浅谈100MW汽轮发电机更换定子线圈经验探讨

浅谈100MW汽轮发电机更换定子线圈经验探讨
浅谈100MW汽轮发电机更换定子线圈经验探讨

汽轮发电机结构及原理

第四节汽轮发电机 汽轮发电机是同步发电机的一种,它是由汽轮机作原动机拖动转子旋转,利用电磁感应原理把机械能转换成电能的设备。 汽轮发电机包括发电机本体、励磁系统及其冷却系统等。 一、汽轮发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。汽轮发电机转子与汽轮机转子高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电流后,便建立一个磁场,这个磁场称主磁极,它随着汽轮发电机转子旋转。其磁通自转子的一个极出来,经过空气隙、定子铁芯、空气隙、进入转子另一个极构成回路。 根据电磁感应定律,发电机磁极旋转一周,主磁极的磁力线北装在定子铁芯内的U、V、W三相绕组(导线)依次切割,在定子绕组内感应的电动势正好变化一次,亦即感应电动势每秒钟变化的次数,恰好等于磁极每秒钟的旋转次数。 汽轮发电机转子具有一对磁极(即1个N极、一个S极),转子旋转一周,定子绕组中的感应电动势正好交变一次(假如发电机转子为P对磁极时,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次,这样发电机转子以每秒钟50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中性点)连在一起。绕组的首端引出线与用电设备连接,就会有电流流过,这个过程即为汽轮机转子输入的机械能转换为电能的过程。 二、汽轮发电机的结构 火力发电厂的汽轮机发电机皆采用二极、转速为3000r/min的卧式结构。发电机与汽轮机、励磁机等配套组成同轴运转的汽轮发电机组。 发电机最基本的组成部件是定子和转子。 为监视发电机定子绕组、铁芯、轴承及冷却器等各重要部位的运行温度,在这些部位埋置了多只测温元件,通过导线连接到温度巡检装置,在运行中进行监控,并通过微机进行显示和打印。

大型发电机结构说 图解

一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若

三相异步电动机定子线圈的缠绕方法

电动机绕组的结构主要分下列几种型式: 一、以定子绕组形成磁极来区分 定子绕组根据电动机的磁极数与绕组分布形成实际磁极数的关系,可分为显极式与庶极式两种类型。 1.显极式绕组 在显极式绕组中,每个(组)线圈形成一个磁极,绕组的线圈(组)数与磁极数相等。 在显极式绕组中,为了要使磁极的极性N和S相互间隔,相邻两个线圈(组)里的电流方向必须相反,即相邻两个线圈(组)的连接方式必须尾端接尾端,首端接首端(电工术语为“尾接尾、头接头”),也即反接串联方式。 2.庶极式绕组 在庶极式绕组中,每个(组)线圈形成两个磁极,绕组的线圈(组)数为磁极数的一半,因为另半数磁极由线圈(组)产生磁极的磁力线共同形成。 在庶极式绕组中,每个线圈(组)所形成的磁极的极性都相同,因而所有线圈(组)里的电流方向都相同,即相邻两个线圈(组)的连接方式应该是尾端接首端(电工术语为“尾接头”),即顺接串联方式。 二、以定子绕组的形状与嵌装布线方式区分 定子绕组根据线圈绕制的形状与嵌装布线方式不同,可分为集中式和分布式两类。 1.集中式绕组 集中式绕组一般仅有一个或几个矩形框线圈组成。绕制后用纱带包扎定型,再经浸漆烘干处理后嵌装在凸磁极的铁心上。直流电动机、通用电动机的激磁线圈,以及单相罩极电动机的主极绕组都采用这种绕组。 2.分布式绕组 采用分布式绕组的电动机定子没有凸性的极掌,每个磁极都是由一个或几个线圈按照一定的规律嵌装布线组成线圈组。根据嵌装布线排列的形式不同,分布式绕组又可分为同心式、迭式两类。 (1)同心式绕组同心式绕组是同一线圈组的几个大小不同矩形线圈,按同一中心的位置逐个嵌装排列成回字形的型式。同心式绕组又分单层与多层。一般单项电动机和部分小功率三相异步电动机的定子绕组采用这种型式。 (2)迭式绕组迭式绕组是所有线圈的形状大小完全相同(单双圈例外),分别以每槽嵌装一个线圈边,并在槽外端部逐个相迭均匀分布的型式。迭式绕组又分单层迭式和双层迭式两种。在每槽里只嵌一个线圈边的为单层迭式绕组,或称单迭绕组;每槽嵌两个属不同线圈组的线圈边(分上下层)为双层迭式绕组,或称双迭绕组。迭式绕组由于嵌装布线方式的变化不同,又有单双圈交叉布线排列与单双层混合布线排列之分;此外,从绕组端部的嵌装形状称为链形绕组、篮形绕组,实际上均属迭式绕组。一般三相异步电动机的定子绕组较多采用迭式绕组。 三、转子绕组 转子绕组基本上分鼠笼型和绕线型两类。鼠笼型结构较简单,其绕组过去为嵌铜条,目前多数采用浇铸铝,特殊的双鼠笼转子具有两组鼠笼条。绕线型转子绕组与定子绕组相同,也分迭式与另外一种波型绕组。波型绕组的外形与迭式绕组相似,但布线方式不同,它的基本元件不是整个线圈,而是单匝单元线圈,嵌装后需逐个焊接成线圈组。波形绕组一般应用于大型交流电动机的转子绕组或中大型直流电动机的电枢绕组。

