两个不同混沌系统的完全同步

两个不同混沌系统的完全同步
两个不同混沌系统的完全同步

混沌与分数阶混沌系统同步控制研究及其电路仿真

混沌与分数阶混沌系统同步控制研究及其电路仿真 文章来源:伟智论文服务中心 [打印] 【摘要】混沌作为一种复杂的非线性运动行为,在物理学、化学、信息技术以及工程学等领域得到了广泛的研究。由于混沌对初值的极端敏感性、内在的随机性、连续宽谱等特点,使其特别适用于保密通信、信号处理、图象加密等领域,因此,混沌同步成为混沌应用的关键技术。在参阅大量文献的基础上,本文利用理论证明,数值模拟以及电路仿真相结合的方法,对混沌系统同步、分数阶超混沌系统同步、以及非自治超混沌系统进行了研究。本文的主要研究内容如下:1.基于Lyapunov稳定性理论,利用自适应控制方法,以不确定单模激光Lorenz系统作为驱动系统,将不确定单涡旋混沌系统作为响应系统,设计了非线性反馈控制器及参数识别器,使响应系统的所有状态变量严格地按函数比例跟踪驱动系统的混沌轨迹,并辨识出包括非线性项在内的驱动系统和响应系统的不确定参数,利用四阶龙格库塔仿真模拟,结果表明了该方法的有效性。2.应用驱动-响应方法、反馈线性化方法以及基于Lyapunov方程的Backstepping 控制方法,研究了分数阶超混沌L(u|¨)系统同步问题。其次,针对上述分数阶混沌系统同步方法中存在的不足,基于分数阶系统的稳定性理论,提出了分数 阶超混沌系...更多统的自适应同步方法,用两个控制器与两个驱动变量实现 了不确定分数阶超混沌L(u|¨)系统的自适应同步,给出了自适应同步控制器和参数自适应率,辨识出系统的不确定参数。最后,结合Active控制技术,实现了异结构分数阶超混沌系统的同步。理论证明、数值模拟以及电路仿真证实了上述同步方法的有效性和可行性。3.采用调节连续信号频率的方法,将外界控制信号引入到超混沌系统中,设计了一个新四维非自治超混沌系统。通过精确地调节模拟输入信号的频率,观察和验证新系统的非线性动力学特性,具体为 周期轨、二维环面、混沌和超混沌现象。通过Lyapunov指数图,分岔图来解释系统的动力学特性,并且给出了设计的实验电路及其观测的结果,进一步从物 理实现上验证仿真结果的准确性。最后利用单变量耦合反馈控制方法,通过电路实验实现了非自治超混沌系统的同步。还原 【Abstract】 Chaotic systems are well known for their complex nonlinear systems, and have been intensively studied in various fields such as physics, chemistry, information technology and engineering. In virtue of its characteristics of chaos such as hyper sensitivity to initial conditions, high randomicity and board spectra for its Fourier transform, chaos can be especially applied to secure communications, signal processing and image encryption and so on. Thus chaos synchronization has become the key process in the application of chaos. The research has studied the relative problems of chaos synchronization, synchronization of fractional-order hyper-chaotic systems and analysis of a new four-dimensional non-autonomous hyper-chaotic system, using

非线性混沌电路实验报告

非线性电路混沌及其同步控制 【摘要】 本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。 【关键词】 混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数 一.【引言】 1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。 本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。通过本实

验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。 二.【实验原理】 1.有源非线性负阻 一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v呈线性变化,所谓正阻,即I-U是正相关,i-v曲线的 斜率 u i ? ? 为正。相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两 端的电压增大时,电流减小,并且不是线性变化。负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。 一般实现负阻是用正阻和运算放大器构成负阻抗变换器电路。因为放大运算器工作需要一定的工作电压,因此这种富足成为有源负阻。本实验才有如图1所示的负阻抗变换器电路,有两个运算放大器和六个配置电阻来实现。 图1 有源非线性负阻内部结构 用电路图3以测试有源非线性负阻的i-v特性曲线,如图4示为测试结果曲线,分为5段折现表明,加在非线性元件上的电压与通过它的电流就行是相反的,

