berkley 半导体工艺讲义15--湿法刻蚀

半导体工艺主要设备大全

清洗机超音波清洗机是现代工厂工业零件表面清洗的新技术,目前已广泛应用于半导体硅 片的清洗。超声波清洗机“声音也可以清洗污垢”——超声波清洗机又名超声波清洗器,以其洁净的清洗效果给清洗界带来了一股强劲的清洗风暴。超声波清洗机(超声波清洗器)利用空化效应,短时间内将传统清洗方式难以洗到的狭缝、空隙、盲孔彻底清洗干净,超声波清洗机对清洗器件的养护,提高寿命起到了重要作用。CSQ 系列超声波清洗机采用内置式加热系统、温控系统,有效提高了清洗效率;设置时间控制装置,清洗方便;具有频率自动跟踪功能,清洗效果稳定;多种机型、结构设计,适应不同清洗要求。CSQ 系列超声波清洗机适用于珠宝首饰、眼镜、钟表零部件、汽车零部件,医疗设备、精密偶件、化纤行业(喷丝板过滤芯)等的清洗;对除油、除锈、除研磨膏、除焊渣、除蜡,涂装前、电镀前的清洗有传统清洗方式难以达到的效果。恒威公司生产CSQ 系列超声波清洗机具有以下特点:不锈钢加强结构,耐酸耐碱;特种胶工艺连接,运行安全;使用IGBT 模块,性能稳定;专业电源设计,性价比高。反渗透纯水机去离子水生产设备之一,通过反渗透原理来实现净水。 纯水机清洗半导体硅片用的去离子水生产设备,去离子水有毒,不可食用。 净化设备主要产品:水处理设备、灌装设备、空气净化设备、净化工程、反渗透、超滤、电渗析设备、EDI 装置、离子交换设备、机械过滤器、精密过滤器、UV 紫外线杀菌器、臭氧发生器、装配式洁净室、空气吹淋室、传递窗、工作台、高校送风口、空气自净室、亚高、高效过滤器等及各种配件。 风淋室:运用国外先进技术和进口电器控制系统, 组装成的一种使用新型的自动吹淋室.它广 泛用于微电子医院制药生化制品食品卫生精细化工精密机械和航空航天等生产和科研单位,用于吹除进入洁净室的人体和携带物品的表面附着的尘埃,同时风淋室也起气的作用 防止未净化的空气进入洁净区域,是进行人体净化和防止室外空气污染洁净的有效设备. 抛光机整个系统是由一个旋转的硅片夹持器、承载抛光垫的工作台和抛光浆料供给装置三大部分组成。化学机械抛光时,旋转的工件以一定的压力压在旋转的抛光垫上,而由亚微米或纳米磨粒和化学溶液组成的抛光液在工件与抛光垫之间流动,并产生化学反应,工件表面形成的化学反应物由磨粒的机械作用去除,即在化学成膜和机械去膜的交替过程中实现超精密表面加工,人们称这种CMP 为游离磨料CMP 。 电解抛光电化学抛光是利用金属电化学阳极溶解原理进行修磨抛光。将电化学预抛光和机械精抛光有机的结合在一起,发挥了电化学和机构两类抛光特长。它不受材料硬度和韧性的限制,可抛光各种复杂形状的工件。其方法与电解磨削类似。导电抛光工具使用金钢石导电锉或石墨油石,接到电源的阴极,被抛光的工件(如模具)接到电源的阳极。 光刻胶又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。光刻胶广泛用于印刷电路和集成电路的制造以及印刷制版等过程。光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。基于感光树脂的化学结构,光刻胶可以分为三种类型。①光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发 单体聚合,最后生成聚合物,具有形成正像的特点。②光分解型,采用含有叠氮醌类化合

反应离子刻蚀技术的原理

反应离子刻蚀技术的原理-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频 Author: 刘晓明 from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。 [attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特

干法刻蚀工艺

干法刻蚀工艺 干法刻蚀工艺可分为物理性刻蚀与化学性刻蚀两种方式。物理性刻蚀是利用辉光放电将气体(如氩)电离成带正电的离子,再利用偏压将离子加速,溅击在被刻蚀物的表面而将被刻蚀物的原子击出,该过程完全是物理上的能量转移,故称为物理性刻蚀。其特色在于,具有非常好的方向性,可获得接近垂直的刻蚀轮廓。但是由于离子是全面均匀地溅射在芯片上,所以光刻胶和被刻蚀材料同时被刻蚀,造成刻蚀选择性偏低。同时,被击出的物质并非挥发性物质,这些物质容易二次沉积在被刻蚀薄膜的表面及侧壁上。因此,在超大规模集成化制作工艺中,很少使用完全物理方式的干法刻蚀方法。 化学性刻蚀或称为等离子体刻蚀( PLASMA Etching,PE),是利用等离子体将刻蚀气体电离并形成带电离子、分子及反应性很强的原子团,它们扩散到被刻蚀薄膜表面后与被刻蚀薄膜的表面原子反应生成具有挥发性的反应产物,并被真空设备抽离反应腔。因这种反应完全利用化学反应,故称为化学性刻蚀。这种刻蚀方式与前面所讲的湿法刻蚀类似,只是反应物与产物的状态从液态改为气态,并以等离子体来加快反应速率。因此,化学性干法刻蚀具有与湿法刻蚀类似的优点与缺点,即具有较高的掩膜/底层的选择比及等向性。鉴于化学性刻蚀等向性的缺点,在半导体工艺中,只在刻蚀不需要图形转移的步骠(如光刻胶的去除)中应用纯化学刻蚀方法。 最为广泛使用的方法是结合物理性的离子轰击与化学反应的反应离子刻蚀( RIE)。这种方式兼具非等向性与高刻蚀选择比的双重优点。刻蚀的进行主要靠化学反应来实现,加入离子轰击的作用有两方面。 1)破坏被刻蚀材质表面的化学键以提高反应速率。 2)将二次沉积在被刻蚀薄膜表面的产物或聚合物打掉,以使被刻蚀表面能充分与刻蚀气体接触。由于在表面的二次沉积物可被离子打掉,而在侧壁上的二次沉积物未受到离子的轰击,可以保留下来阻隔刻蚀表面与反应气体的接触、使得侧壁不受刻蚀,所以采用这种方式可以获得非等向性的刻蚀效果。 当应用于法刻蚀时,主要应注意刻蚀速率、均匀度、选择比及刻蚀轮廓等因素。