发电机定子故障分析及修理方案 王碧涛

发电机定子故障分析及修理方案王碧涛 发表时间:2018-03-21T15:50:43.480Z 来源:《基层建设》2017年第35期作者:王碧涛彭仲 [导读] 摘要:随着经济的快速发展,对发电机的要求越来越高,发电机是发电厂重要的设备之一,它起着很大的作用。 宝钢集团广东省韶关钢铁有限公司广东韶关 512000 摘要:随着经济的快速发展,对发电机的要求越来越高,发电机是发电厂重要的设备之一,它起着很大的作用。目前我国发电机的发电厂大部分是采用国外的技术进行制造的。但是仍存在需要改善的地方。面对发电机的一些问题,我们要及时解决。对于正在使用的发电机,要进行定期的检查修理,防止发电机在正常工作过程中出现故障。提高发电厂的工作效率。 关键词:发电机定子;故障分析;修理方案 引言:发电机是发电厂最重要的主设备之一,其制造质量将影响到电厂机组的安全稳定运行,关系到国计民生。目前,我国新投产的机组部分是采用引进国外技术制造的国产600 MW发电机,其制造工艺方面存在一些不成熟之处。现对某发电机的定子故障情况进行分析,介绍其修理方案,以供参考。 1发电机故障现象及原因分析 某发电厂发电机采用某公司制造的 QFSN-600-2 型汽轮发电机,额定功率 600 MW,额定电压 20 k V,额定电流19 245 A,冷却方式为水氢氢冷(即定子线圈采用水内冷,转子线圈采用氢内冷,静子铁芯及其他构件采用氢气表面冷却)。出厂编号 60SH016。定子槽数为42 槽,每槽放置上下两层线棒,水内冷的定子线圈是由实心股线和空心导线交叉组成,空实心铜线之比为 1∶2,均包有玻璃丝绝缘层。上层线棒的导电截面积要比下层的大,上层由 4 排、每排 5 组空实股线组成,下层为 4 排 4 组。定子绕组为 60°相带三相、双层绕组,双路并联、Y 连接。定子线圈的空心导线内通过冷却水以冷却铜线,定子线圈对地绝缘采用 F 续绝缘。在线圈的槽内直线段和出槽口、端部均进行了表面防电晕处理。该发电机属新投产机组,因其他电厂同类型发电机组发现存在定子线棒端部放电隐患,在机组通过 168 h 试后一个月,该电厂对发电机进行了抽转子全面检查。发现定子线棒端部存在放电重大隐患,发电机定子汽励两端共有 9 处放电痕迹,分别为励端线棒槽号,A 相 23-24,B 相 10-11,B 29,只有经过维修这些,才能得到好转。 2定子下层线棒防晕结构 放电痕迹距离高阻防晕层末端(距离槽口 670~780 mm 位置)均位于端部的第一与第二道可调绑环间同相的上层线棒之间,放电痕迹在线棒下部的适形材料表面,其中最严重的放电痕迹是在两线棒间的绑扎带底部。在检查中发现发电机还存在手包绝缘未包实、表面覆盖漆脱落、水笼带灌胶未全部固化等问题。从修理时拆出的线棒上,也发现了线棒有多处放电痕迹。 3发电机现场修理方案及过程 3.1彻底检查发电机 如果仅仅对线棒表面局部修理,将达不到根本消除隐患的目的。局部修理方案,不能保证端部固定的整体性;只是处理了发电机的表面的痕迹问题,就没有对层间及下层线棒进行检查处理。为彻底消除隐患,就应该拆出并更换上层线棒修理,并对下层线棒进行试验检查,必要时进行修理。剥离上下层线棒头子的绝缘层和绝缘套,松掉上下层线棒卡箍并用热吹风机加热绝缘引水管两端,拆除上下层线棒的绝缘引水管,分离上下层线棒焊接接头。拆上层线棒端部支撑环,拆出上层线棒相关的端部本相和隔相垫块,拆可调绑环,敲出间隔垫块,拆出槽口垫块和槽内气隙隔板(挡风橡皮)等,拆槽楔,拔出侧面半导体垫条,抬出上层线棒。拆出层间垫条,清理端部和槽内,检查层间测温元件的情况,将两侧端部层间支撑管拆除,修磨残留杂物后清理端部。检查清理整个发电机定子(特别是定子槽内)。对未拆出的定子线棒做补晕处理。下层烘焙及补漆。对剩余未拆出的下层定子线棒做电气试验(直流耐压试验 50 k V,1 min;电晕试验,分相25 k V,不起晕;交流耐压试验 36 k V,1 min),试验合格后,清理整个发电机,并检查下线槽的槽内情况,准备重新下线。新线棒嵌入前要做相应试验并合格。(流量试验 0.1 MPa15 s,偏差不大于平均值的±10%;水压试验 1.5 MPa,2 h;交流耐压试验 57.5 k V,1 min;电晕试验,30 k V,不起晕)铁损试验合格后,嵌上层线棒。放层间垫条布置和端部层间支撑管水笼带预埋,检查测温元件注意水笼带出口应避开隔相位置。上层线棒下线,槽内临时支紧固定℃,拆除临时测温元件木制大封板,自然冷却至 40 ℃以下。拆去槽楔检查孔上纸带,检查层间测温元件,下层线圈与锥环间塞紧浸渍适形绳,清理发电机。进行修后的电气试验并合格(直流耐压试验 50 k V,1 min;分相 22 k V 起晕试验,不起晕;交流耐压试验 32.25 k V,1 min;定子端部固有频率测试和模态分析;铁损试验)。发电机的定子线棒修理中更换了上层 42 根线棒,修后各项试验合格。经过了约一个月的线棒修理工期后进行交接验收,进入到发电机穿转子恢复阶段。机组投运后发电机运行正常,定子线棒修理的质量良好。 3.2改用软化水 配氨系统改用软化水,以避免氨泵结垢等问题。由于氨系统结垢问题不仅影响动设备的运行和机械密封的使用,而且还会引起工艺系统管线以及喷雾器堵塞等,造成装置停工,处理难度较大。所以,对配氨系统改用软化水,完全避免了结垢的情况,保证了相关系统设备的长周期运行。 3.3加强检修管理和质量控制 检修过程中,要求做到叶轮背帽与叶轮之间、叶轮与轴套之间、轴套与轴之间的连续密封,提高轴套密封的可靠性,将介质与泵轴完全隔离,避免泵轴的腐蚀损坏。 4优化处理效果 由于机泵密封存在问题的原因比较多,经过不断的实践和优化,以及采取不同的对策等,目前泵用机械密封的使用情况已得到明显改善。从日常维修安装方面,安装更加容易,返工情况基本消除。机泵的运行工况得到改善,密封的使用周期明显延长,其中氨泵的使用时间超过 3 个月,其他机泵密封的使用时间超过 8 个月,密封维修成本明显降低。优化机泵工艺流程,增加回流副线,避免机泵长期小流量运行。通过改造机泵工艺流程,对于有小流量要求的泵,在出口增加回流副线,系统需要的流量通过回流线来调整,使一部分介质回流,从而保证机泵流量满足额定工况,使设备运行达到良好的状态,极大延长了设备的使用寿命。 结束语: 氨法脱硫装置中泵用机械密封选用弹簧密封时,密封形圈的选用非常关键,应避免使用包氟形圈,从经济性考虑,选用全包氟 O 形