实验报告:混沌同步控制与图像加密

混沌同步控制与图像加密 ――― 《混沌实验教学平台的设计与实现》中期期报告 (华南师范大学物理与电信工程学院指导老师:李军学生:王龙杰、张丹伟、杨土炎)摘要:基于混沌系统的某些独特性质,如初值敏感性,本文讨论了混沌理论的两个重要运用,即基于Lorenz 混沌系统的同步控制和基于Logistic 混沌映射的图像加密。在讨论与分析的基础上,利用MA TLAB 软件进行数值计算与模拟,得到较好的效果。 关键词:Lorenz 混沌系统;同步控制;Logistic 混沌映射;图像加密;MATLAB 基于Lorenz 混沌系统的同步控制 一.引言 混沌是自然界及人类社会中的一种普遍现象,至今为止,在学术界对“混沌”还没有统一的被普遍接受的定义。混沌运动是确定性和随机性的对立统一, 即它具有确定性和随机性, 所谓确定性是指混沌运动是在确定性系统中发生的,可以用动力学方程形式表述, 这与完全随机运动有着本质的区别; 所谓运动具有随机性, 是指不能像经典力学中的机械运动那样由某时刻状态可以预言以后任何时刻的运动状态, 混沌运动倒是像其他随机运动或噪声那样, 其运动状态是不可预言的, 换言之, 混沌运动在相空间中没有确定的轨道。混沌运动对初始状态(条件)具有敏感的依赖性, 只要对系统施加非常微小的扰动,就可能把系统从一个不稳定的周期运动转变到另一个不稳定的周期运动上去,也可能转变到另一稳定的运动状态上, 通 过这个特性, 我们可以利用混沌有意义的一面, 而避其有害的一面。Lorenz 系统作为第一个混沌模型,是混沌发展史上的一个里程碑, 具有举足轻重的地位。对Lorenz 系统的深入研究无疑已经极大地推动了混沌学的发展。 人们发现混沌控制在众多领域中有着广阔的应用前景, 尤其在电子学、电力系统、保密 通信和振荡发生器设计等领域有着巨大的应用前景, 因此引起了广泛的重视。由于混沌行为对初始状态的敏感依赖性, 受到噪声、干扰以及系统不稳定的影响, 特别是在混沌同步中, 实 际系统中很难观测到混沌同步。自从1990 年, Pecora 和Carroll 提出了混沌同步的概念和 方法以后,随着混沌同步研究的不断深入, 混沌控制与同步的研究工作得到了长足的发展, 并 逐渐成为混沌与控制领域研究的热点。对于相近的混沌轨道, 通过相同的非线性系统控制, 最终可能导致完全不相关的状态。但在实际应用中, 往往要求控制得到相关的状态或所需要的同步结果, 本文采用了加入反馈控制量的方法使其耦合, 最终达到所要求的同步。在计算机上的仿真结果显示, 能在短时间内实现耦合同步控制。