半导体工艺 干法刻蚀 铝刻蚀

干法刻蚀之铝刻蚀 在集成电路的制造过程中,刻蚀就是利用化学或物理方法有选择性地从硅片表面去除不需要的材料的过程。从工艺上区分,刻蚀可以分为湿法刻蚀和干法刻蚀。前者的主要特点是各向同性刻蚀;后者是利用等离子体来进行各向异性刻蚀,可以严格控制纵向和横向刻蚀。 干法的各向异性刻蚀,可以用表面损伤和侧壁钝化两种机制来解释。表面损伤机制是指,与硅片平行的待刻蚀物质的图形底部,表面的原子键被破坏,扩散至此的自由基很容易与其发生反应,使得这个方向的刻蚀得以持续进行。与硅片垂直的图形侧壁则因为表面原子键完整,从而形态得到保护。侧壁钝化机制是指,刻蚀反应产生的非挥发性的副产物,光刻胶刻蚀产生的聚合物,以及侧壁表面的氧化物或氮化物会在待刻蚀物质表面形成钝化层。图形底部受到离子的轰击,钝化层会被击穿,露出里面的待刻蚀物质继续反应,而图形侧壁钝化层受到较少的离子轰击,阻止了这个方向刻蚀的进一步进行。 在半导体干法刻蚀工艺中,根据待刻蚀材料的不同,可分为金属刻蚀、介质刻蚀和硅刻蚀。金属刻蚀又可以分为金属铝刻蚀、金属钨刻蚀和氮化钛刻蚀等。目前,金属铝作为连线材料,仍然广泛用于DRAM和flash等存储器,以及以上的逻辑产品中。本文着重介绍金属铝的刻蚀工艺。

金属铝刻蚀通常用到以下气体:Cl2、BCl3、Ar、 N2、CHF3和C2H4等。Cl2作为主要的刻蚀气体,与铝发生化学反应,生成的可挥发的副产物AlCl3被气流带出反应腔。BCl3一方面提供BCl3+,垂直轰击硅片表面,达到各向异性的刻蚀。另一方面,由于铝表面极易氧化成氧化铝,这层自生氧化铝在刻蚀的初期阻隔了Cl2和铝的接触,阻碍了刻蚀的进一步进行。添加BCl3 则利于将这层氧化层还原(如方程式1),促进刻蚀过程的继续进行。 Al2O3 + 3BCl3→ 2AlCl3 + 3BOCl (1) Ar电离生成Ar+,主要是对硅片表面提供物理性的垂直轰击。 N2、CHF3和C2H4是主要的钝化气体,N2与金属侧壁氮化产生的AlxNy,CHF3和C2H4与光刻胶反应生成的聚合物会沉积在金属侧壁,形成阻止进一步反应的钝化层。 一般来说,反应腔的工艺压力控制在6-14毫托。压力越高,在反应腔中的Cl2浓度越高,刻蚀速率越快。压力越低,分子和离子的碰撞越少,平均自由程增加,离子轰击图形底部的能力增强,这样刻蚀反应速率不会降低甚至于停止于图形的底部。

湿法刻蚀毕业论文

苏州市职业大学 毕业设计(论文)说明书 设计(论文)题目太阳能电池片湿刻蚀的应用系电子信息工程系专业班级08电气2 姓名李华宁 学号087301218 指导教师孙洪 年月日

太阳能电池片湿刻蚀的应用 摘要 湿刻就是湿法刻蚀,它是一种刻蚀方法,主要在较为平整的膜面上刻出绒面,从而增加光程,减少光的反射,刻蚀可用稀释的盐酸等。湿法刻蚀是将刻蚀材料浸泡在腐蚀液内进行腐蚀的技术。它是一种纯化学刻蚀,具有优良的选择性,刻蚀完当前薄膜就会停止,而不会损坏下面一层其他材料的薄膜。着重研究各种化学品的流量对电池片刻蚀深度的影响。首先查看各种资料,掌握本课题相关的知识:通过对氢氟酸,硝酸,盐酸,氢氧化钠等化学品流量,温度,湿度等对太阳能电池片的影响。通过技术软件分析,优化工艺参数,得到最优参数。 关键词:湿法刻蚀;腐蚀;流量;太阳能电池

