道特征细化和层级特征图融合。该方法基于挤压激励残差网络,依据卷积特征通道之间的相关性进行建模。 首先,输入图像通过通道式粗特征提取过程生成空间信息丢失较多的粗糙特征图。然后,从高层级到低层级逐步细化通道特征,充分挖掘潜在的通道相关性细节信息。 接着,对多层级特征做融合操作得到结果显著图。在含有复杂场景的多个基准数据集上与其它先进算法进行比较,实验结果证明该算法具有较高的计算效率和卓越的显著性检测性能。

显著性目标检测中的视觉特征及融合

第34卷第8期2017年8月 计算机应用与软件 Computer Applications and Software VoL34 No.8 Aug.2017 显著性目标检测中的视觉特征及融合 袁小艳u王安志1潘刚2王明辉1 \四川大学计算机学院四川成都610064) 2 (四川文理学院智能制造学院四川达州635000) 摘要显著性目标检测,在包括图像/视频分割、目标识别等在内的许多计算机视觉问题中是极为重要的一 步,有着十分广泛的应用前景。从显著性检测模型过去近10年的发展历程可以清楚看到,多数检测方法是采用 视觉特征来检测的,视觉特征决定了显著性检测模型的性能和效果。各类显著性检测模型的根本差异之一就是 所选用的视觉特征不同。首次较为全面地回顾和总结常用的颜色、纹理、背景等视觉特征,对它们进行了分类、比较和分析。先从各种颜色特征中挑选较好的特征进行融合,然后将颜色特征与其他特征进行比较,并从中选择较 优的特征进行融合。在具有挑战性的公开数据集ESSCD、DUT-0M0N上进行了实验,从P R曲线、F-M easure方法、M A E绝对误差三个方面进行了定量比较,检测出的综合效果优于其他算法。通过对不同视觉特征的比较和 融合,表明颜色、纹理、边框连接性、Objectness这四种特征在显著性目标检测中是非常有效的。 关键词显著性检测视觉特征特征融合显著图 中图分类号TP301.6 文献标识码 A DOI:10. 3969/j. issn. 1000-386x. 2017.08. 038 VISUAL FEATURE AND FUSION OF SALIENCY OBJECT DETECTION Yuan Xiaoyan1,2Wang Anzhi1Pan Gang2Wang Minghui1 1 (College o f Computer Science,Sichuan University,Chengdu 610064,Sichuan,China) 2 {School o f Intelligent M anufacturing, Sichuan University o f A rts and Science, Dazhou 635000, Sichuan, China) Abstract The saliency object detection is a very important step in many computer vision problems, including video image segmentation, target recognition, and has a very broad application prospect. Over the past 10 years of development of the apparent test model, it can be clearly seen that most of the detection methods are detected by using visual features, and the visual characteristics determine the performance and effectiveness of the significance test model. One of the fundamental differences between the various saliency detection models is the chosen of visual features. We reviewed and summarized the common visual features for the first time, such as color, texture and background. We classified them, compared and analyzed them. Firstly, we selected the better features from all kinds of color features to fuse, and then compared the color features with other characteristics, and chosen the best features to fuse. On the challenging open datasets ESSCD and DUT-OMON, the quantitative comparison was made from three aspects:PR curve, F-measure method and MAE mean error, and the comprehensive effect was better than other algorithms. By comparing and merging different visual features, it is shown that the four characteristics of color, texture, border connectivity and Objectness are very effective in the saliency object detection. Keywords Saliency detection Visual feature Feature fusion Saliency map 收稿日期:2017-01-10。国家重点研究与发展计划项目(2016丫?80700802,2016丫?80800600);国家海洋局海洋遥感工程技术 研究中心创新青年项目(2015001)。袁小艳,讲师,主研领域:计算机视觉,机器学习,个性化服务。王安志,讲师。潘刚,讲师。王 明辉,教授。