非线性系统中混沌的控制及同步及其应用前景_一_

第1 6 卷第1 期物理学进展o l.16, N o. 1 V 1996 年 3 月PRO GR E S S I N PH Y S I C S M ac r ch , 1996 非线性系统中混沌的控制与同步 Ξ 及其应用前景(一) 方锦清 ( 中国原子能科学研究院, 北京102413) 提要 全文系统地综述了非线性科学中一个富有挑战性及具有巨大应用前景的重大课题——非线性系统中混沌的控制与同步及其应用的主要进展, 包括了作者关于超混沌同步及其控制等方面的研究成果。我们对现有的各种混沌的控制方法和混沌的同步原理提出了分类和评述。概述了实验与应用的现状, 指出了发展前景, 全文分为( 一) ( 二) 两篇, 第( 一) 篇以混沌控制的机理和方法为主要论题展开广泛的讨论; 第(二) 篇以混沌的同步、超混沌的同步及其控制为论题, 同时包括众多的实验应用的研究, 进行较详尽的综述和分析评论, 比较完整地概括了迄今国内外该课题的发展现状和主要趋势。 总论 混沌, 当今举世瞩目的前沿课题及学术热点, 它揭示了自然界及人类社会中普遍存在的复杂性, 有序与无序的统一, 确定性与随机性的统一, 大大拓广了人们的视野, 加深了对客观世界的认识。它在自然科学及社会科学等领域中, 覆盖面之大、跨学科之广、综合性之强, 发展前景及影响之深远都是空前的。国际上誉称混沌的发现, 乃是继本世纪相对论与量子力学问世以来的第三次物理学大革命, 这场革命正在冲击和改变着几乎所有科学和技术领域, 向我们提出了巨大的挑战ΞΞ。 混沌的发现已过而立之年。首要的问题是, 混沌究竟有什么应用和发展前景? 这是摆在人们面前的一个重大课题及普遍关注的问题。特别是, 在我国改革开放和振兴经济的大潮面前, 这类提问和呼声更为强烈, 这确实也是深入开展混沌研究的巨大推动力。由于混沌的奇异特性, 特别是对初始条件极其微小变化的高度敏感性及不稳定性, 所 谓“差之毫厘失之千里”的缘故, 长期以来有些人总觉得混沌是不可控的、不可靠的, 因而 Ξ 本课题是国家留学回国人员重大科技资助项目、国家核科学工业基金资助项目及I A EA 科研合同课题。 ΞΞ 混沌发现的重要性论述请参阅: 詹姆斯·格莱克著,“混沌开创新科学”( 张淑誉译, 郝柏林校) , 1990, 上海译文出版社。

典型混沌系统和混沌同步的简介

2典型混沌系统和混沌同步的简介 2.1典型混沌系统的介绍 混沌从表述形式上大体包括两大类:以微分方程表述的时间连续函数和以状态方程表述的时间离散函数。时间离散系统多用于扩频通信,而时间连续函数多见于保密通信之中。介于本文主要考虑连续系统在保密通信之中的应用,这里就重点介绍连续时间混沌系统中的典型模型:Lorenz 系统、蔡氏电路、统一混沌系统。 2.1.1 Lorenz 系统 混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。他提出了著名的Lorenz 方程组: () ??? ????----cz xy y xz bx y x y a x =z==。。 。 (2-1) 这是一个三阶常微分方程组。它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统 (2-1)的主要控制参数。k v a =是普朗特数(v 和k 分别为分子粘性系数和热传导系数),c 代表与对流纵横比有关的外形比,且a 和c 为无量纲常数。在参数范围为)1/()3(--++?>c a c a a b 时,Lorenz 系统均处于混沌态。 在混沌区域内选择系统参数a=10, b=28,c=8/3,取系统的初始状态为[x(0), y(0), z(0)]=[10, 10, 10],此时,系统为一混沌系统,系统的三维吸引子如图2.1所示,二维吸引子如图2.3所示,图2.2所示分别为分量x 、y 随时间t 的变化情况。 图2.1 Lorenz 系统的吸引子

No张丽分数阶统一混沌系统

漳州师范学院 毕业论文 分数阶统一混沌系统地同步The Synchroni zati on of Fracti on alorder Un ifiedSystem 姓名:张丽 学号:070401326 系别:数学与信息科学系 专业:数学与应用数学 年级:07级 指导教师:蔡建平教授 2018年05月22日