Solar cell wet etching application Abstract Wet carved is wet etching, it is a kind of etching method, mainly in the relatively flat membrane surface, thereby increasing suede carving out process, reduce light light reflection, etching available dilute hydrochloric acid etc. Wet etching is will etching materials soaked in a mordant within the corrosion of technology. It is a kind of pure chemical etching, has excellent selectivity, etching the current film will cease, and won't damaged following a layer of film to other materials. Research on various chemicals to the flow the influence of battery piece etching depth. First check all kinds of material, grasps this topic relevant knowledge: by hydrofluoric acid, nitric acid, hydrochloric acid, sodium hydroxide etc chemicals flow, temperature, humidity and so on the influence of solar cell. Through technology software analysis, optimization of process parameters, obtain optimal parameters. Keyword:wet etching; Corrosion; Flow; Solar battery

太阳能电池湿法刻蚀工艺指导书

设计文件名称Edge Isolation & PSG Selective Emitter工 艺操作规程 T-IS-026 产品型号名称156×156多晶绒面电池共6页第1页1、工艺目的: 通过化学反应,将硅片上下表面的PN结刻断,以达到正面与背面绝缘的目的;另外经过化学反应,刻蚀掉未被蜡覆盖的硅片表面的一定深度,做选择性发射极;最后用BDG去除inkjet 工序中的喷涂的层蜡,用KOH药液去除硅片表面的多孔硅;同时用HF去除表面的磷硅玻璃层。 2、设备及工具: Edge Isolation & PSG Selective Emitter 、电子天平、PVC手套、口罩、防护服、防护眼罩、防护套袖、橡胶手套、防酸碱胶鞋、GP Solar电阻测试仪(边缘电阻)、浓度分析仪等。 3、适用范围 本工艺适用于Edge Isolation & PSG Selective Emitter。 4、职责 本工艺操作规程由工艺工程师负责调试、修改、解释。 5、材料: 合格的多晶硅片(INKJET后)、HF(49%,电子级,工作压力3-5bar, KOH(49%,电子级,工作压力3-5bar)、HNO 3 (65%,电子级,工作压力3-5bar),DI水(工作压力3-5bar)、压缩空气(工作压力6-7bar,除油,除水,除粉尘), Butyldiglycol(2一(2一丁氧乙氧基)乙醇)(BDG)(100%,电子级,工作压力3-5bar), 冷却水(入水:工作压力3-4bar,最大入水温度25°C,出水工作压力:最大2bar),新鲜空气(Fresh air用于旋转器腔室)(工作压力100Pa), 乙二醇(制冷机)。 6、工艺描述: 6.1、工艺条件:环境温度:+ 22°C to + 24°C;环境湿度: 45 to 65 % RH at 24°C;

刻蚀工艺

硅片工艺程
集成电路工艺之
Materials
IC Fab Metallization CMP Dielectric deposition Test
Wafers
刻蚀
Thermal Processes Masks
Implant
Etch PR strip
Packaging
Photolithography Design
Final Test
刻蚀
1、基本介绍 2、湿法刻蚀 3、干法刻蚀 4、刻蚀工艺
刻蚀的定义
基于光刻技术的腐蚀:刻蚀 湿法称腐蚀?干法称刻蚀? 将光刻胶上的IC设计图形转移到硅片 表面 腐蚀未被光刻胶覆盖的硅片表面,实 现最终的图形转移 化学的,物的或者两者的结合

栅极光刻对准
栅极光刻掩膜
光刻胶 多晶硅
STI P-Well
USG
栅极光刻曝光
Gate Mask
显影/后烘/检验
Photoresist Polysilicon STI P-Well USG STI
PR Polysilicon USG P-Well

多晶硅刻蚀(1)
Polysilicon
多晶硅刻蚀(2)
Gate Oxide Polysilicon
PR STI P-Well USG STI
PR USG P-Well
去除光刻胶
Gate Oxide Polysilicon
离子注入
Gate Oxide Dopant Ions, As Polysilicon
+
STI P-Well
USG
STI
n+ P-Well
n+
USG Source/Drain

太阳能电池-湿法刻蚀工艺指导书

蒈 Edge Isolation & PSG Selective Emitter 工艺操作规程 莁产品型号名称 賺156X 156多晶绒面电池 薆共6页 蒄第 腿设计文件名称 羅 T-IS-026

肂1、工艺目的: 节通过化学反应,将硅片上下表面的PN结刻断,以达到正面与背面绝缘的目的;另外经过 化学反应,刻蚀掉未被蜡覆盖的硅片表面的一定深度,做选择性发射极;最后用BDG去除inkjet工序中的喷涂的层蜡,用KOH药液去除硅片表面的多孔硅;同时用HF去除表面的磷硅玻璃层。 罿2、设备及工具: 肇Edge Isolation & PSG Selective Emitter 、电子天平、PVC手套、口罩、防护服、防护眼罩、防护套袖、橡胶手套、防酸碱胶鞋、GPSolar电阻测试仪(边缘电阻)、浓度分析仪等。 袂3、适用范围 聿本工艺适用于Edge Isolation & PSG Selective Emitter 。 肇4、职责 薇本工艺操作规程由工艺工程师负责调试、修改、解释。 薃5、材料: 肁合格的多晶硅片(INKJET后)、HF(49%电子级,工作压力3-5bar,