水轮发电机定子线圈

水轮发电机定子线圈 采用环氧云母绝缘制成的新式大型水轮发电机定子绕组的预期寿命是50年以上[1]。最近一项与加拿大电气协会有关组织所赞助的对新式和老式绝缘系统的全球调查显示, 定子绕组在重新绕制前可正常运转50年[2]。但有一些迹象表明,在过去十多年所生产的发电机寿命是无法达到50年的。 决定定子绕组寿命的关键因素是被使用作为隔离高电压铜导体及定子铁芯的电气绝缘。比起定子绕组内其他的组成材料如铜或钢, 绝缘材料有较低的熔点和较弱的机械强度。结果是,随着运转时间的增长, 绝缘是最有可能发生老化及恶化,最终导致接地故障。另一个可能出现故障的是铜导体- 特别是线棒没有被牢靠的固定在线槽内(因此产生振动),或两个线棒间焊接品质不良。 遗憾的是,现在要对过去十年所生产的发电机定子绕组的预期寿命有相同或较低稳定度的统计进行证明还言之过早。然而, 在线局放测试[3]已被世界各地的发电公司采用, 侦测发电机运行中定子绕组可能发生的绝缘问题和连接问题。在说明近期水轮发电机的故障现象前,从数千台电机上采集的局放数据与老旧机组比较后,显示了定子绕组问题似乎是过去十年中较普遍发生的故障。最后, 讨论发电公司如何确保定子绕组的长期寿命。 局放量大小与电机制造年代的关系 在对数以千计的电动机和发电机所采集的在线局放数据分析后发现, 一些电机制造厂在过去十年所生产的电机定子绕组的局放量超过他们10年前所生产的电机定子绕组的局放量[4]。例如, 图1显示位于欧洲、北美和日本的大型电机制造商在不同年代生产的定子绕组局放量与生产年代的关系。这些电机包含了13-15kV的空冷型机组。这一数字显示,四家电机制造厂于2003年所出厂电机的局放量比1995年前出厂的电机局放量明显高出许多。而高的局放量通常代表了定子绕组绝缘正快速老化,同时存在电气接触不良的隐 患。高的局放幅值是对近期制造的电机定子一个值得关心的客观资讯。

60MW发电机定子线圈改造更换技术协议

60MW发电机定子线圈改造更换技术协议 我厂(以下简称甲方)QFS-60-2,容量60000KW,定子额定电压10500V,电流4124A,绝缘等级B级,由北京电力设备总厂制造的发电机,由于定子线圈绝缘老化及其它原因决定对线圈进行全部改造更换,经招标由哈尔滨电机厂电机修造厂(以下简称乙方)中标承担此项工作,为此特制定以下技术协议。 1.乙方对此次线圈的更换改造工作的质量标准,应按投标文件中规定遵循的质量标准执行,并符合电机制造相关的各项标准以及电力生产反事故措施的各项规定。 2.乙方应保证该发电机线圈改造更换后主要几何尺寸不变,绝缘等级为F级,制作全部线圈(84根)以及备品备件,使电机达到B级以上耐热等级要求。线圈制作可根据甲方现有备用线圈的形状和尺寸。满足原定子下线的安装尺寸。线圈的空心导线的连接按哈尔滨电机厂200MW的发电机的空心导线的连接结构,既在制作线圈时将水接头焊好,直接做水压试验和汽密试验。 3.乙方应制作较线模一套来检验原线圈尺寸的准确性,重新设计线圈的图纸。按重新设计的线圈图纸设计线圈的制作模具。 4.乙方应对发电机上下层线圈之间和线圈回水测温元件全部更换及测点接线板更换工作,采用PT100铂电阻测温元件。发电机槽内的测温元件的安装采用模盒式的方法,使元件保证安全。摆放的位置尽量保持原有的设计位置。发电机线圈、压板结构、支架、槽楔、测温元件和回路、发电机引出线、冷却水回路、汇水环等的制造、安装、装配、调试工作达到发电机的设计要求和现行国电集团和原国家电力公司反措要求的技术要求。 5.乙方应对发电机定子聚四氟乙烯引水管全部更换,更换的绝缘引水管采用哈尔滨电机厂现行的标准设计。上、下层线圈的汇水接头采用200MW发电机的形式。 6.乙方应对发电机定子出线侧环行引出线进行改造和更换。更换后的引出线能保证和原发电机母线桥铜排的软连接铜排的连接。并且确保相序与原来一致。采用T2铜管制作。 7.定子线棒拆除后乙方应对定子铁芯油污进行彻底清理,由甲方监造人员认可后方可进行新线棒下线工作。 8.定子线棒拆除后乙方对定子铁芯测温元件进行检查,对已损坏的测温元件乙方应与甲方协商重新布置的位置。 9.需监造的各项试验项目乙方应在试验进行前48小时通知甲方,乙方应出具文字性试验方 法、标准。 10.乙方使用的各项试验仪器应具备相应的检验合格证明,监造人员有权对检验报告进行查 阅,乙方应积极配合。 11.乙方更换的连接线的水接头应为哈尔滨电机厂水冷60MW发电机的水接头的形式。