本文运用耦合同步控制法,研究分数阶统一混沌系统地同步问题?首先,分别在分数阶统一系统地每个方程上加耦合控制变量使得驱动系统和响应系统达到同步;然后,在每个方程同时加耦合控制变量使得驱动系统响应系统达到同步?并运用 Laplace变换理论证明,最后用Matlab软件进行数值仿真进一步验证本文所用地方法地有效性.b5E2RGbCAP 关键词:分数阶;统一混沌系统;同步控制;耦合控制 Abstract This paper applies coupled synchronization control method to research the synchronization of fractional order unified chaotic system. First of all, the coupled control variables are added to each equation of fractional unified system makes the drive system and response system to achieve synchronization. Then, the control variablesare added to each equation at the same time makes the drive system and response system to achieve synchronization.Furthermore, detailed proofsare given by using the Laplace transformation theory. Finally, numericalsimulations based on Matlab verify the effectiveness of the present methods EanqFDPw Key words: fractional order。unified system synchronization control coupling COntro DXDiTa9E3d

2非线性电路混沌实验

非线性电路混沌实验 混沌是非线性系统中存在的一种普遍现象 ,它也是非线性系统所特有的一种复杂状态。 混沌研究最先起源于 1963年洛伦兹(E.Lorenz )研究天气预报时用到的三个动力学方程 ,后 来又从数学和实验上得到证实。无论是复杂系统 ,如气象系统、太阳系,还是简单系统,如钟 摆、滴水龙头等,皆因存在着内在随机性而出现类似无轨、 但实际是非周期有序运动,即混沌 现象。由于电学量(如电压、电流)易于观察和显示,因此非线性电路逐渐成为混沌及混沌同 步应用的重要途径,其中最典型的电路是美国加州大学伯克利分校的蔡少棠教授 1985年提 出的著名的蔡氏电路(Chua ' s Circuit )。就实验而言,可用示波器观察到电路混沌产生的全 过程,并能得 到双涡卷混沌吸引子。 本实验所建立的非线性电路包括有源非线性负阻、 LC 振荡器和RC 移相器三部分;采用 物理实验方法研究 LC 振荡器产生的正弦波与经过 RC 移相器移相的正弦波合成的相图(李萨 如图),观测振动周期发生的分岔及混沌现象。 【实验目的】 观测振动周期发生的分岔及混沌现象; 测量非线性单元电路的电流一电压特性; 了解非 线性电路混沌现象的本质; 学会自己制作和测量一个使用带铁磁材料介质的电感器以及测量 非线性器件伏安特性的方法。 【实验原理】 1. 非线性电路与非线性动力学 实验电路如图1所示,图1中只有一个非线性元件 R ,它是一个有源非线性负阻器件。 电感器L 和电容C 2组成一个损耗可以忽略的谐振回路; 可变电阻R V 和电容器C 串联将振荡 器产生的正弦信号移相输出。 本实验中所用的非线性元件 R 是一个三段分段线性元件。 图2 所示的是该电阻的伏安特性曲线, 从特性曲线显示中加在此非线性元件上电压与通过它的电 流极性是相反的。由于加在此元件上的电压增加时, 通过它的电流却减小, 因而将此元件称 为非线性负阻元件。 图1电路的非线性动力学方程为: C 2 dU C L 二 G (U C 1 -U C 21)I L (1) dt 1 21 C 1 du e ’ dt =G (U C 2 -Uq) _g Uq Ld L

分数阶混沌系统的仿真程序

分数阶混沌仿真程序,以chen系统为例,其他系统只需修改相应的外部函数。 ------------------------------------------------------------------------------------ function fra_chaos_pro(x,t,q)%x为初值,t为运行时间,q为分数阶数 h=0.01;%步长 N=t/h;%运行步数 l=length(x);%变量维数 y=zeros(l,N+1); y1=zeros(l,N+1); M1=zeros(l,1); N1=zeros(l,1); %预估校正法,fra_chaos_fun外部函数 y1(:,1)=x'+h.^q'.*fra_chaos_fun(t,x)'./(gamma([q']).*q'); y(:,1)=x'+h.^q'.*(fra_chaos_fun(t,y1(:,1))+q'.*fra_chaos_fun(t,x)')./gamma(q'+2); for n=1:N; M1=(n.^(q'+1)-(n-q').*(n+1).^q').*fra_chaos_fun(t,x)'; N1=((n+1).^q'-n.^q').*fra_chaos_fun(t,x)'; for j=1:n; M1=M1+ ((n-j+2).^(q'+1)+(n-j).^(q'+1)-2*(n- j+1).^(q'+1)).*fra_chaos_fun(t,y(:,j));N1=N1+((n-j+1).^q'-(n- j).^q').*fra_chaos_fun(t,y(:,j)); end