基于视觉显著性的红外与可见光图像融合

第38卷第4期 2016年8月 光学仪器 OPTICAL INSTRUMENTS Vol. 38,No. 4 August,2016 文章编号:1005-5630(2016)04-0303-05 基于视觉显著性的红外与可见光图像融合 华玮平S赵巨岭S李梦S高秀敏〃 (1.杭州电子科技大学电子信息学院,浙江杭州310018; 2.上海理工大学光电信息与计算机工程学院,上海200093) 摘要:多波段图像融合可以有效综合各个波段图像中包含的特征信息。针对可见光和红外图 像,提出了一种结合红外图像视觉显著性提取的双波段图像融合方法,一方面旨在凸显红外图 像的目标信息,另一方面又尽可能的保留了可见光图像的丰富细节信息。首先,在局部窗口内 实现红外图像的显著性图提取,并通过窗口尺寸的变化形成多尺度的显著性图,并对这些显著 性图进行最大值的优选叠加,以获取能反映整幅红外图像各个尺寸目标的显著性图;其次,通过 结合显著性图与红外图实现显著性图的加权增强;最后,利用增强的红外显著性图进行双波段 图像的融合。通过两组对比实验,数据表明该方法给出的融合图像视觉效果好,运算速度快,客 观评价值优于对比的7种融合方法。 关键词:图像融合;红外图像增强;视觉显著性 中图分类号:TN 911. 73 文献标志码:A doi:10. 3969/j. issa 1005-5630. 2016. 04. 005 Dual-band image fusion for infrared and visible images based on image visual saliency HUA Weiping1, ZHAO Jufeng1, LI Meng1, GAO Xiumin1,2 (1. Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China; 2. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China) Abstract: Dual-band image fusion is able to well synthesize the feature information from the different bands. To fuse visible and infrared images, in this paper, an infrared image visual saliency detection-based approach was proposed. This method aimed to highlight the target information from infrared image, meanwhile preserve abundant detail information from visible one as much as possible. Firstly, visual saliency map was extracted within a local window, and multiple window-based saliency maps could be obtained by changing the size of local window. And the final saliency map was generated by selecting maximum value, and this map could mirror all target information in the infrared image. Secondly,the saliency map was enhanced by combining infrared image and the previous saliency map. Finally, the enhanced saliency map was used for dual-band image fusion. Comparing with other seven methods, the 收稿日期:2015-10-13 基金项目:国家自然科学基金项目(61405052,61378035) 作者简介:华玮平(1994 ),男,本科生,主要从事光学成像等方面的研究。E-m ail:564810049@qq.c〇m 通信作者:赵巨峰(1985 ),男,讲师,主要从事光学成像、图像处理等方面的研究。E-m ail:daba〇zjf@https://www.360docs.net/doc/6e3239439.html,.C n

机器视觉测量技术

机器视觉测量技术杨永跃合肥工业大学 2007.3 目录 第一章绪论 1.1 概述 1.2 机器视觉的研究内容 1.3 机器视觉的应用 1.4 人类视觉简介 1.5 颜色和知觉 1.6 光度学 1.7 视觉的空间知觉 1.8 几何基础 第二章图像的采集和量化 2.1 采集装置的性能指标 2.2 电荷藕合摄像器件 2.3 CCD 相机类 2.4 彩色数码相机 2.5 常用的图像文件格式

2.6 照明系统设计 第三章光学图样的测量 3.1 全息技术 3.2 散斑测量技术 3.3 莫尔条纹测量技术 3.4 微图像测量技术 第四章标定方法的研究 4.1 干涉条纹图数学形成与特征4.2 图像预处理方法 4.3 条纹倍增法 4.4 条纹图的旋滤波算法 第五章立体视觉 5.1 立体成像 2 5.2 基本约束 5.3 边缘匹配 5.4 匹域相关性 5.5 从 x 恢复形状的方法 5.6 测距成像

第六章标定 6.1 传统标定 6.2 Tsais 万能摄像机标定法 6.3 Weng ’ s 标定法 6.4 几何映射变换 6.5 重采样算法 第七章目标图像亚像素定位技术第八章图像测量软件 (多媒体介绍 第九章典型测量系统设计分析9.1 光源设计 9.2 图像传感器设计 9.3 图像处理分析 9.4 图像识别分析 附:教学实验 1、视觉坐标测量标定实验 2、视觉坐标测量的标定方法。 3、视觉坐标测量应用实验 4、典型零件测量方法等。