葿KOH(49%,电子级,工作压力3-5bar )、HNO(65% 电子级,工作压力3-5bar),羆DI水(工作压力3-5bar )、压缩空气(工作压力6-7bar,除油,除水,除粉尘) 莃Butyldiglycol (2 一(2 一丁氧乙氧基)乙醇)(BDG (100%,电子级,工作压力 3-5bar), ),膂冷却水(入水:工作压力3-4bar,最大入水温度25°C,出水工作压力:最大2bar 薈新鲜空气(Fresh air用于旋转器腔室)(工作压力100Pa), 莅乙二醇(制冷机)。 肃6、工艺描述: 羀6.1、工艺条件:环境温度:+ 22° C to + 24° C;环境湿度:45 to 65 %RHat 24° C;

深硅刻蚀工艺原理

硅蚀刻工艺在MEMS中的应用 文章来源:本站原创点击数:97 录入时间:2006-4-7 减小字体增大字体Dave?Thomas?/?Trikon?Technologies,Newport,Wales,United?Kingdom 本文介绍了在现代微机电系统(MEMS;Micro?Electro-Mechanical?System)制造过程中必不可少的硅蚀刻流程,讨论了蚀刻设备对于满足四种基本蚀刻流程的要求并做了比较,包括块体(bulk)、精度(pre cision)、绝缘体上硅芯片(SOI;Silicon?On?Insulator)及高深宽比的蚀刻(high?aspect?ratio?etching)等。并希望这些基本模块能衍生出可提供具备更高蚀刻率、更好的均匀度、更平滑的蚀刻侧壁及更高的高深宽比的蚀刻能力等蚀刻设备,以满足微机电系统的未来发展需求。 微机电系统是在芯片上集成运动件,如悬臂(cantilever)、薄膜(membrane)、传感器(sensor)、反射镜(mirror)、齿轮(gear)、马达(motor)、共振器(resonator)、阀门(valve)和泵(pump)等。这些组件都是用微加工技术(micromachining)制造的。由于硅材料的机械性及电性众所周知,以及它在主流IC制造上的广泛应用,使其成为微加工技术的首要选择材料。在制造各式各样的坑、洞、齿状等几何形状的方法中,湿式蚀刻具有快速及低成本的优势。然而,它所具有对硅材料各方向均以相同蚀刻速率进行的等向性(isotropic)蚀刻特性、或者是与硅材料的晶体结构存在的差异性、产生不同蚀刻速率的非等向性(a nisotropic)等蚀刻特性,会限制我们在工艺中对应用制造的特定要求,例如喷墨打印机的细微喷嘴制造(非等向性蚀刻特性总会造成V形沟槽,或具锥状(tapered?walls)的坑洞,使关键尺寸不易控制?)。而干式蚀刻正可克服这个应用限制,按照标准光刻线法(photolithographic)的光罩所定义的几何图案,此类干式蚀刻工艺可获取具有垂直侧壁的几何图案。举例来说,通常要蚀刻定义出较大尺寸的组件,如电容式加速微传感器(capacitive?accelerometers)。通常我们会优先考虑湿式蚀刻方式,但对于需要更精确尺寸控制、或是整体尺寸需微缩的组件的制造,则会考虑选择采用干式蚀刻来达到工艺要求。 硅蚀刻 广泛应用的硅蚀刻方法,是起源于德国Robert?Bosch公司开发的非等向性硅蚀刻工艺方法,被称为Bosch 气体交替技术(Bosch?gas-switching?technique)[1]。利用具有非等向性蚀刻反应的等离子源,与通过反应形成高分子蔽覆层(polymeric?passivation?layer)的另一种等离子源,两者反复交替进行的方法,以达到硅蚀刻的工艺要求。常用的在硅蚀刻生产过程中的气体选择,多是采用SF6(六氟化硫),因其可在能量只有20eV的条件下即可分解出6个氟原子,而这些氟原子会继续与Si反应形成挥发性SiF4(四氟化硅)。理论上,已定义几何图案的6寸硅晶圆占据了大约15%的裸片面积,设定等离子反应室内压力>30mtorr、S

半导体工艺试卷及答案

杭州电子科技大学研究生考试卷(B卷)

