双曲线专题及答案

双曲线专题及答案
双曲线专题及答案

例1 根据下列条件,求双曲线方程:

(1)与双曲线22

1916

x y -=有共同的渐近线,且过点(-3,23); (2)与双曲线162

x -4

2y =1有公共焦点,且过点(32,2) 分析:设双曲线方程为22

a x -22b

y =1,求双曲线方程,即求a 、b ,为此需要关于a 、b 的两个方程,由题意易得关于a 、b 的两个方程

解法一:(1)设双曲线的方程为22

a x -22b

y =1, 由题意,得

2243(3)19

16b a ?=???-?-=?? 解得a 2=4

9,b 2=4 所以双曲线的方程为4

92

x -4

2y =1 (2)设双曲线方程为22

a x -22b

y =1 由题意易求c

又双曲线过点(32,2),

∴22)23(a -24b

=1 又∵a 2+b 2=(25)2,

∴a 2=12,b 2=8 故所求双曲线的方程为122

x -8

2y =1 解法二:(1)设所求双曲线方程为92

x -16

2y =λ(λ≠0), 将点(-3,23)代入得λ=4

1, 所以双曲线方程为92x -162y 1

(2)设双曲线方程为k x -162-k

y +42=1, 将点(32,2)代入得k =4,所以双曲线方程为122

x -8

2y =1 点评:求双曲线的方程,关键是求a 、b ,在解题过程中应熟悉各元素(a 、b 、c 、e 及准线)之间的关系,并注意方程思想的应用若已知双曲线的渐近线方程ax ±by =0,可设双曲线方程为a 2x 2-b 2y 2=λ(λ≠0)

例2 设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围

分析:由|PM |-|PN |=2m ,得||PM |-|PN ||=2|m |知点P 的轨迹是双曲线,由点P 到x 轴、y 轴距离之比为2,知点P 的轨迹是直线,由交轨法求得点P 的坐标,进而可求得m 的取值范围

解:设点P 的坐标为(x ,y ),依题意得|

|||x y =2, 即y =±2x (x ≠0) ①

因此,点P (x ,y )、M (-1,0)、N (1,0)三点不共线,

从而得 ||PM |-|PN ||<|MN |=2

∵||PM |-|PN ||=2|m |>0,

∴0<|m |<1

因此,点P 在以M 、N 为焦点,实轴长为2|m |的双曲线上 故22

m x -221m y -=1 ②

将①代入②,并解得x 2=22251)1(m

m m --, ∵1-m 2>0,∴1-5m 2>0

解得0<|m |<5

5, 即m 的取值范围为(-55,0)∪(0,5

5) 评述:本题考查了双曲线的定义、标准方程等基本知识,考查了逻辑思维能力及分析问题、解决问题的能力解决此题的关键是用好双曲线的定义

例3 已知α∈[0,π], 设讨论随α值的变化,方程x 2sin α+y 2cos α=1表示的曲线形状 解:(1)α=0时,两直线y=1和y= ─1;

(2)α=π/2时,两直线x=1和x=─1;

(3)0<α<π/2时,焦点在x 轴上的椭圆; (4)α=π/4时,半径为42的圆;

(5)π/4<α<π/2时,焦点在y 轴上的椭圆;

(6)π/2<α<π时,焦点在x 轴上的椭圆 点评:本题主要考查椭圆双曲线方程的形式和分类讨论思想

例5 已知双曲线的方程为14

22

=-y x , 直线l 通过其右焦点F 2,且与双曲线的右支交

于A 、B 两点,将A 、B 与双曲线的左焦点F 1连结起来,求|F 1A|·|F 1B|的最小值

解:设A(x 1,y 1),B(x 2,y 2),

A 到双曲线的左准线x= ─c a 2= ─54的距离d=|x 1+54|=x 1+5

4, 由双曲线的定义,d

AF ||1=e=25, ∴|AF 1|=25(x 1+5

4)=25x 1+2, 同理,|BF 1|=2

5x 2+2, ∴|F 1A|·|F 1B|=(

25x 1+2)(25x 2+2)=45x 1x 2+5(x 1+x 2)+4 (1) 双曲线的右焦点为F 2(5,0),

(1)当直线的斜率存在时设直线AB 的方程为:y=k(x─5), 由?????=--=14

)5(22y x x k y 消去y 得 (1─4k 2)x 2+85k 2x─20k 2─4=0, ∴x 1+x 2=145822

-k k , x 1x 2= ─1

442022-+k k , 代入(1)整理得

|F 1A|·|F 1B|=1452514402222-++-k k k k +4=1

456522-+k k +4 =1

4485)41(6522-+-k k +4=481+)14(4852-k ∴|F 1A|·|F 1B|>4

81; (2)当直线AB 垂直于x 轴时,容易算出|AF 2|=|BF 2|=

21, ∴|AF 1|=|BF 1|=2a+21=29(双曲线的第一定义), ∴|F 1A|·|F 1B|=4

81 由(1), (2)得:当直线AB 垂直于x 轴时|F 1A|·|F 1B| 4

81

例6 24已知双曲线的方程是16x 2-9y 2=144

(1)求这双曲线的焦点坐标、离心率和渐近线方程;