测量发电机定子绕组的直流电阻原因及注意事项(正式)

编订:__________________ 单位:__________________ 时间:__________________ 测量发电机定子绕组的直流电阻原因及注意事项 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2832-38 测量发电机定子绕组的直流电阻原 因及注意事项(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 (1)测量原因 定子绕组的直流电阻包括线棒铜导体电阻、焊接头电阻及引线电阻二部分。测量发电机定子绕组的直流电阻可以发现:绕组在制造或检修中可能产生的连接错误、导线断股等缺陷。另外,由于工艺问题而造成的焊接头接触不良(如虚焊),特别是在运行中长期受电动力的作用或受短路电流的冲击后,使焊接头接触不良的问题更加恶化,进一步导致过热,而使焊锡熔化、焊头开焊。在相同的温度下,线棒铜导体及引线电阻基本不变,焊接头的质量问题将直接影响焊接头电阻的大小,进而引起整个绕组电路的变化,所以,测量整个绕组的直流电阻,基本上能了解焊接头的质

量状况。 (2)测量方法 测量发电机定子绕组直流电阻的方法有电压降法和电桥法两种。采用压降法测量时,须选用0.5级以上的电压表、电流表,通入定子绕组的直流电流应不超过其额定电流的20%。采用电桥法测量时,因同步发电机定子绕组的电阻很小,应选0.2级的双臂电桥。 (3)测量注意事项 ①测量时必须在电机各相引出端头上进行,不允许包括本相绕组的外部引线和中性点连接的铜排。 ②测量电压、电流接线点必须分开,电压接线点在绕组端头的内侧并尽量靠近绕组,电流接线点在绕组端头的外侧。

泡贯流式水轮发电机(6.3KV)框形定子线圈(F级)绝缘防晕规范

灯泡贯流式水轮发电机(6.3KV)框形定子线圈(F级) 绝缘防晕规范 1.范围 本标准适用于灯炮贯流式水轮发电机(6.3KV)框形定子线圈(F级)绝缘防晕。 2.规范性引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修必单(不包括勘误的内容)或修订版均不适用本标准,然而,鼓励根据本标准成协议的各方研究是否使用这些文件的最新版本。 ZLB/JSOI-228 水轮发电机(6.3KV)框形定子线圈(F级)绝缘防晕规范。 3.导线绝缘 导线采用DSBEB/155双涤纶玻璃丝包铜线或SBMB/155单玻璃丝包聚酰亚胺薄膜包铜线。 4.引线绝缘 引线绝缘采用0.14*25mm桐马环氧粉云母带9545-1H,包线厚度为1/2叠包4次,包线长度从距鼻20~25mm处起始,至斜边50~70mm处终止,首末端均应包成锥形。(如下图所示。 定子先去的槽部和端部绝缘(见下图和表一、表二) 端部表二单位:mm

注:(1)表中的绝缘厚度均至固化成型后尺寸; (2)槽部对地绝缘包10次半叠包;端部对地绝缘包10次半叠包,层数仅供参考; (3)槽部匝间绝缘包1次半叠包家一次平包;端部匝间绝缘包1次半叠包加一次平包。如导线采用SBMB/155单玻璃丝包聚酰亚胺薄膜包扁铜线,则匝间绝缘包一次半叠包(压后双面绝缘厚度为0.46mm)。 (4)槽部和端部对地绝缘半叠包层数根据绝缘带厚度偏差可以调整。 8.本规范规定定子线圈下线时,采用不吊把下线工艺。线圈与槽壁间隙用0.1*30mm 桐马低电阻玻璃布裹包线圈嵌入槽内填实。决定是否裹包及裹包层数,视线棒宽度和槽型尺寸而定,并尽可能在嵌入和起出时线圈不产生有害损害。原则上线圈嵌入槽内不产生自然下沉且槽电位低于5伏即可。 9.定子端部辅助绝缘处理及绑扎固定 9.1端部垫块采用3240环氧玻璃布板裹包2mm厚的予浸渍桐马胶涤纶适形毡(JNS-3)快填充端部间隙,再用0.3*30 硅烷类无碱无蜡玻纤带(ET300-30)绑扎固定,绑扎带浸环氧浸渍胶后使用(随浸随用),绑扎型式:平包及十字包4~5层抽紧,然后用hdj-16涂刷胶将绑扎部位涂刷一遍。下层线圈起把处可以不绑扎。 9.2端箍与先去接触部位均采用2*30予浸渍桐马胶涤纶适形毡(jns-3)条衬垫,再用φ5mm 涤玻绳绑扎固定,然后用hdj-16涂刷胶将绑扎的涤玻绳涂刷一遍。 9.3 槽楔两端用φ3mm涤玻绳扎固定,再用hdj-16涂刷胶涂刷一遍,以防止槽楔松动。 9.4 槽底垫条每端伸出铁心长5~10mm。 10. 下线结束后,定子铁心表面及线圈端部均喷F级9130环氧红磁漆2次; 11. 水轮发电机定子线圈槽部及duanbu 防晕结构材料与工艺。 适用电压等级:6.3KV 工艺:采用“一次成型”防电晕处理工艺,即主绝缘包扎后,在其外面包上防晕带,与主绝缘一起热压固化成型。 防晕材料: 11.1 防晕材料物理特征