共页第页

1、什么是CMOS器件的闩锁效应描述三种阻止闩锁效应的制造技术。(12分) 答:闩锁效应就是指CMOS器件所固有的寄生双极晶体管(又称寄生可控硅,简称SCR)被触发导通,在电源和地之间形成低阻抗大电流的通路,导致器件无法正常工作,甚至烧毁器件的现象。这种寄生双极晶体管存在CMOS器件内的各个部分,包括输入端、输出端、内部反相器等。当外来干扰噪声使某个寄生晶体管被触发导通时,就可能诱发闩锁,这种外来干扰噪声常常是随机的,如电源的浪涌脉冲、静电放电、辐射等。闩锁效应往往发生在芯片中某一局部区域,有两种情况:一种是闩锁只发生在外围与输入、输出有关的地方,另一种是闩锁可能发生在芯片的任何地方,在使用中前一种情况遇到较多。? 2、为什么要用区熔法生长硅晶体比较FZ和CZ优缺点。(10分) 答:(1)原因:因为区熔法可以得到低至1011cm-1的载流子浓度。区熔生长技术的基本特点是样品的熔化部分是完全由固体部分支撑的,不需要坩埚。柱状的高纯多晶材料固定于卡盘,一个金属线圈沿多晶长度方向缓慢移动并通过柱状多晶,在金属线圈中通过高功率的射频电流,射频功率技法的电磁场将在多晶柱中引起涡流,产生焦耳热,通过调整线圈功率,可以使得多晶柱紧邻线圈的部分熔化,线圈移过后,熔料在结晶为为单晶。另一种使晶柱局部熔化的方法是使用聚焦电子束。整个区熔生长装置可置于真空系统中,或者有保护气氛的封闭腔室内 (2)CZ和FZ区别:CZ是直拉法,就是首先把多晶硅置于坩埚内加热熔化,然后采用小的结晶“种子”——籽晶,再慢慢向上提升、结晶,获得大的单晶锭。 (3)CZ和FZ优缺点比较:FZ是水平区域熔化生长法,就是水平放置、采用感应线圈加热、并进行晶体生长的技术。直拉法在Si单晶的制备中更为常用,占75%以上。直拉法制备Si单晶的优点是:1)成本低;2)能制备更大的圆片尺寸,6英寸(150mm)及以上的Si单晶制备均采用直拉法,目前直拉法已制备出400mm(16英寸)的商用Si单晶;3)制备过程中的剩余原材料可重复使用;4)直拉法制备的Si单晶位错密度低,0~104cm-2。直拉法制备Si单晶的主要缺点是,由于使用坩埚,Si单晶的纯度不如区熔法。区熔法制备Si单晶的主要优点是,由于不使用坩锅,可制备高纯度的硅单晶,电阻率高达2000Ω-mm,因此区熔法制备的Si单晶主要用于功率器件及电路。区熔法制备Si单晶的缺点是:1)成本高; 3、什么是LOCOS和STI为什么在高级IC工艺中,STI取代了LOCOS(12分) 答:(1)LOCOS:即“硅的局部氧化”技术(Local Oxidation of Silicon)CMOS工艺最常用的隔离技术就是LOCOS(硅的选择氧化)工艺,它以氮化硅为掩膜实现了硅的选择氧化,在这种工艺中,除了形成有源晶体管的区域以外,在其它所有重掺杂硅区上均生长一层厚的氧化层,称为隔离或场氧化层。-常规的LOCOS工艺由于有源区方向的场氧侵蚀(SiN边缘形成类似鸟嘴的结构,称为“鸟喙效应”bird beak)和场注入的横向扩散,使LOCOS工艺受到很大的限制。 STI:浅沟槽隔离(STI)是用于隔绝活动区域的制造方法,它会使实际电流不同于模拟结果。具体情

半导体刻蚀技术简介终稿

一、等离子体刻蚀技术的产生: 在积体电路制造过程中,常需要在晶圆上定义出极细微尺寸的图案,这些图案主要的形成方式,乃是藉由刻蚀技术,将微光刻后所产生的光阻图案忠实地转印至光阻下的材质上,以形成积体电路的复杂架构。因此蚀刻技术在半导体制造过程中占有极重要的地位。 广义而言,所谓的蚀刻技术,包含了将材质整面均匀移除及图案选择性部份去除的技术。而其中大略可分为湿式蚀刻与干式蚀刻两种技术。 早期半导体制程中所采用的蚀刻方式为湿式蚀刻,即利用特定的化学溶液将待蚀刻薄膜未被光阻覆盖的部分分解,并转成可溶于此溶液的化合物后加以排除,而达到蚀刻的目的。湿式蚀刻的进行主要是藉由溶液与待蚀刻材质间的化学反应,因此可藉由调配与选取适当的化学溶液,得到所需的蚀刻速率,以及待蚀刻材料与光阻及下层材质良好的蚀刻选择比(选择性)。 然而,随着积体电路中的元件尺寸越做越小,由于化学反应没有方向性,因而湿式蚀刻是各向同性的,此时,当蚀刻溶液做纵向蚀刻时,侧向的蚀刻将同时发生,进而造成咬边现象,导致图案线宽失真。因此湿式蚀刻在次微米元件的制程中已被干式蚀刻所取代。 干式蚀刻通常指利用辉光放电方式,产生包含离子,电子等带电粒子及具有高度化学活性的中性原子与分子及自由基的电浆来进行图案转印的蚀刻技术。 由部份解离的气体及等量的带正,负电荷粒子所组成的等离子体被称为电浆。蚀刻用的电浆中,气体的解离程度很低,其中所含的气体具高度的活性,它是利用外加电场的驱动而形成,并且会产生辉光放电现象。 自1970年代以来元件制造首先开始采用电浆蚀刻技术,对于电浆化学新的了解与认知也就蕴育而生。在现今的积体电路制造过程中,必须精确的控制各种材料尺寸至次微米大小且具有极高的再制性,而由于电浆蚀刻是现今技术中唯一能极有效率地将此工作在高良率下完成,因此电浆蚀刻便成为积体电路制造过程中的主要技术之一。 影响电浆蚀刻特性好坏的因素包括了:1)电浆蚀刻系统的型态,2)电浆蚀刻的参数; 3)前制程相关参数,如光阻,待蚀刻薄膜之沉积参数条件,待蚀刻薄膜下层薄膜的型态及表面的平整度等。 二、电浆的基本概念: 1、电浆形成的原理: 电浆的产生可藉由直流(DC)的偏压或交流射频(RF)的偏压下的电场形成,而在电浆中的电子来源通常有二:一为分子或原子解离后所产生的电子,另一则为离子撞击电极所产生的二次电子,在直流(DC)的电场下产生的电浆其电子源主要以二次电子为主,而交流射频(RF)的电场下产生的电浆其电子源则以分子或原子解离后所产生的电子为主。 在电浆蚀刻中以直流方式产生辉光放电的缺点包含了:1)需要较高的功率消耗,也就是说产生的离子密度低; 2)须要以离子撞击电极以产生二次电子,如此将会造成电极材料的损耗。三)所需之电极材料必须为导体如此一来将不适用于晶圆制程中。 在射频放电状况下,由于高频操作,使得大部份的电子在半个周期内没有足够的时间移动至正电极,因此这些电子将会在电极间作振荡,并与气体分子产生碰撞。而射频放电所需的振荡频率下限将视电极间的间距,压力,射频电场振幅的大小及气体分子的解离位能等因素而定,而通常振荡频率下限为50kHz的。一般的射频系统所采用的操作频率大都为13.56。 相较于直流放电,射频放电具有下列优点:1)放电的情况可一直持续下去而无需二次电子的发射,当晶圆本身即为电极的一部份时,这点对半导体材料制程就显得十分重要了; 2)由于电子来回的振荡,因此离子化的机率大为提升,蚀刻速率可因而提升; 3)可在较低的电极电压下操作,以减低电浆对元件所导致之损坏; 4)对于介电质材料同样可以运作。