3 第一章绪论 1.1 概述 人类在征服自然、改造自然和推动社会进步的过程中,面临着自身能力、能量的局限性, 因而发明和创造了许多机器来辅助或代替人类完成任务。智能机器或智能机器人是这种机器最理想的模式。 智能机器能模拟人类的功能、能感知外部世界,有效解决问题。 人类感知外部世界:视觉、听觉、嗅觉、味觉、触觉 眼耳鼻舌身 所以对于智能机器,赋予人类视觉功能极其重要。 机器视觉:用计算机来模拟生物(外显或宏观视觉功能的科学和技术。 机器视觉目标:用图像创建或恢复现实世界模型,然后认知现实世界。 1.2 机器视觉的研究内容 1 输入设备成像设备:摄像机、红外线、激光、超声波、 X 射线、 CCD 、数字扫描仪、超声成像、 CT 等 数字化设备 2 低层视觉(预处理 :对输入的原始图像进行处理(滤波、增强、边缘检测 ,提取角点、边缘、线条色彩等特征。 3 中层视觉:恢复场景的深度、表面法线,通过立体视觉、运动估计、明暗特征、纹理分析。系统标定

相似度的计算

一.相似度的计算简介 关于相似度的计算,现有的几种基本方法都是基于向量(Vector)的,其实也就是计 算两个向量的距离,距离越近相似度越大。在推荐的场景中,在用户 - 物品偏好的二维矩阵中,我们可以将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,或者将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度。下面我们详细介绍 几种常用的相似度计算方法: ●皮尔逊相关系数(Pearson Correlation Coefficient) 皮尔逊相关系数一般用于计算两个定距变量间联系的紧密程度,它的取值在 [-1,+1] 之间。 s x , s y 是 x 和 y 的样品标准偏差。 类名:PearsonCorrelationSimilarity 原理:用来反映两个变量线性相关程度的统计量 范围:[-1,1],绝对值越大,说明相关性越强,负相关对于推荐的意义小。 说明:1、不考虑重叠的数量;2、如果只有一项重叠,无法计算相似性(计算过程被除数有n-1);3、如果重叠的值都相等,也无法计算相似性(标准差为0,做除数)。 该相似度并不是最好的选择,也不是最坏的选择,只是因为其容易理解,在早期研究中经常被提起。使用Pearson线性相关系数必须假设数据是成对地从正态分布中取得的,并且数据至少在逻辑范畴内必须是等间距的数据。Mahout中,为皮尔森相关计算提供了一个扩展,通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。 ●欧几里德距离(Euclidean Distance) 最初用于计算欧几里德空间中两个点的距离,假设 x,y 是 n 维空间的两个点,它们之间的欧几里德距离是: 可以看出,当 n=2 时,欧几里德距离就是平面上两个点的距离。当用欧几里德距离表示相似度,一般采用以下公式进行转换:距离越小,相似度越大。

相似度的计算

相似度计算 1相似度的计算简介 关于相似度的计算,现有的几种基本方法都是基于向量(Vector)的,其实也就是计 算两个向量的距离,距离越近相似度越大。在推荐的场景中,在用户-物品偏好的二维矩阵中,我们可以将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,或者将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度。下面我们详细介绍几 种常用的相似度计算方法: 1.1皮尔逊相关系数(Pearson Correlation Coefficient) 皮尔逊相关系数一般用于计算两个定距变量间联系的紧密程度,它的取值在 [-1,+1] 之间。 s x , s y 是 x 和 y 的样品标准偏差。 类名:PearsonCorrelationSimilarity 原理:用来反映两个变量线性相关程度的统计量 范围:[-1,1],绝对值越大,说明相关性越强,负相关对于推荐的意义小。 说明:1、不考虑重叠的数量;2、如果只有一项重叠,无法计算相似性(计算过程被除数有n-1);3、如果重叠的值都相等,也无法计算相似性(标准差为0,做除数)。 该相似度并不是最好的选择,也不是最坏的选择,只是因为其容易理解,在早期研究中经常被提起。使用Pearson线性相关系数必须假设数据是成对地从正态分布中取得的,并且数据至少在逻辑范畴内必须是等间距的数据。Mahout中,为皮尔森相关计算提供了一个扩展,通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。