(2)设F 1和F 2是双曲线的左、右焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2的大小

解:(1)由16x 2-9y 2

=144得92

x -162y =1, ∴a =3,b =4,c =5焦点坐标F 1(-5,0),F 2(5,0),离心率e =35,渐近线方程为y =±3

4x (2)||PF 1|-|PF 2||=6,cos ∠F 1PF 2=|

|||2||||||212

212221PF PF F F PF PF -+ =||||2||||||2|)||(|2122121221PF PF F F PF PF PF PF -+-=64

1006436-+ =0 ∴∠F 1PF 2=90°

双曲线专题复习讲义及练习学生

双曲线专题复习讲义 考点1双曲线的定义及标准方程 题型1:运用双曲线的定义 题型1求离心率或离心率的范围 2 2 [例3]已知双曲线X y 每 1,(a 0,b 0)的左,右 焦 a b 点分别为F 1,F 2,点P 在双曲线的右支上,且 端点,若该椭圆的长轴长为 4,则△ AF 1F 2面积的最大值 为 ___ . 4.过点(-6 , 3)且和双曲线x 2 -2y 2 =2有相同的渐近线 的双曲线方程为 _________________ 。 | PF 1 | 4|PF 2 |,则此双曲线的离心率 e 的最大值为_. 【新题导练】 双曲线 x2 64 y2 36 =1上一点P 到双曲线右焦点的距离是4,那么点P 到左准线的距离是 题型2与渐近线有关的问题 在双曲线的几何性质中,应充分利用双曲线的渐近线方程,简化 解题过程.同时要熟练掌握以下三方面内容: (1)已知双曲线方 程, 求它的渐近线;(2)求已知渐近线的双曲线的方程; (3)渐近线 的 b 、f c2 — a2 /c2. ---------- 斜率与离心率的关系,如 k =a —a2—1= . e2—1. 【新题导练】 2 1. 设P 为双曲线X 2 - 1上的一点F 1、F 2是该双曲 12 线的两个焦点,若|PF 1|: |PF 2|=3 : 2,则厶PF 1F 2的面 积为 ( ) A. 6、3 B. 12 C. 12 .3 D. 24 2 2 2. 如图2所示,F 为双曲线C : — — 1的左焦点, 9 16 双曲线C 上的点P 与P 7 i i 1,2,3关于y 轴对称, [例4]若双曲 线 2 X ~2 a 2 莒 1(a 0,b 0)的焦点到 渐 b 2 近线的距离等于实轴长,则双曲线的离心率为 7 . 【新题导 练】 2 双曲线— 4 2 y_ 9 1的渐近线方程 是 A. 2 x B. 3 C. D.2 则 RF P 2F P 3F F 4F F ^F P 6F 的值是() 8.焦点为(0, 6),且与双曲线 1有相同的渐近线 A . 9 B. 16 C. 18 D. 27 题型2求双曲线的标准方程 2 [例2 ]已知双曲线C 与双曲线— 16 2 —=1有公共焦点, 4 的双曲线方程是 2 A .— 12 2 y 24 2 1B .— 12 2 x 24 ) 2 C . 乂 24 2 x 12 2 D .— 24 2 乂 1 12 双曲线专题练习 且过点(3 ...2,2).求双曲线C 的方程. 【新题导练】 3.已知双曲线的渐近线方程是 y 2,焦点在坐标轴上 且焦距是10,则此双曲线的方程为 __________________ ; 4?以抛物线y 2 8 -. 3x 的焦点F 为右焦点,且两条渐近 线 是x J3y 0的双曲线方程为 _________________________ . 考点2双曲线的几何性质 一、填空题 2 1 .椭圆工 9 k= 。 2 1与双曲线丄 k 仝1的焦点相同,则 3 2 2.双曲线丄 9 2 鼻1的渐近线为 4 3 ?已知 戸、F 2为椭圆的两个焦点, A 为它的短轴的一个 5.过原点与双曲线 1交于两点的直线斜 率 2 2 5.已知双曲线—' m n 1的一条渐近线方程 为 的取值范围是 6、若双曲线8kx 2 ky 2 8的一个焦点是 0, 3),则 k C . 5 1 或2 D.不存在 2

双曲线专题练习(含解析)

双曲线专题练习 5.(2020·陕西省西安市育才中学模拟)已知双曲线C:x2 a2-y2 16=1(a>0)的一条渐近线方程为4x+3y =0,F1,F2分别是双曲线C的左、右焦点,点P在双曲线C上,且|PF1|=7,则|PF2|=()