发电机定子绕组交流耐压试验方案

#1发电机定子绕组交流耐压试验方案 1.#1发电机基本参数 型号:50WT21E—106 额定容量:415MV A 额定功率:352.75MW 额定电压:20KV 额定电流:11980A 频率:50Hz 功率因数:0.85 额定转速:3000г/min 冷却方式:水氢氢 励磁方式:静态励磁 试验目的 本次试验属于大修前试验,目的是判断发电机定子绕组绝缘水平,检查是否存在绝缘缺陷。 试验依据 GB755—2000(《旋转电机定额和性能》) GB/T7064—2002(《透平型同步电机技术要求》) 制造厂说明书 试验条件 办理发电机工作票,同时其他专业工作票交回。 发电机气体置换已经结束,转子在定子膛内。 发电机内冷水正常投运,水电导率符合运行标准,但尽可能低。 发电机绝缘电阻试验合格。 所有温度卡件拔出,测点等元件应短路接地,以防试验中损坏。 试验前要测试发电机电容量,核对补偿电感。 将发电机转子及封母接地,电流互感器短路接地。 球隙放电电压调整合格,保护水阻选用适当。 解除电源开关的漏电保护。 试验方法 试验接线图如图1所示。考虑现场试验电源容量的限制,需采用电抗器(接在被试发电机侧)进行无功补偿。选用35H、20KV的4只电抗器两串两并,并联后电抗值为35H。根据规程要求施加电压30KV。 6.试验步骤: 经检查确认被试品、绝缘电阻合格、内冷水水质符合要求后,方具备进行交流耐压试验的条件。拆除或断开所有与被试品相连的连线,按安全规程的有关规定做好全部安全措施。 按接线图检查试验接线应正确无误,试验设备布置合理,便于操作并符合安全规程中的有关规定。保护接地应牢固可靠。 检查试验设备及测量仪表应完好无损,放置平稳,调好零位。 检查确认无误后方可开始试验,升压从零开始,缓慢的升到规定的试验电压值,持续1分钟,并在耐压持续时间内,保持电压稳定。时间到后缓慢降下电压。 7.安全注意事项 经检查确认被试品、绝缘电阻试验已合格。 严格执行DL408—91《电业安全工作规程(发电厂和变电所电气部分)》中有关规定及现场的相关安全措施。 工作人员分工职责明确,精力集中。 现场设安全遮栏,并悬挂标示牌,准备必要的消防器材,加压点要与封母保持足够距离。 试验现场及发电机平台设专人监护,监听试品,并确认有无异常声。

汽轮发电机定子冲片的制造工艺研究

汽轮发电机定子冲片的制造工艺研究 摘要:针对汽轮发电机定子冲片制造现状,进行科学合理的分析,并详细介绍研究汽轮发电机定子冲片的制造工艺的重要性、影响汽轮发电机定子冲片运行效果的几个因素,如冲床结构、冲模间隙、冲片材料等,提出汽轮发电机定子冲片的制造工艺要点,希望能够给相关工作人员提供一定的参考与帮助。 关键词:汽轮发电机;定子冲片;制造工艺;冲床结构;冲片材料 在工业经济不断发展的今天,汽轮发电机在各大工业企业中的应用范围越来越广,为了保证汽轮发电机能够更加安全、可靠的运行,制造合理的定子冲片至关重要。定子冲片作为汽轮发电机中的重要组成部分,是保障汽轮发电机安全运行的基础,工业企业中的相关工作人员在实际工作中,要定期对汽轮发电机定子冲片进行全面检查,一旦发现汽轮发电机定子冲片出现运行故障,要及时措施进行处理。鉴于此,本文主要分析汽轮发电机定子冲片的制造工艺。 1研究汽轮发电机定子冲片的制造工艺的重要性 汽轮发电机在正常运行的过程当中,定子铁心占据非常重要的地位,定子铁心主要由扇形的定子冲片重叠碾压而成,为了有效降低汽轮发电机定子冲片的涡流损耗率,要求定子冲片具有特别高的绝缘电阻与机械强度。通过研究汽轮发电机定子冲片的制造工艺,能够帮助相关工作人员更好的了解汽轮发电机定子冲片制造流程,保证汽轮发电机定子冲片制造质量得到更好提升。与传统的汽轮发电机定子冲片制造工艺相比,现有的制造工艺更加先进,通过研究汽轮发电机定子冲片制造工艺,能够有效减少汽轮发电机定子冲片的运行损耗,保证定子冲片运行温度得到更好控制[1]。 除此之外,通过研究汽轮发电机定子冲片的制造工艺,能够帮助相关工作人员更好的了解汽轮发电机定子冲片制造要点,保证汽轮发电机更加安全的运行。由于汽轮发电机定子冲片制造难度较大,严重影响汽轮发电机定子铁心的正常运行,降低汽轮发电机的正常运行效率。因此,相关工作人员要选择合理的汽轮发电机定子冲片制造工艺,不断提升工业企业的整体经济效益。 2影响汽轮发电机定子冲片运行效果的几个因素 2.1冲床结构 汽轮发电机在正常运行的过程当中,如果定子铁心出现较大的故障,会严重影响汽轮发电机的安全性。汽轮发电机定子冲片内部的冲床结构比较复杂,在一定程度上增加了定子冲片的制造难度,为了保证汽轮发电机定子冲片制造质量得到更好提升,相关工作人员要结合定子冲床的结构特点,对原有的定子冲片制造工艺进行改进,保证汽轮发电机定子冲床结构更加稳定。 2.2冲模间隙 如果汽轮发电机定子冲模的间隙过大,会严重影响汽轮发电机的运行速率,如果定子冲模的间隙过小,则会降低冲床结构的稳定性。因此,相关工作人员要结合汽轮发电机定子冲床结构特点,严格控制定子冲模之间的距离。由于汽轮发电机内部具有比较复杂,在一定程度上增加了定子冲模间隙控制难度,相关工作人员在实际工作当中,要结合有关规定,妥善调整定子冲模之间的间距。 2.3冲片材料 由于汽轮发电机定子冲片材料质量不达标,会降低汽轮发电机的整体运行效