1.2欧几里德距离(Euclidean Distance) 最初用于计算欧几里德空间中两个点的距离,假设 x,y 是 n 维空间的两个点,它们之间的欧几里德距离是: 可以看出,当 n=2 时,欧几里德距离就是平面上两个点的距离。当用欧几里德距离表示相似度,一般采用以下公式进行转换:距离越小,相似度越大。 类名:EuclideanDistanceSimilarity 原理:利用欧式距离d定义的相似度s,s=1 / (1+d)。 范围:[0,1],值越大,说明d越小,也就是距离越近,则相似度越大。 说明:同皮尔森相似度一样,该相似度也没有考虑重叠数对结果的影响,同样地,Mahout通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。 1.3Cosine 相似度(Cosine Similarity) Cosine 相似度被广泛应用于计算文档数据的相似度: 类名: UncenteredCosineSimilarity 原理:多维空间两点与所设定的点形成夹角的余弦值。 范围:[-1,1],值越大,说明夹角越大,两点相距就越远,相似度就越小。 说明:在数学表达中,如果对两个项的属性进行了数据中心化,计算出来的余弦相似度和皮尔森相似度是一样的,在mahout中,实现了数据中心化的过程,所以皮尔森相似度值也是数据中心化后的余弦相似度。另外在新版本中,Mahout提供了UncenteredCosineSimilarity类作为计算非中心化数据的余弦相似度。

视觉显著性检测方法及其应用研究

视觉显著性检测方法及其应用研究 随着科学技术和多媒体技术的发展,人们在日常生活中产生的多媒体数据,尤其是图像数据呈指数级增长。海量的图像数据除了使人们的日常生活变得丰富多彩和便利之外,也给计算机视觉处理技术提出了新的挑战。 大部分图像中只包含了少量重要的信息,人眼视觉系统则具有从大量数据中找出少量重要信息并进行进一步分析和处理的能力。计算机视觉是指使用计算机模拟人眼视觉系统的机理,并使其可以像人类一样视察与理解事物,其中的一个关键问题为显著性检测。 本文针对目前已有显著性检测方法存在的问题,将重点从模拟人眼视觉注意机制以及针对图像像素和区域的鲁棒特征提取方法进行专门的研究。同时,本文还将显著性检测思想和方法引入到场景文本检测的研究中,既能提高场景文本检测的性能,又能拓展基于显著性检测的应用范畴。 针对人眼视觉注意机制的模拟,本文提出了一种基于超像素聚类的显著性检测方法。该方法分析了人眼视觉注意机制中由粗到细的过程,并采用计算机图像处理技术来模拟该过程。 具体而言,本文首先将原始图像分割为多个超像素,然后采用基于图的合并聚类算法将超像素进行聚类,直到只有两个类别为止,由此得到一系列具有连续类别(区域)个数的中间图像。其中在包含类别数越少的中间图像中的区域被给予更大的权重,并采用边界连通性度量来计算区域的显著性值,得到初始显著性图。 最终基于稀疏编码的重构误差和目标偏见先验知识对初始显著性图进一步细化得到最终的显著性图。针对鲁棒特征提取,本文提出了一种基于区域和像素级融合的显著性检测方法。