半导体工艺流程

集成电路芯片生产的清洗包括硅片的清洗和工器具的清洗。由于半导体生产污染要求非常严格,清洗工艺需要消耗大量的高纯水;且为进行特殊过滤和纯化广泛使用化学试剂和有机溶剂。 在硅片的加工工艺中,硅片先按各自的要求放入各种药液槽进行表面化学处理,再送入清洗槽,将其表面粘附的药液清洗干净后进入下一道工序。常用的清洗方式是将硅片沉浸在液体槽内或使用液体喷雾清洗,同时为有更好的清洗效果,通常使用超声波激励和擦片措施,一般在有机溶剂清洗后立即采用无机酸将其氧化去除,最后用超纯水进行清洗,如图1-6所示。 图1-6硅片清洗工艺示意图 工具的清洗基本采用硅片清洗同样的方法。 2、热氧化 热氧化是在800~1250℃高温的氧气氛围和惰性携带气体(N2)下使硅片表面的硅氧化生成二氧化硅膜的过程,产生的二氧化硅用以作为扩散、离子注入的阻挡层,或介质隔离层。典型的热氧化化学反应为: Si + O2→SiO2

扩散是在硅表面掺入纯杂质原子的过程。通常是使用乙硼烷(B 2H 6)作为N -源和磷烷(PH 3)作为P +源。工艺生产过程中通常分为沉积源和驱赶两步,典型的化学反应为: 2PH 3 → 2P + 3H 2 4、离子注入 离子注入也是一种给硅片掺杂的过程。它的基本原理是把掺杂物质(原子)离子化后,在数千到数百万伏特电压的电场下得到加速,以较高的能量注入到硅片表面或其它薄膜中。经高温退火后,注入离子活化,起施主或受主的作用。 5、光刻 光刻包括涂胶、曝光、显影等过程。涂胶是通过硅片高速旋转在硅片表面均匀涂上光刻胶的过程;曝光是使用光刻机,并透过光掩膜版对涂胶的硅片进行光照,使部分光刻胶得到光照,另外,部分光刻胶得不到光照,从而改变光刻胶性质;显影是对曝光后的光刻胶进行去除,由于光照后的光刻胶和未被光照的光刻胶将分别溶于显影液和不溶于显影液,这样就使光刻胶上形成了沟槽。 6、湿法腐蚀和等离子刻蚀 通过光刻显影后,光刻胶下面的材料要被选择性地去除,使用的基片 涂胶后基片 光刻胶 阻挡层