发电机定子线圈拆装工艺

发电机定子线圈拆装工艺 A.1.1 使用工器具的准备 A.1.1.1 常用工具 电工刀、克丝钳子、搬手、螺丝刀、铁锯、手锤、扁铲、游标卡尺、钢板尺、钢卷尺、内外卡钳、塞尺、千分尺。A.1.1.2 专用工具 大号螺丝刀、扁铲、扁刀、尖嘴钳子、平嘴钳子、大铁锤、铜锤、橡皮锤、腊木棒、焊锡锅、焊锡勺、大钳子、锡盒、灌锡铁盒、铁钩、钩针、下线板、紧线器、退槽楔工具等。 A.1.2 试验仪器 交流耐压试验仪器、自流电阻测量仪器。 A.1.3 拆线及抬出线棒 A.1.3.1 拆线前的标记与编号 A.1.3.1.1 每只线棒在两侧槽出口和槽中部共三处,用红漆画出齐口线。 A.1.3.1.2 按槽楔轴向的通风段,在铁芯上画出通风段的分界线,并标出槽楔通风孔的方向。 A.1.3.1.3 铁芯槽标注编号。 A.1.3.1.4 线棒及弓行引线按图纸书写编号。 A.1.3.1.5 所有带测温元件的线圈要做好特殊记号。 A.1.4 拆除端头云母盒

拆卸定子线圈进出口绝缘水管,用手锤敲击云母盒,使云母盒松动,然后取下云母盒。用扁铲、扁刀或螺丝刀等工具铲除环氧泥,满足焊开接头的要求。敲击云母盒时,用力不应过大,防止端部线圈及接头受力变形。 A.1.5 拆除端部绑绳、垫块 拆除端部各道绑绳时,首先用电工刀或扁刀把绑绳割断,割断时不能用力过大,不能滑偏以免损伤线棒主绝缘。口部垫块先取出中间楔块后再取出两侧的垫块以免楔块损伤绝缘,取端部垫块时注意不能损坏线棒绝缘。取出后的垫块要清理好,留着备用。 A.1.6 退出楔块 A.1.6.1 退出槽块应采用专用工具,用手锤和环氧玻璃布板将槽楔退出,手锤应采用铜锤,用力不应过大防止碰伤铁芯。 A.1.6.2 退出槽块应采用专用工具,用手锤和环氧玻璃布板将槽楔退出,手锤应采用铜锤,用力不应过大防止碰伤铁芯。 A.1.7 焊开线棒接头与弓行引线接头 A.1.7.1 首先将弓形引线固定支撑块拆除,并用红漆编号标注。 A.1.7.2 用扁刀、手铲、电工刀、螺丝刀等将手包绝缘扒开,然后用石棉布(石棉绳)将引线接头处主绝缘包扎好,其它部位用石棉布遮盖好,不能使溶焊渣溅到各处。焊前需彻底清理上下附近的易燃物,防止明火。

水轮发电机的构造

水轮发电机的构造 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1--水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。轴下端有连接水轮机的法兰,见图2。 图2--水轮发电机转子

发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3--水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,见图4。 图4--水轮发电机定子绕 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5--水轮发电机机墩、机座、下机架在机座上安装定子铁芯与定子线圈,见图6。 图6--水轮发电机的定子

转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。 图7--定子与转子安装在机座上 安装上机架,上机架中心安装有导轴承,防止发电机主轴晃动,使它稳定的处于中心位置。 图8--水轮机发电机未盖地板