对于区域级显著性估计,本文提出了一种自适应区域生成技术用于区域提取。对于像素级显著性预测,本文设计了一种新的卷积神经网络(CNN)模型,该模型考虑了不同层中的特征图之间的关系,并进行多尺度特征学习。 最后,提出了一种基于CNN的显著性融合方法来充分挖掘不同显著性图(即 区域级和像素级)之间的互补信息。为了提高性能和效率,本文还提出了另一种基于深层监督循环卷积神经网络的显著性检测方法。 该网络模型在原有的卷积层中引入循环连接,从而能为每个像素学习到更丰富的上下文信息,同时还在不同层中分别引入监督信息,从而能为每个像素学习 到更具区分能力的局部和全局特征,最后将它们进行融合,使得模型能够进行多 尺度特征学习。针对基于文本显著性的场景文本检测方法的研究,本文提出了一种仅对文本区域有效的显著性检测CNN模型,该模型在不同层使用了不同的监督信息,并将多层信息进行融合来进行多尺度特征学习。 同时为了提高文本检测的性能,本文还提出了一种文本显著性细化CNN模型和文本显著性区域分类CNN模型。细化CNN模型对浅层的特征图与深层的特征图进行整合,以便提高文本分割的精度。 分类CNN模型使用全卷积神经网络,因此可以使用任意大小的图像作为模型的输入。为此,本文还提出了一种新的图像构造策略,以便构造更具区分能力的图像区域用于分类并提高分类精度。

向量的相似度计算常用方法

向量的相似度计算常用方法 相似度的计算简介 关于相似度的计算,现有的几种基本方法都是基于向量(Vector)的,其实也就是计算两个向量的距离,距离越近相似度越大。在推荐的场景中,在用户-物品偏好的二维矩阵中,我们可以将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,或者将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度。下面我们详细介绍几种常用的相似度计算方法。 共8种。每人选择一个。第9题为选做。 编写程序实现(这是第一个小练习,希望大家自己动手,java实现)。计算两个向量的相似性: 向量1(0.15, 0.45, 0.l68, 0.563, 0.2543, 0.3465, 0.6598, 0.5402, 0.002) 向量2(0.81, 0.34, 0.l66, 0.356, 0.283, 0.655, 0.4398, 0.4302, 0.05402) 1、皮尔逊相关系数(Pearson Correlation Coefficient) 皮尔逊相关系数一般用于计算两个定距变量间联系的紧密程度,它的取值在[-1,+1] 之间。 s x , s y 是 x 和 y 的样品标准偏差。 类名:PearsonCorrelationSimilarity 原理:用来反映两个变量线性相关程度的统计量 范围:[-1,1],绝对值越大,说明相关性越强,负相关对于推荐的意义小。 说明:1、不考虑重叠的数量;2、如果只有一项重叠,无法计算相似性(计算过程被除数有n-1);3、如果重叠的值都相等,也无法计算相似性(标准差为0,做除数)。

该相似度并不是最好的选择,也不是最坏的选择,只是因为其容易理解,在早期研究中经常被提起。使用Pearson线性相关系数必须假设数据是成对地从正态分布中取得的,并且数据至少在逻辑范畴内必须是等间距的数据。Mahout中,为皮尔森相关计算提供了一个扩展,通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。 2、欧几里德距离(Euclid ean Distance) 最初用于计算欧几里德空间中两个点的距离,假设 x,y 是 n 维空间的两个点,它们之间的欧几里德距离是: 可以看出,当 n=2 时,欧几里德距离就是平面上两个点的距离。当用欧几里德距离表示相似度,一般采用以下公式进行转换:距离越小,相似度越大。 类名:EuclideanDistanceSimilarity 原理:利用欧式距离d定义的相似度s,s=1 / (1+d)。 范围:[0,1],值越大,说明d越小,也就是距离越近,则相似度越大。 说明:同皮尔森相似度一样,该相似度也没有考虑重叠数对结果的影响,同样地,Mahout通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。 3、Cosine 相似度(Cosine Similarity) Cosine 相似度被广泛应用于计算文档数据的相似度: 类名: UncenteredCosineSimilarity 原理:多维空间两点与所设定的点形成夹角的余弦值。 范围:[-1,1],值越大,说明夹角越大,两点相距就越远,相似度就越小。 说明:在数学表达中,如果对两个项的属性进行了数据中心化,计算出来的余弦相似度和皮尔森相似度是一样的,在mahout中,实现了数据中心化的过程,所以皮尔森相似度值也是数据中心化后的余弦相似度。另外在新版本