A .1 B .13 C .17 D .1或13 6.(2020·辽宁省东北中山中学模拟)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线 的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A.x 24-y 2 12=1 B.x 212-y 2 4=1 C.x 23 -y 2 =1 D .x 2- y 2 3 =1 7.(2020·河北省秦皇岛市第三中学模拟)如图,双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0)的左、右焦点分别 为F 1,F 2,直线l 过点F 1且与双曲线C 的一条渐近线垂直,与两条渐近线分别交于M ,N 两点,若|NF 1|=2|MF 1|,则双曲线C 的渐近线方程为( ) A .y =± 33x B .y =±3x C .y =±22 x D .y =±2x 8.(2020·辽宁省海城市高级中学模拟)已知双曲线C :x 2a 2-y 2b 2=1的离心率e =5 4,且其右焦点为F 2(5, 0),则双曲线C 的方程为( ) A.x 24-y 2 3=1 B.x 29-y 2 16=1 C.x 216-y 2 9 =1 D.x 23-y 2 4 =1

9.(2020·吉林省四平市实验中学模拟)已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),右焦点F 到渐近线的 距离为2,点F 到原点的距离为3,则双曲线C 的离心率e 为( ) A. 53 B.355 C.63 D.62 10.(2020·黑龙江省双鸭山市第一中学模拟)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos △F 1PF 2=( ) A.14 B.35 C.34 D.4 5 11.(2020·江西省赣州市第一中学模拟)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =3 5x ,则a = . 12.(2020·福建省福州高级中学模拟)在平面直角坐标系xOy 中,若双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的 右焦点F (c,0)到一条渐近线的距离为 3 2 c ,则其离心率的值为 . 13.(2020·安徽省马鞍山市第二中学模拟)双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近线为正方形OABC 的 边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a = . 14.(2020·江苏省太湖高级中学模拟)已知椭圆D :x 250+y 2 25=1与圆M :x 2+(y -5)2=9.双曲线G 与 椭圆D 有相同的焦点,它的两条渐近线恰好与圆M 相切,求双曲线G 的方程. 15.(2020·浙江省义乌第二中学 模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程; (2)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→ =0. 16.(2020·黑龙江省绥化市第一中学模拟)中心在原点,焦点在x 轴上的椭圆与双曲线有共同的焦点

双曲线专题经典练习及答案详解

双曲线专题 一、学习目标: 1.理解双曲线的定义; 2.熟悉双曲线的简单几何性质; 3.能根据双曲线的定义和几何性质解决简单实际题目. 二、知识点梳理 定 义 1、到两个定点1F 与2F 的距离之差的绝对值等于定长(小于 2 1F F )的点的轨迹 2、到定点F 与到定直线l 的距离之比等于常数()1>e e e (>1)的点的轨迹 标准方程 -2 2a x 22 b y =1()0,0>>b a -22a y 22 b x =1()0,0>>b a 图 形 性质 范围 a x ≥或a x -≤,R y ∈ R x ∈,a y ≥或a y -≤ 对称性 对称轴: 坐标轴 ;对称中心: 原点 渐近线 x a b y ± = x b a y ± = 顶点 坐标 ()0,1a A -,()0,2a A ()b B -,01,()b B ,02 ()a A -,01,()a A ,02()0,1b B -,()0,2b B 焦点 ()0,1c F -,()0,2c F ()c F -,01,()c F ,02 轴 实轴21A A 的长为a 2 虚轴21B B 的长为b 2 离心率 1>= a c e ,其中22b a c += 准线 准线方程是c a x 2 ±= 准线方程是c a y 2 ±= 三、课堂练习

1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2=1有相同的焦点,则a 的值是( ) A.1 2 B .1或-2 C .1或1 2 D .1 2.已知F 是双曲线x 24-y 2 12=1的左焦点,点A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________. 3.已知F 1,F 2分别为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1||PF 2|=( ) A .2 B .4 C .6 D .8 4.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→·MF 2→=0,|MF 1→|·|MF 2→|=2,则该双曲线的方程是( ) A.x 29-y 2 =1 B .x 2-y 29=1 C.x 23-y 2 7=1 D.x 27-y 2 3=1 5.若F 1,F 2是双曲线8x 2-y 2=8的两焦点,点P 在该双曲线上,且△PF 1F 2是等腰三角形,则△PF 1F 2的周长为________. 6.已知双曲线x 26-y 2 3=1的焦点为F 1,F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( ) A.365 B.566 C.65 D.56

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

《双曲线高考真题》专题

《双曲线高考真题》专题 2018年( )月( )日 班级 姓名 从善如登,从恶如崩。——《国语》 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(, B .(2,0)-,(2,0) C .(0,, D .(0,2)-,(0,2) 2.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b A .=y B .=y C .2=± y x D .2 =±y x 3.(2018全国卷Ⅲ)已知双曲线22 221(00)x y C a b a b -=>>:,则点(4,0) 到C 的渐近线的距离为 A B .2 C . 2 D .4.(2017新课标Ⅰ)已知F 是双曲线C :2 2 13 y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ?的面积为 A . 13 B .12 C .23 D .32 5.(2017新课标Ⅱ)若1a >,则双曲线22 21x y a -=的离心率的取值范围是 A .)+∞ B . C . D .(1,2) 6.(2017天津)已知双曲线22 221(0,0)x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐

近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 A . 221412x y -= B .221124x y -= C .2213x y -= D .22 13y x -= 7.(2016天津)已知双曲线)0,0(122 22>>=-b a b y a x 的焦距为52,且双曲线的一条 渐近线与直线02=+y x 垂直,则双曲线的方程为 A .1422=-y x B .1422 =- y x C . 15 320322=-y x D .12035322=-y x 8.(2015湖南)若双曲线22 221x y a b -=的一条渐近线经过点(3,4)-,则此双曲线的离心 率为 A B .54 C .43 D .53 9.(2015四川)过双曲线2 2 13 y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于,A B 两点,则||AB = A . 3 B . C .6 D .10.(2014新课标1)已知F 是双曲线C :2 2 3(0)x my m m -=>的一个焦点,则点F 到 C 的一条渐近线的距离为 A B .3 C D .3m 11.(2013新课标1)已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为2 ,

双曲线专题复习讲义及练习

双曲线专题复习讲义 ★知识梳理★ 1. 双曲线的定义 (1)第一定义:当1212||||||2||PF PF a F F -=<时, P 的轨迹为双曲线; 当1212||||||2||PF PF a F F -=>时, P 的轨迹不存在; 当21212||F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 (2)双曲线的第二义 平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (1>e )的点的轨迹为双曲线 与双曲线12222=-b y a x 共渐近线的双曲线系方程为:)0(22 22≠=-λλb y a x 与双曲线122 22=-b y a x 共轭的双曲线为22221y x b a -= 等轴双曲线222a y x ±=-的渐近线方程为x y ±= ,离心率为2=e .; ★重难点突破★ 1.注意定义中“陷阱” 问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支 12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116 92 2>=- x y x 2.注意焦点的位置

问题2:双曲线的渐近线为x y 2 3 ± =,则离心率为 点拨:当焦点在x 轴上时, 23=a b ,213=e ;当焦点在y 轴上时,2 3 =b a ,313=e ★热点考点题型探析★ 考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义 [例1 ] 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同 时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上) 【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的. [解析]如图,以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020) 设P (x,y )为巨响为生点,由A 、C 同时听到巨响声,得|PA|=|PC|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360 由双曲线定义知P 点在以A 、B 为焦点的双曲线 122 22=-b y a x 上, 依题意得a=680, c=1020, 用y=-x 代入上式,得5680±=x ,∵|PB|>|PA|, 答:巨响发生在接报中心的西偏北450距中心m 10680处. 【名师指引】解应用题的关键是将实际问题转换为“数学模型” 【新题导练】 1.设P 为双曲线112 2 2 =-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36 B .12 C .312 D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ① 又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF 为21F PF ∴直角三角形,

双曲线专题复习(精心整理).

《圆锥曲线》---------双曲线 主要知识点 1、 双曲线的定义: (1) 定义:_____________________________________________________________ (2) 数学符号:________________________ (3) 应注意问题: 2 注意:如何根据双曲线的标准方程判断出它的焦点在哪个轴上?进一步,如何求出焦点坐标? 3 注意:(1)如何比较标准地在直角坐标系中画出双曲线的图像? (2)双曲线的离心率的取值范围是什么?离心率有什么作用? (3)当时b a ,双曲线有什么特点? 4.双曲线的方程的求法 (1)双曲线的方程与双曲线渐近线的关系

①已知双曲线段的标准方程是22221x y a b -=(0,0)a b >>(或22 221(0,0)x y a b b a -=>>), 则渐近线方程为________________________________________________________________; ②已知渐近线方程为0bx ay ±=,则双曲线的方程可表示为__________________________。 (2)待定系数法求双曲线的方程 ①与双曲线22 221x y a b -=有共同渐近线的双曲线的方程可表示为_______________________; ②若双曲线的渐近线方程是b y x a =± ,则双曲线的方程可表示为_____________________; ③与双曲线22 221x y a b -=共焦点的双曲线方程可表示为_______________________________; ④过两个已知点的双曲线的标准方程可表示为______________________________________; ⑤与椭圆22 221x y a b +=(0)a b >>有共同焦点的双曲线的方程可表示为 ______________________________________________________________________________。 5.双曲线离心率的有关问题 (1)c e a = ,1e >,它决定双曲线的开口大小,e 越大,开口越大。 (2)等轴双曲线的两渐近线互相垂直,离心率2e = 。 (3)双曲线离心率及其范围的求法。 ①双曲线离心率的求解,一般可采用定义法、直接法等方法求解。 ②双曲线离心率范围的求解,一般可以从以下几个方面考虑:a .与已知范围联系,通过求 值域或解不等式来完成;b . 通过判别式?;c .利用点在曲线内部形成的不等式关系;d .利用解析式的结构特点。 6、直线与双曲线的位置关系的判定及相关计算 (1)直线与双曲线的位置关系有:____________、____________、____________ 注意:如何来判断位置关系? (2)若斜率为k 的直线被双曲线所截得的弦为AB , A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则相交弦长 =AB _____________________ 二、典型例题: 考点一:双曲线的定义 例1 已知动圆M 与圆C 1:(x +4)2 +y 2 =2外切,与圆C 2:(x -4)2 +y 2 =2内切,求动圆圆心M 的 轨迹方程. 变式训练:由双曲线4 92 2y x -=1上的一点P 与左、右两焦点F 1、F 2构