半导体蚀刻技术

简介 在积体电路制造过程中,常需要在晶圆上定义出极细微尺寸的图案(图案),这些图案主要的形成方式,乃是藉由蚀刻(蚀刻)技术,将微影(微光刻)后所产生的光阻图案忠实地转印至光阻下的材质上,以形成积体电路的复杂架构。因此蚀刻技术在半导体制造过程中占有极重要的地位。 广义而言,所谓的蚀刻技术,包含了将材质整面均匀移除及图案选择性部份去除的技术。而其中大略可分为湿式蚀刻(湿蚀刻)与干式蚀刻(干式蚀刻)两种技术。 早期半导体制程中所采用的蚀刻方式为湿式蚀刻,即利用特定的化学溶液将待蚀刻薄膜未被光阻覆盖的部分分解,并转成可溶于此溶液的化合物后加以排除,而达到蚀刻的目的。湿式蚀刻的进行主要是藉由溶液与待蚀刻材质间的化学反应,因此可藉由调配与选取适当的化学溶液,得到所需的蚀刻速率(蚀刻率),以及待蚀刻材料与光阻及下层材质良好的蚀刻选择比(选择性)。 然而,随着积体电路中的元件尺寸越做越小,由于化学反应没有方向性,因而湿式蚀刻是等向性(各向同性)的,此时,当蚀刻溶液做纵向蚀刻时,侧向的蚀刻将同时发生,进而造成底切(咬边)现象,导致图案线宽失真。因此湿式蚀刻在次微米元件的制程中已被干式蚀刻所取代。 干式蚀刻通常指利用辉光放电(辉光放电)方式,产生包含离子,电子等带电粒子及具有高度化学活性的中性原子与分子及自由基的电浆来进行图案转印(模式传输)的蚀刻技术。在本章节中,将针对半导体制程中所采用的蚀刻技术加以说明,其中内容包括了湿式蚀刻与干式蚀刻的原理,以及其在各种材质上的应用。但基于干式蚀刻在半导体制程中与日俱增的重要地位,因此本章节将以干式蚀刻作为描述的重点。涵盖的内容包括电浆产生的原理,电浆蚀刻中基本的物理与化学现象,电浆蚀刻的机制,电浆蚀刻制程参数,电浆蚀刻设备与型态,终点侦测,各种物质(导体,半导体,绝缘体)蚀刻的介绍,微负载效应及电浆导致损坏等。 5-1-1蚀刻技术中的术语 5 - 1 - 1A型等向性与非等向性蚀刻(各向同性和各向异性蚀刻) 不同的蚀刻机制将对于蚀刻后的轮廓(资料)产生直接的影响。纯粹的化学蚀刻通常没有方向选择性,蚀刻后将形成圆弧的轮廓,并在遮罩(面膜)下形成底切(咬边),如图5-1所示,此谓之等向性蚀刻。等向性蚀刻通常对下层物质具有很好的选择比,但线宽定义不易控制。而非等向性蚀刻则是借助具有方向性离子撞击,造成特定方向的蚀刻,而蚀刻后形成垂直的轮廓,如图5-1所示。采用非等向性蚀刻,可定义较细微的线宽。 5 - 1 - 1B的选择比(性)(选择性) 选择比即为不同物质间蚀刻速率的差异值。其中又可分为对遮罩物质的选择比及对待蚀刻物质下层物质的选择比。 5 - 1 - 1C的负载效应(负载效应) 负载效应就是当被蚀刻材质裸露在反应气体电浆或溶液时,面积较大者蚀刻速率较面积较小者为慢的情形。此乃由于反应物质在面积较大的区域中被消耗掉的程度较为严重,导致反应物质浓度变低,而蚀刻速率却又与反应物质浓度成正比关系,大部份的等向性蚀刻都有这种现象。 湿式蚀刻技术 最早的蚀刻技术是利用特定的溶液与薄膜间所进行的化学反应来去除薄膜未被光阻覆盖的部分,而达到蚀刻的目的,这种蚀刻方式也就是所谓的湿式蚀刻。因为湿式蚀刻是利用化学反应来进行薄膜的去除,而化学反应本身不具方向性,因此湿式蚀刻过程为等向性,一

半导体工艺制造论文

请回答以下问题: 题目:(1)在离子注入工艺中,有一道工艺是”沟道器件轻掺杂源(漏)区”,其目的是减小电场峰植和热电子效应!请详尽解释其原理! 题目:(2)在电极形成或布线工艺中,用到金属Ti,请详尽说明金属Ti的特性、金属Ti 的相关工艺、以及金属Ti在电路中的作用! 题目:(3)在化学气相淀积反应中低压会带来什么好处? 题目:(4)在光刻胶工艺中要进行,软烘,曝光后烘焙和坚膜烘焙,请详细说明这三步工艺的目的和条件。 题目:(5)请对Si(以一种刻蚀气体为例)和SiO2(以一种刻蚀气体为例)刻蚀工艺进行描述,并给出主要的化学反应方程式。 (每题20分,满分100分) (1)在离子注入工艺中,有一道工艺是”沟道器件轻掺杂源(漏)区”,其目的是减小电场峰植和热电子效应!请详尽解释其原理! 答:轻掺杂漏区(LDD)注入用于定义MOS晶体管的源漏区。这种区域通常被称为源漏扩展区。注入使LDD杂质位于栅下紧贴沟道区边缘,为源漏区提供杂质浓度梯度。LDD在沟道边缘的界面区域产生复杂的横向和纵向杂质剖面。nMOS和pMOS的LDD 注入需用两次不同的光刻和注入。在源漏区浅结形成的同时MOSFET的栅也被注入。 LDD结构用栅作为掩膜中低剂量注入形成(n-或p-注入),随后是大剂量的源漏注入(n+或p+注入)。源漏注入用栅氧化物侧墙作为掩膜。如果没有形成LDD,在正常的晶体管工作时会在结和沟道区之间形成高电场。电子在从源区向漏区移动的过程中(对n沟道器件)将受此高电场加速成为高能电子,它碰撞产生电子—空穴对。热电子从电场获得能量,造成电性能上的问题,如被栅氧化层陷阱捕获,影响器件的阀值电压控制。 随着栅氧厚度、结深、沟道长度的减小,漏端最大电场强度增大,热载流子效应的影响变大,它对器件的寿命、可靠性等有很大影响。通过分析我们可以看到:LDD结构通过两条途径来抑制热载流子效应:弱化漏端电场和使得漏端最大电场离开栅极。增大注