单自由度非线性系统的混沌振动

考虑由非线性弹簧和线性阻尼组成的质量-弹簧系统在简谐激振力作用下的受迫振动,动力学方程为: 30mx cx kx F cos t ++=ω 30mx cx kx F cos t '''++=ω 取参数值:m=1.0,c=0.05,k=1.0,F 0=7.5,ω=1.0,以及初始条件:()()11x 0 3.0,x 0 4.0== 求解:令()()()()12 u t x t u t x t =??'=?,则原方程变换为: ()()()()()()()()()121123022121212u t u t f t,u ,u F c k u t cos t-u t u t f t,u ,u m m m u 0 3.0u 0 4.0 '==???'=ω-=???=?=?? 根据Runge-Kutta 方法构造如下数值迭代计算公式: [][]1,i 11,i 111213142,i 12,i 21222324h u u k 2k 2k k 6h u u k 2k 2k k 6++?=++++????=++++?? 其中 ()() 111i 1,i 2,i 121i 1,i 112,i 21131i 1,i 122,i 22141i 1,i 132,i 23k f x ,u ,u h h h k f x ,u k ,u k 222h h h k f x ,u k ,u k 222k f x h,u hk ,u hk ?=????=+++ ???????? ?=+++ ?????=+++??

() () 212i 1,i 2,i 222i 1,i 112,i 21232i 1,i 122,i 22242i 1,i 132,i 23k f x ,u ,u h h h k f x ,u k ,u k 222h h h k f x ,u k ,u k 222k f x h,u hk ,u hk ?=?? ? ?=+++ ??????? ? ?=+++ ???? ?=+++?? 020406080100120140160 1 2 3 4 -4-3 -2 -1 1 2 3 4