文科圆锥曲线专题练习及问题详解

文科圆锥曲线 1.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32a x =上一点,12PF F ?是底角为30的等腰三 角形,则E 的离心率为( ) () A 12 () B 23 () C 3 4 () D 4 5 【答案】C 【命题意图】本题主要考查椭圆的性质及数形结合思 想,是简单题. 【解析】∵△21F PF 是底角为0 30的等腰三角形, ∴322c a = ,∴e =3 4 , ∴0260PF A ∠=,212||||2PF F F c ==,∴2||AF =c , 2.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B 两点,AB =;则C 的实轴长为( ) ()A ()B ()C 4 ()D 8 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题. 【解析】由题设知抛物线的准线为:4x =,设等轴双曲线方程为:222x y a -=,将4x =代入等轴双曲线方程解 得y =||AB =a =2, ∴C 的实轴长为4,故选C. 3.已知双曲线1C :22 221(0,0)x y a b a b -=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距 离为2,则抛物线2C 的方程为 (A) 2x y = (B) 2x y = (C)28x y = (D)216x y = 考点:圆锥曲线的性质 解析:由双曲线离心率为2且双曲线中a ,b ,c 的关系可知a b 3=,此题应注意C2的焦点在y 轴上,即(0,p/2)到直线x y 3=的距离为2,可知p=8或数形结合,利用直角三角形求解。 4.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 (A ) 2211612x y += (B )221128x y += (C )22184x y += (D )22 1124 x y += 【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,,a b c ,从而得到椭圆的方程。 【解析】因为242c c =?=,由一条准线方程为4x =-可得该椭圆的焦点在x 轴上县2 2448a a c c =?==,所以2 2 2 844b a c =-=-=。故选答案C 5.已知1F 、2F 为双曲线22 :2C x y -=的左、右焦点,点 P 在C 上,12||2||PF PF =,则12cos F PF ∠=

2014年高考双曲线专题复习总结

2014年高考双曲线专题复习总结 知识点梳理: 1. 双曲线的定义 第一定义:当1212||||||2||PF PF a F F -=<时, P 的轨迹为双曲线; 当1212||||||2||PF PF a F F -=>时, P 的轨迹不存在; 当21212||F F a PF PF ==-时, P 的轨迹为以21F F 、为端点的两条射线 2. 双曲线的标准方程与几何性质 标准方程 )0,(122 22>=-b a b y a x )0,(122 22>=-b a b x a y 图像 性 质 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 R y a x ∈≥,|| R x a y ∈≥,|| 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(),0,(a a - ),0(),,0(a a - 轴 实轴长2a ,虚轴长2b 离心率 (1,)c e a = ∈+∞ 渐近线 x a b y ± = x b a y ± = 2.共渐近线的双曲线系方程: 与双曲线x 2a 2-y 2b 2=1有相同渐近线的双曲线系方程可设为x 2a 2-y 2 b 2=λ(λ≠0),若λ>0,则双曲线的焦点在x 轴上;若λ<0,则双曲线的焦点在y 轴上. 等轴双曲线222a y x ±=-的渐近线方程为x y ±= ,离心率为2=e .; 3.基础三角形如图,△AOB 中,|OA |=a ,|AB |=b ,|OB |= c ,tan ∠AOB

=b a , △OF 2D 中,|F 2D |= b . 4. 注意定义中“陷阱” 问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支 12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116 92 2>=- x y x 5. 注意焦点的位置 问题2:双曲线的渐近线为x y 2 3 ±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y 轴上时,2 3=b a ,313=e 热点考点题型探析 考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义 [例1] 已知两圆C 1:(x +4)2+y 2=2,C 2:(x -4)2+y 2=2,动圆M 与两圆C 1、C 2都相切,则动圆圆心M 的轨迹方程是( ) A .x =0 B. x 22-y 214=1(x ≥2) C. x 22-y 2 14=1 D. x 22-y 214 =1或x =0 解析:如右图,动圆M 与两圆C 1、C 2都相切,有四种情况:①动圆M 与两圆都相外切,②动圆M 与两圆都相内切;③动圆M 与圆C 1外切、与圆C 2内切. ④动圆M 与圆C 1内切、与圆C 2外切. 在①②的情况下,显然,动圆圆心M 的轨迹方程为x =0;在③的情况下,设动圆M 的半径为r ,则 |MC 1|=r +2,|MC 2|=r - 2