反应离子刻蚀技术的原理

摘要:详细阐述离子刻蚀技术的原理,反应腔功能与结构设计,着重介绍适应集成电路特征尺寸微细化发展所采用的新技术。关键词:刻蚀,等离子体,射频Author: 刘晓明from Applied Material (China) --SolidState Technology( China) 前言目前,整个集成电路制造技术向着高集成度、小特征尺寸(CD)的方向发展。硅片直径从最初的4英寸发展到已批量生产的12英寸生产线。同时,衡量半导体制造技术的关键参数-特征尺寸亦朝着微细化方向发展,从最初的5祄发展到当前的110nm、90nm、65nm。而刻蚀是决定特征尺寸的核心工艺技术之一。刻蚀技术分为湿法刻蚀和干法刻蚀。湿法刻蚀采用化学腐蚀进行,是传统的刻蚀工艺。它具有各项同性的缺点,即在刻蚀过程不但有所需要的纵向刻蚀,还有不需要的横向刻蚀,因而精度差,线宽一般在3祄以上。干法刻蚀是因应大规模集成电路电路生产的需要而被开发出的精细加工技术,它具有各项异性的特点,在最大限度上保证了纵向刻蚀,还控制了横向刻蚀。目前流行的典型设备为反应离子刻蚀(RIE-Reactive Ion Etch)系统。它已被广泛应用于微处理器(CPU)、存储(DRAM)和各种逻辑电路的制造中。其分类按照刻蚀的材料分为介电材料刻蚀(Dielectric Etch)、多晶硅刻蚀(Poly-silicon Etch)和金属刻蚀(Metal Etch)。反应离子刻蚀技术的原理刻蚀精度主要是用保真度(Profile)、选择比(Selectivity)、均匀性(Uniformity)等参数来衡量。所谓保真度度,就是要求把光刻胶的图形转移到其下的薄膜上,即希望只刻蚀所要刻蚀的薄膜,而对其上的掩膜和其下的衬底没有刻蚀。事实上,以上三个部分都会被刻蚀,只是刻蚀速率不同。选择比(Selectivity)就是用来衡量这一指标的参数。S=V/U(V为对薄膜的刻蚀速率,U为对掩膜或衬底的刻蚀速率),S越大则选择比越好。由于跨越整个硅片的薄膜厚度和刻蚀速率不尽相同,从而也导致图形转移的不均匀,尤其是中心(Center)和边缘(Edge)相差较大。因而均匀性(Etch Rate Uniformity)成为衡量这一指标的重要参数。除以上参数外,刻蚀速率(Etch Rate)也是一个重要指标,它用来衡量硅片的产出速度,刻蚀速率越快,则产出率越高。反应离子刻蚀是以物理溅射为主并兼有化学反应的过程。通过物理溅射实现纵向刻蚀,同时应用化学反应来达到所要求的选择比,从而很好地控制了保真度。刻蚀气体(主要是F基和CL基的气体)在高频电场(频率通常为13.56MHz)作用下产生辉光放电,使气体分子或原子发生电离,形成“等离子体”(Plasma)。在等离子体中,包含有正离子(Ion+)、负离子(Ion-)、游离基(Radical)和自由电子(e)。游离基在化学上是很活波的,它与被刻蚀的材料发生化学反应,生成能够由气流带走的挥发性化合物,从而实现化学刻蚀。另一方面,如图1所示,反应离子刻蚀腔体采用了阴极(Cathode)面积小,阳极面积大的不对称设计。在射频电源所产生的电场的作用下带负电的自由电子因质量小、运动速度快,很快到达阴极;而正离子则由于质量大,速度慢不能在相同的时间内到达阴极, 从而使阴极附近形成了带负电的鞘层电压。同时由于反应腔的工作气压在10-3~10-2Torr, 这样正离子在阴极附近得到非常有效的加速,垂直轰击放置于阴极表面的硅片,这种离子轰击可大大加快表面的化学反应及反应生成物的脱附,从而导致很高的刻蚀速率。正是由于离子轰击的存在才使得各向异性刻蚀得以实现。[attach]201183[/attach] 图1. DPSII 刻蚀腔结构图初期的射频系统普遍为电容式耦合单射频系统设计(Bias RF)。但随着工艺要求的不断提高,双射频设计(Bias RF 和Source RF)开始被广泛应用。特别是到65nm以后,这已经成为必然选择。该设计方式能把离子的轰击速度和浓度分开控制,从而更好地控制刻蚀速率、选择比、均匀性和特征尺寸(CD)。传统的单射频系统为了提高刻蚀速率,通常会增加RF功率以提高电场强度,从而增加离子浓度(Ion Density)、加快刻蚀。但离子的能量(Ion Energy)也会相应增加,损伤硅片表面。为了解决这一问题,半导体设备厂商普遍采用了双射频系统设计,也就是在原有基础上,增加一个置于腔体顶部的射频感应电场来增加离子的浓度。其工作原理如下,如图2所示,一个射频电源(Source RF)加在一个电感线圈上,产生交变磁场从而产生感应电场。该电场加速产生更多的离子,而又不直接轰击硅片。[attach]201184[/attach] 图2. 电感耦合原理图此

相关文档
最新文档