水轮发电机组VPI定子线圈制造工艺研究

水轮发电机组VPI定子线圈制造工艺研究 水轮发电机组VPI型定子线圈为哈电公司首台厂内下线的水电VPI定子线圈,为波绕式结构,其额定电压为13.8kV,由于本产品采用VPI少胶整浸结构与常规水电产品在生产制造上存在差异,不能采用常规产品使用的成型模、热压模,经研究在工具和工艺方面做出调整:采用了专门针对VPI定子线圈的成型胶化模、烘压模具,改进铲头封焊结构,以保证生产出符合要求的线圈。 标签:水轮发电机;VPI;少胶整浸;真空压力 真空压力浸漆(Vacuum Pressure Immerge简称VPI)。VPI技术在国外被广泛应用,发展到今天其设备、工艺、材料等相关技术已经相当成熟。哈电公司VPI技术从无到有,填补了VPI技术空白,通过研究对制造工艺、材料选用、模具设计等多方面进行改进和提高。 1 定子线圈制造研究内容 1.1 导线模具工艺改进 (VPI型)定子在秘鲁成型胶化模的基础上进行改进,模具端部加装定侧铁与活侧铁,并且侧铁长度延伸至线圈绝缘末端位置,加装端部上压条,长度与侧铁长度相匹配,在端部定侧铁上及活侧铁上钻孔加装电热管加热方式对端部进行固化。 由于模具端部活侧铁引线R位置影响导线成型,所以提制模具时活侧铁采用可拆装结构,既保证不影响导线成型,又能在后序端部胶化和引线铲头时保证导线质量。(图2) 原成型胶化模以拉伸式成型模为基础,端部直线没有定位,本产品直线长度为2200mm,在端部加压时易造成直线变形,提前对成型胶化模进行改进,在模具直线位置加长活侧铁及定侧铁。(图3) 效果:端部固化更加充分,导线刚性得到提高,确保导线型线一致性,导线质量明显提高,从下线情况和电性能试验结果得到验证。 1.2 VPI定子线圈绝缘包扎研究 相对与传统多胶云母带包扎,VPI型定子线圈采用少胶云母带作为线圈主绝缘,少胶带与多胶带不同,其单位面积胶含量比多胶云母带低,韧性差,如包带盘张力及转速选择不当容易在云母带包扎过程中造成少胶带上的云母成片脱落、飞粉,影响最终的绝缘性能。线圈烘压时端部主要使用热缩带进行定型的效果与使用模具压型的效果还是有较大差异,造成端部尺寸不均匀。

大型发电机定子线圈带水测量介损方法

收稿日期:2009-03-20;修回日期:2009-09-04 作者简介:张建忠(1963—),男,河北鹿泉人,高级工程师,从事电机试验研究工作。E -mail:hbdyyzjz@https://www.360docs.net/doc/6f968224.html, 电机老化鉴定的相关要求,对于介损的测量应该在发电机的额定电压下进行。而目前的高压介损电桥最大输出电压不超过10kV ,输出电流一般不大于 200mA ,发电机对地电容的特殊性使得线圈介损测 量不能使用介损电桥的正接线方法。另外,大型水内冷发电机定子线圈中带水,测量的介质损耗中含有水的损耗,因此对介损测量的结果有很大影响。实现大容量发电机定子线圈带水测量介损,可以作为确定线圈是否老化的重要依据,通过综合因素决定是否更换线圈,达到使机组能够安全、稳定运行目的,避免机组乃至电网的重大事故发生,具有较好的经济效益和社会效益。 1发电机定子线圈介损测量原理 在交流电压作用下,发电机线圈绝缘的等值电 路由通过容性回路C X 的电容电流分量I CX 及通过电阻回路R X 的有功电流分量I RX 。通常,I CX 远远大于 I RX ,介质损失角δ较小。 介质中的功率损耗: P =UI RX =UI CX tan δ=U 2ωC X tan δ (1)U C 代表气隙开始放电时的外加电压,从tan δ 增加的陡度可反映出老化的程度。但对于电压超过 10kV 的发电机来说,电桥电压(2500~10000V )常 远低于发电机的工作电压,因此tan δ测量难以反映出工作电压下绝缘内部的局部放电性缺陷。 2 大型水内冷发电机定子线圈介损测量 2.1 线圈测量介损难点及改进方法 (1)由于大型发电机对地电容较大,通常在0.20μF 以上,且发电机出线额定电压比电桥输出电压值高许多,受电桥本身的升压设备容量所限,其对发电机施加的电压只能加到3kV 左右。要解决此问题,一是提高电桥的输出电压和容量,使用反接线的方法测量,此方法将使电桥进行全面的绝缘升级,并提高 标准电容器的电压,使测量设备变得极其庞大,对现 图1tan δ~U 变化曲线 Fig.1The curve of tan δ~U

大型发电机结构说图解

大型发电机 一、发电机概述 发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机可分为直流发电机和交流发电机,交流发电机又可分为同步发电机和异步发电机(很少采用) ,还可分为单相发电机与三相发电机。 发电机通常由定子、转子、端盖及轴承等部件构成。定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。 二、发电机的工作原理 按照电磁感应定律,导线切割磁力线感应出电动势,这是发电机的基本工作原理。图1为同步发电机的工作原理图。发电机转子与汽轮机转子为同轴连接,当蒸汽推动汽轮机高速旋转时,发电机转子随着转动。发电机转子绕组内通入直流电源后,便建立了一个磁场,这个磁场有一对主磁极,它随着汽轮机发电机转子旋转。磁通自转子的一个极(N级)出来,经过空气隙、定子铁芯、空气隙,进入转子另一个极(S极)构成回路。 图1 同步发电机工作原理图2 发电机出线的接线发电机转子具有一对磁极,转子旋转一周,定子绕组中感应电动势正好交变一次(假如发电机转子为P对磁极是,转子旋转一周,定子绕组中感应电动势交变P次)。当汽轮机以每分钟3000转旋转时,发电机转子每秒钟要旋转50周,磁极也要变化50次,那么在发电机定子绕组内感应电动势也变化50次。这样,发电机转子以每秒50周的恒速旋转,在定子三相绕组内感应出相位不同的三相交变电动势,即频率为50Hz的三相交变电动势。这时若将发电机定子三相绕组引出线的末端(即中心点)连在一起,绕组的首端引出线与用电设备相连,就会有电流流过,如图2所示。 三、发电机的结构 图3 大型发电机基本结构 目前我国热力发电厂的发电机皆采用二极、转速为3000r/m的卧式结构。如图4所示,发电机最基本的组成部件是定子和转子。 图4 300MW汽轮发电机组侧视图 1-发电机主体;2-主励磁机;3-永磁副励磁机;4-气体冷却器;5-励磁机轴承;6-碳刷架隔音罩;7-电机端盖;8-连接汽轮机背靠轮;9-电机接线盒;10-电路互感器;11-引出线;12测温引线盒;13-基座定子由铁芯和定子绕组构成,固定在机壳(座)上,转子由轴承支撑置于定子铁芯中央,