双曲线专题复习附答案

双曲线专题 考点1 双曲线的定义及标准方程 题型1:运用双曲线的定义 1.设P 为双曲线1122 2 =-y x 上的一点F 1、F 2是该双曲线的两个焦点,若|PF 1|:|PF 2|=3:2,则△PF 1F 2的面积为 ( ) A .36 B .12 C .312 D .24 解析:2:3||:||,13,12,121====PF PF c b a 由 ① 又,22||||21==-a PF PF ② 由①、②解得.4||,6||21==PF PF ,52||,52||||2212221==+F F PF PF 为21F PF ∴直角三角形, .12462 1||||212121=??=?=∴?PF PF S F PF 故选B 。 2. P 是双曲线)0,0(122 22>>=-b a b y a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ?的内切圆的圆心的横坐标为( ) (A )a - (B )b - (C )c - (D )c b a -+ [解析]设21F PF ?的内切圆的圆心的横坐标为0x , 由圆的切线性质知,a x a c x x c PF PF -=?=----=-000122|)(||| 题型2 求双曲线的标准方程 3.已知双曲线C 与双曲线162 x -4 2y =1有公共焦点,且过点(32,2).求双曲线C 的方程. [解析] 解法一:设双曲线方程为22 a x -22b y =1.由题意易求c =25. 又双曲线过点(32,2),∴22)23(a -2 4b =1. 又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线的方程为122 x -8 2y =1. 解法二:设双曲线方程为k x -162-k y +42=1,

专题九 解析几何第二十七讲 双曲线 (1)

专题九 解析几何 第二十七讲 双曲线 一、选择题 1.(2018浙江)双曲线2 213 x y -=的焦点坐标是 A .(2,0)-,2,0) B .(2,0)-,(2,0) C .(0,2),2) D .(0,2)-,(0,2) 2.(2018全国卷Ⅰ)已知双曲线C :2 213 -=x y ,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若?OMN 为直角三角形,则||MN = A . 3 2 B .3 C .23 D .4 3.(2018全国卷Ⅱ)双曲线22 221(0,0)-=>>x y a b a b 3 A .2=y x B .3=y x C .2=y x D .3 =y 4.(2018全国卷Ⅲ)设1F ,2F 是双曲线C :22 221(0,0)x y a b a b -=>>的左、右焦点,O 是 坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6|PF OP =,则C 的离心率为 A 5 B .2 C 3 D 2 5.(2018天津)已知双曲线22 221(0,0)x y a b a b -=>>的离心率为2,过右焦点且垂直于x 轴 的直线与双曲线交于A ,B 两点.设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d , 且126d d +=,则双曲线的方程为 A . 221412x y -= B .221124x y -= C .22139x y -= D .22 193 x y -=

6.(2017新课标Ⅱ)若双曲线C :22 221(0,0)x y a b a b -=>>的一条渐近线被圆 22(2)4x y -+=所截得的弦长为2,则C 的离心率为 A .2 B 3 C 2 D . 3 3 7.(2017新课标Ⅲ)已知双曲线C :22 221(0,0)x y a b a b -=>>的一条渐近线方程为52y x =,且与椭圆 22 1123 x y +=有公共焦点,则C 的方程为 A . 221810x y -= B .22145x y -= C .22154x y -= D .22 143x y -= 8.(2017天津)已知双曲线22 221(0,0)x y a b a b -=>>的左焦点为F 2.若经 过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为 A .22144x y -= B .22188x y -= C .22148x y -= D .22 184x y -= 9.(2016天津)已知双曲线 2 22=1(0)4x y b b ->,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为 A .22443=1y x - B .22344=1y x - C .2224=1x y b - D .2 224=11x y - 10.(2016年全国I)已知方程22 2 213x y m n m n -=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是 A .(–1,3) B .(–1,3) C .(0,3) D .(0,3) 11.(2016全国II)已知1F ,2F 是双曲线E :22 221x y a b -=的左、右焦点,点M 在E 上,1MF 与 x 轴垂直,211sin 3 MF F ∠=,则E 的离心率为

椭圆双曲线抛物线专题训练

椭圆、双曲线、抛物线 专题训练 一、选择题(本大题共6个小题,每小题6分,共36分) 1.(精选考题·陕西高考)已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.1 2 B .1 C .2 D .4 2.(2009·全国卷Ⅰ)已知椭圆C :x 22+y 2 =1的右焦点为F ,右准线为l ,点A ∈l ,线 段AF 交C 于点B .若FA =3FB ,则|AF |= ( ) A. 2 B .2 C.3 D .3 3.已知抛物线y 2=4x 的焦点为F ,准线与x 轴的交点为M ,N 为抛物线上的一点,且|NF |= 3 2 |MN |,则∠NMF =( ) A.π6 B.π4 C.π3 D.5π12 4.过椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠ F 1PF 2=60°,则椭圆的离心率为( ) A. 22 B.3 3 C.12 D.13 5.双曲线x 24-y 2 5=1的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,若线段PF 1的 中点在y 轴上,那么点P 到双曲线左准线的距离是( ) A.133 B.53 C.154 D.94 6.(精选考题·皖南八校模拟)已知点P 是抛物线y 2=2x 上的动点,点P 到准线的距离为d ,点A (7 2 ,4),则|PA |+d 的最小值是( ) A.7 2 B .4 C.9 2 D .5