基于多尺度深度特征的视觉显著性

基于多尺度深度特征的视觉显著性 视觉显著性在认知和计算科学是一个基本的问题,包括计算机视觉。在本文中,我们发现一个高质量的视觉显著性模型可以使用深度卷积神经网络抽取多尺度特征来学习,这些在视觉识别工作中已经有很多成功的例子。为了学习显著性模型,我们提出一种为了在三个不同的尺度提取的特征可以和CNN的顶层充分连接的神经网络架构。接着我们提出了一个细化方法来加强显著性结果的空间一致性。最后,融合多个显著图计算为图像分割的不同水平可以更好的促进性能,收益率显著图比从单一分割产生的图像要好。为了促进视觉显著模型的进一步研究和评价,我们也建立一个新的拥有4447张挑战性图片的大型数据库及其注释。实验结果表明,我们提出的方法在所有公共基准能够实现最先进的性能,在MSRA-B数据集和我们的新数据集(HKU-IS)改善F-Measure的效果分别为5.0%和13.2%,降低了这两个数据集平均绝对误差分别为5.7%和35.1%。 1.介绍 总结,这篇文章有以下贡献: 一个新的视觉显著模型被提出用于从一个拥有多个完全连接层的深度神经网络的嵌套的窗口将多尺度CNN特征提取。用于显著性估计的深度神经网络是可以用一组标记的显著图区域来训练的。 一个完整的显著性框架是由进一步整合我们的用空间一致性模型和多级图像分割基于CNN的显著性模型开发而成的。 HKU-IS是用来显著性模型研究和评估而创建的一个新的具有挑战的数据集。这个数据集是对外公开的。我们提出的显著性模型已经成功地验证了这个新数据集和所有现有的数据集。 2.相关工作 视觉显著计算可以分为自底向上和自顶向下的方法或两者的混合。自底向上的模型主要是基于c enter-surround方案,通过低级视觉属性的线性或非线性结合来计算主显著图,如颜色、强度、结构和方向。自上而下的方法通常需要高层知识的整合,如在计算过程中目标和人脸识别检测。最近,设计区别特征和显著先验的工作已经取得了很大成效。大多数方法基本上都遵循区域对比框架,旨在设计更好的描述图像区域与其周边地区的特殊性的特性。在【26】中,三个新奇特征与条件随机场(条件随机场(conditional random field,简称 CRF),是一种鉴别式机率模型,是随机场的一种,常用于标注或分析序列资料,如自然语言文字或是生物序列。条件随机场为无向性之图模型,图中的顶点代表随机变量,顶点间的连线代表随机变量间的相依关系,在条件随机场当中,随机变量 Y 的分布为条件机率,给定的观察值则为随机变量 X。原则上,条件随机场的图模型布局是可以任意给定的,一般常用的布局是链结式的架构,链结式架构不论在训练(training)、推论(inference)、或是解码(decoding)上,都存在有效率的算法可供演算。)结合。在【33】中提出了一个基于低秩矩阵恢复的模型用于整合底层视觉特征与高层次先验。 显著先验和中心先验与边界先验一样被广泛应用于启发结合低级线索的和改善显著估计。这些显著先验直接结合其他显著的线索权重或者用于特征学习算法。虽然这些经验对于很多图像来说可以改变显著结果,但当显著目标偏离中心或明显在图像边界重叠就会失败。我们应该注意到目标位置线索和基于背景的背景模型在我们的框架中并没有被忽视,而是一直通过CNN的多尺度特征提取和神经网络训练含蓄地纳入进我们的模型。 最近,CNNs在视觉识别工作中取得了很多成就,包括图像分类、目标检测和场景解析。Dona hue等在【11】中指出从ImageNet数据集训练的Krizhevsky的CNN提取的特征可以转化成一般的任务。Razavian等在【30】中拓展他们的结果并得出深度学习和CNNs对于所有的视觉识别任务可以成为一个强有力的候选的结论。然而,CNN特征并没有探索视觉显著性研究主要是因为在【11,30】

相关文档
最新文档