水轮发电机构造

水轮发电机的构造 本课件2012年8月重新编辑(将图片黑底色更换为白色) 水轮机的转速都比较低,特别是立式水轮机,为了能发出50Hz的交流电,水轮发电机采用多对磁极结构,对于每分钟120转的水轮发电机,需要25对磁极。由于过多磁极不易看清结构,本课件介绍一个有12对磁极的水轮机发电机模型。 水轮发电机的转子采用凸极式结构,图1是发电机的磁轭与磁极,磁极安装在磁轭上,磁轭是磁极磁力线的通路,发电机模型有南北相间的24个磁极,每个磁极上都绕有励磁线圈,励磁电源由安装在主轴端头的励磁发电机提供,或由外部的晶闸管励磁系统提供(由集电环向励磁线圈供电)。 图1 水轮发电机转子有多对磁极 磁轭安装在转子支架上,在转子支架中心安有发电机主轴,在主轴的上端头安装有励磁发电机或集电环。见图2。

图2 水轮发电机转子 发电机定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽, 用来嵌放定子线圈,见图3。 图3 水轮发电机定子铁芯 定子线圈嵌放在定子槽内,组成三相绕组,每相绕组由多个线圈组成,按一定规律排列,

见图4。 图4 水轮发电机定子绕组 水轮发电机安装在由混凝土浇筑的机墩上,在机墩上安装机座,机座是定子铁芯的安装基座,也是水轮发电机的外壳,在机座外壳安装有散热装置,降低发电机冷却空气的温度;在机墩上还安装下机架,下机架有推力轴承,用来安装发电机转子,推力轴承可承受转子的重量与振动、冲击等力。见图5。

图5 水轮发电机机墩、机座、下机架 在机座上安装定子铁芯与定子线圈,见图6。 图6 水轮发电机的定子 转子插在定子中间,与定子有很小间隙,转子由下机架的推力轴承支撑,可以自由旋转,见图7。

发电机定子绕组的直流电阻

测量原因及注意事项 (1)测量原因 定子绕组的直流电阻包括线棒铜导体电阻、焊接头电阻及引线电阻二部分。测量发电机定子绕组的直流电阻可以发现: 绕组在制造或检修中可能产生的连接错误、导线断股等缺陷。 另外,由于工艺问题而造成的焊接头接触不良(如虚焊),特别是在运行中长期受电动力的作用或受短路电流的冲击后,使焊接头接触不良的问题更加恶化,进一步导致过热,而使焊锡熔化、焊头开焊。在相同的温度下,线棒铜导体及引线电阻基本不变,焊接头的质量问题将直接影响焊接头电阻的大小,进而引起整个绕组电路的变化,所以,测量整个绕组的直流电阻,基本上能了解焊接头的质量状况。 (2)测量方法 测量发电机定子绕组直流电阻的方法有电压降法和电桥法两种。采用压降法测量时,须选用 0.5级以上的电压表、电流表,通入定子绕组的直流电流应不超过其额定电流的20%。 采用电桥法测量时,因同步发电机定子绕组的电阻很小,应选 0.2级的双臂电桥。 (3)测量注意事项 ①测量时必须在电机各相引出端头上进行,不允许包括本相绕组的外部引线和中性点连接的铜排。 ②测量电压、电流接线点必须分开,电压接线点在绕组端头的内侧并尽量靠近绕组,电流接线点在绕组端头的外侧。

③发电机定子绕组的电感量较大,当采用压降法测量时,必须先合上电源开关,当电流稳定后,再搭接上电压表,同时读取电压、电流值。断开时,应先断开电压表,再断开电流回路。 当采用双臂电桥测量时,必须先按下电源按钮,待电流稳定后(靠经验),再按下检流计按钮进行测量,测完后,必须先断开检流计按钮,再松开电源按钮。若违反上述操作顺序,则可能因绕组自感电动势过大,而损坏电桥。 ④必须准确测量绕组的温度。若温度偏差为1℃,会给电阻带来 0.4%的误差,容易造成误判断。因此,要求被测绕组的温度必须处于稳定冷状态,电机绕组表面温度与周围的空气温度之差应在±3~C之内,运行电机停机后到测量时约需相隔48h。为了加速冷却,在条件允许的情况下,发电机在退出励磁后,可空转一段时间后再停机,必须用经校准后的酒精温度计进行测量,不能使用水银温度计,以防破损后水银滚人铁芯,影响铁芯绝缘相通风。 温度计应不少于6支,分别置于绝缘的端部和槽部,若测量槽部的温度困难,可测定子铁芯通风孔和齿部表面温度,温度计应紧贴测点表面,并用绝缘材料盖好,放置时间不少于15min。对装有测量进口风温温度计及定子埋人式温度计的,需同时测量。将各温度测量数据的平均值作为绕组的温度。⑤为了避免因测量仪表的不同引起误差,各次测量应尽量使用同一电桥或电压、电流表。 ⑥采用压降法测量时,应在三个不同电流值下测量计算电阻值,取其平均电阻值作为被测电阻值。每次测量电阻值与平均电阻值之差,不得超过±5%。 ⑦发电机定子绕组的电阻值很小,交接试验标准和预防性试验规程中所规定的允许误差也很小,所以测量时必须非常谨慎仔细,否则将引起不允许的测量误差,导致判断错误。(

相关文档
最新文档