二、填空题(本大题共3个小题,每小题6分,共18分) 7.经过点M (10,83),渐近线方程为y =±1 3 x 的双曲线的方程为________. 8.抛物线C 的顶点在坐标原点,对称轴为y 轴,若过点M (0,1)任作一条直线交抛物线C 于A (x 1,y 1),B (x 2,y 2)两点,且x 1·x 2=-2,则抛物线C 的方程为________. 9.已知以坐标原点为顶点的抛物线C ,焦点在x 轴上,直线x -y =0与抛物线C 交于A 、B 两点.若P (2,2)为AB 的中点,则抛物线C 的方程为________. 三、解答题(本大题共3个小题,共46分) 10.(本小题满分15分)(精选考题·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率e =1 2, 且椭圆经过点N (2,-3). (1)求椭圆C 的方程; (2)求椭圆以M (-1,2)为中点的弦所在直线的方程. 11.(本小题满分15分)(2009·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为3 3,过右 焦点F 的直线l 与C 相交于A 、B 两点,当l 的斜率为1时,坐标原点O 到l 的距离为 22 . (1)求a ,b 的值; (2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP =OA +OB 成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由. 12.(本小题满分16分)如图,直线l :y =3(x -2)和双曲线C :x 2 a 2- y 2 b 2 =1(a >0,b >0)交于A 、B 两点,且|AB |=3,又l 关于直线l 1:y =b a x 对称的直线l 2与x 轴平行. (1)求双曲线C 的离心率; (2)求双曲线C 的方程.

高考数学专题复习:双曲线(含解析)

【学习目标】 1.理解双曲线的定义、几何图形和标准方程以及它的简单几何性质. 2.理解数形结合的思想. 3.了解双曲线的实际背景及其简单应用. 【高考模拟】 一、单选题 1.设、分别是双曲线C:的左右焦点,点在双曲线C的右支上,且,则() A. B. C. D. 【答案】B 【解析】 【分析】 根据双曲线的性质求出c的值,结合向量垂直和向量和的几何意义进行转化求解即可. 【详解】

【点睛】 本题主要考查双曲线性质的意义,根据向量垂直和向量和的几何意义是解决本题的关键. 2.设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点, , ,, 为坐标原点,则 A . B . C . D . 【答案】D 【解析】 【分析】 先求出双曲线的方程为,再求出点P 的坐标,最后求 . 【详解】 【点睛】 (1)本题主要考查双曲线的几何性质和向量的数量积运算,考查双曲线方程的求法,意在考查学生对这些

知识的掌握水平和分析推理计算能力.(2) 双曲线的通径为. 3.已知直线的倾斜角为,直线与双曲线()的左、右两支分别交于、两点,且、都垂直于轴(其中、分别为双曲线的左、右焦点),则该双曲线的离心率为() A. B. C. D. 【答案】D 【解析】 【分析】 根据题意设点,,则,又由直线的倾斜角为,得,结合点在双曲线上,即可求出离心率. 【详解】 直线与双曲线的左、右两支分别交于、两点,且、都垂直于轴, 根据双曲线的对称性,设点,, 则,即,且, 又直线的倾斜角为, 直线过坐标原点,, ,整理得,即,解方程得,(舍) 故选D. 【点睛】 本题考查双曲线的几何性质、直线与双曲线的位置关系及双曲线离心率的求法,考查化简整理的运算能力和转化思想,属于中档题. 圆锥曲线离心率的计算,常采用两种方法: 1、通过已知条件构建关于的齐次方程,解出. 根据题设条件(主要用到:方程思想,余弦定理,平面几何相似,直角三角形性质等)借助之间的关系,得到关于的一元方程,从而解得离心率.

高考数学总复习专题102双曲线

专题10.2 双曲线 【三年高考】 1. 【2017高考江苏】在平面直角坐标系xOy 中,双曲线2213 x y -=的右准线与它的两条渐 近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ . 2. 【2016高考江苏】在平面直角坐标系x Oy 中,双曲线22 173 x y -=的焦距是 ▲ . 【答案】210 【解析】 试题分析:222227,3,7310,10,2210a b c a b c c ==∴=+=+=∴=∴=.故答案应 填:210 【考点】双曲线性质 【名师点睛】本题重点考查双曲线几何性质,而双曲线的几何性质与双曲线的标准方程息息相 关,明确双曲线标准方程中各个量的对应关系是解题的关键,22 221(0,0)x y a b a b -=>>揭示焦 点在x 轴,实轴长为2a ,虚轴长为2b ,焦距为2222c a b =+,渐近线方程为b y x a =±,离心率 为22c a b a a +=. 2.【2012江苏,理8】在平面直角坐标系xOy 中,若双曲线 22 214 x y m m -=+的离心率为5,则m的值为__________. 【答案】2 【解析】根据双曲线方程的结构形式可知,此双曲线的焦点在x轴上,且a2=m ,b2=m2+4, 故c 2=m 2+m +4,于是222 224 (5)c m m e a m ++===,解得m=2,经检验符合题意. 4.【2017课标II ,理9】若双曲线C:22 221x y a b -=(0a >,0b >)的一条渐近线被圆 () 2 224x y -+=所截得的弦长为2,则C 的离心率为( ) A .2 B. 3 C . 2

椭圆、双曲线、抛物线专题训练(一)

椭圆、双曲线、抛物线专题训练(一)(2012年2月27日) 一、选择题(每小题6分,共计36分) 1.(2011·安徽高考)双曲线2x 2-y 2=8的实轴长是( ) A .2 B .2 2 C .4 D .4 2 2.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( ) A. 6 B. 5 C.62 D.52 3.在抛物线y 2=4x 上有点M ,它到直线y =x 的距离为42,如果点M 的坐标为(m ,n )且 m >0,n >0,则m n 的值为( ) A.12 B .1 C.2 D .2 4.设椭圆 C 1的离心率为513 ,焦点在x 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( ) A.x 242-y 232=1 B.x 2132-y 252=1 C.x 232-y 242=1 D.x 2132-y 2 122=1 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP →=2PB →,则椭圆的离心率是( ) A.32 B.22 C.13 D.12 6.(2011·福建高考)设圆锥曲线Γ的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=4:3:2,则曲线Γ的离心率等于( ) A.12或32 B.23或2 C.12或2 D.23或32 二、填空题(每小题8分,共计24分) 7.(2011·课标全国卷)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴 上,离心率为22 .过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________. 8.(2011·江西高考)若椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,过点(1,12 )作圆x 2+y 2=1的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是________. 9.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32 ,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________. 三、解答题(共计40分) 10.(15分)设F 1、F 2分别为椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程. 11.(15分)如图4,已知椭圆C 1的中心在原点O ,长轴左、右端点M 、N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e .直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .

专题09 解析几何双曲线典型题专项训练(解析版)

专题09 解析几何 第二十三讲双曲线答案部分 1.【解析】如图所示,不妨设F为双曲线 22 :1 45 x y C-=的右焦点,P为第一象限点. 由双曲线方程可得,24 a=,25 b=,则223 c a b =+=, 则以O为圆心,以3为半径的圆的方程为229 x y +=. 联立 22 22 9 1 45 x y x y ?+= ? ? -= ? ? ,解得 5 3 y=±. 则 155 3 232 O P F S=??= △ .故选B. 2.【解析】因为双曲线 2 2 2 1(0) y x b b -=>经过点(3,4), 所以2 2 16 31 b -=,解得22 b=,即2 b. 又1 a=,所以该双曲线的渐近线方程是2 y x =±. 3.【解析】根据渐进线方程为0 x y ±=的双曲线,可得a b =,所以2 c a =,则该双曲线的离心率为2 c e a ==C. 4.【解析】由双曲线的对称性可得另一条渐近线的倾斜角为50?, 所以tan50 b a =?, 2 22 2 1 11t a n5 0s e c5 c o s5 c b e a a ==+=+?=?= ? . 故选D. 5.【解析】解法一:由题意,把 2 c x=代入222 x y a +=,得 2 2 2 4 c P Q a =-,

再由P Q O F =,得22 24 c a c -=,即222a c =, 所以2 22c a =,解得2c e a ==.故选A . 解法二:如图所示,由P Q O F =可知P Q 为以O F 为直径圆的另一条直径, 所以,22c c P ??± ??? ,代入222 x y a +=得222a c =, 所以2 22c a =,解得2c e a ==.故选A . 解法三:由P Q O F =可知P Q 为以O F 为直径圆的另一条直径,则12 22O P a O F ==?=,2c e a ==故选A . 6.【解析】 由题意知,1b =,215c a e a +===,解得12a =.故选D. 7.【解析】因为抛物线24y x =的焦点为F ,准线为l ,所以()1,0F ,准线l 的方程为1x =-. 因为l 与双曲线()22 2210,0x y a b a b -=>>的两条渐近线分别交于点A 和点B ,且 4A B O F =(为原点),所以2b AB a = ,1OF =,所以 24b a =,即2b a =, 所以225c a b a =+=,所以双曲线的离心率为5c e a ==. 故选D . 1.B 【解析】由题可知双曲线的焦点在x 轴上,因为222314 c ab =+=+=,

相关文档
最新文档