分数阶统一混沌系统matlab程序

function dy=united-fra-chaos q1=0.9;q2=0.9;q3=0.8; h=0.01;N=2000; a=1; x0=2;y0=1;z0=3; %x0=-3.5;y0=4.2;z0=2.5; M1=0;M2=0;M3=0; x(N+1)=[0];y(N+1)=[0];z(N+1)=[0]; x1(N+1)=[0];y1(N+1)=[0];z1(N+1)=[0]; x1(1)=x0+h^q1*(25*a+10)*(y0-x0)/(gamma(q1)*q1); y1(1)=y0+h^q2*((28-35*a)*x0-x0*z0+(29*a-1)*y0)/(gamma(q2)*q2); z1(1)=z0+h^q3*(x0*y0-(8+a)*z0/3)/(gamma(q3)*q3); x(1)=x0+h^q1*((25*a+10)*(y1(1)-x1(1))+q1*(25*a+10) *(y0-x0))/gamma(q1+2); y(1)=y0+h^q2*((28-35*a)*x1(1)-x1(1)*z1(1)+(29*a-1)*y1(1)+q2*((28-35*a)*x0-x0*z0+(29*a-1 )*y0))/gamma(q2+2); z(1)=z0+h^q3*(x1(1)*y1(1)-(8+a)*z1(1)/3+q3*(x0*y0-(8+a)*z0/3))/gamma(q3+2); for n=1:N M1=(n^(q1+1)-(n-q1)*(n+1)^q1)*(25*a+10)*(y0-x0); M2=(n^(q2+1)-(n-q2)*(n+1)^q2)*((28-35*a)*x0-x0*z0+(29*a-1)*y0); M3=(n^(q3+1)-(n-q3)*(n+1)^q3)*(x0*y0-(8+a)*z0/3); N1=((n+1)^q1-n^q1)*(25*a+10)*(y0-x0); N2=((n+1)^q2-n^q2)*((28-35*a)*x0-x0*z0+(29*a-1)*y0); N3=((n+1)^q3-n^q3)*(x0*y0-(8+a)*z0/3); for j=1:n M1=M1+((n-j+2)^(q1+1)+(n-j)^(q1+1)-2*(n-j+1)^(q1+1))*(25*a+10)*(y(j)-x(j)); M2=M2+((n-j+2)^(q2+1)+(n-j)^(q2+1)-2*(n-j+1)^(q2+1))*((28-35*a)*x(j)-x(j)*z(j)+(29*a-1)*y(j )); M3=M3+((n-j+2)^(q3+1)+(n-j)^(q3+1)-2*(n-j+1)^(q3+1))*(x(j)*y(j)-(8+a)*z(j)/3); N1=N1+((n-j+1)^q1-(n-j)^q1)*(25*a+10)*(y(j)-x(j)); N2=N2+((n-j+1)^q2-(n-j)^q2)*((28-35*a)*x(j)-x(j)*z(j)+(29*a-1)*y(j)); N3=N3+((n-j+1)^q3-(n-j)^q3)*(x(j)*y(j)-(8+a)*z(j)/3); end x1(n+1)=x0+h^q1*N1/(gamma(q1)*q1); y1(n+1)=y0+h^q2*N2/(gamma(q2)*q2); z1(n+1)=z0+h^q3*N3/(gamma(q3)*q3); x(n+1)=x0+h^q1*((25*a+10)*(y1(n+1)-x1(n+1))+M1)/gamma(q1+2); y(n+1)=y0+h^q2*((28-35*a)*x1(n+1)-x1(n+1)*z1(n+1)+(29*a-1)*y1(n+1)+M2)/gamma(q2+2);

考察典型非线性系统通向混沌的途径

考察典型非线性系统通向混沌的途径 一混沌简介 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。 在非线性科学中,混沌现象指的是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是来源于运动的不稳定性。或者说混沌系统对无限小的初值变动和微绕也具于敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。 二通向混沌的途径 可由非线性动力学方程求解通向考察混沌的道路,或者由非线性时间序列相空间重建方法通向考察混沌道路。具体方法如下: 1 倍周期分岔进入混沌是一种典型的混沌产生途径。系统运动变化的周期行为是一种有序行为,但在一定的条件下,系统经过周期加倍,会逐步丧失周期行为而进入混沌。设系统有参数 u,只考虑单参数并不失一般性。当系统有多个参数时,可以设定其余参数而让其中一个变化。如果 u= u0时系统的稳态运动有周期T,随着u 变化,到u=u1 时,稳态运动的周期变为2T,这种运动性质的突然改变称为倍周期分叉。一般的,u = u m时稳态运动的周期为2m ?T,则u=u m+1时发生倍周期分叉使系统稳定运动变为周期2m+1?Y 。由于周期不断加倍,最后变为周期无穷大的运动,也就是非周期运动。从庞加莱映射可观察到:1个点变为2个点,2个点变为4个点等等,随着倍周期分又的不断进行,最终变为无穷点集,周期运动相应地转化为混沌运动。值得注意的是,倍周期分叉值u 所构成无穷序列{ui}的差商极限是一个常数,而且多种不同的系统可能有相同的常数,因而被称作普适常数。普适常数的存在反映了倍周期分叉产生混沌途径的特点。 2阵发性是又一种典型的混沌产生途径。这里的阵发性是指系统较长时间尺度的规则运动和较短时间尺度的无规则运动的随机交替变化现象。若振动系统在特定参数下呈现阵发性,

驱动和响应系统实现chen氏混沌同步

1、主函数 文件名:chen_main.m function chen_main % 耦合系数对同步的影响 global m n; format long; tspan=0:0.001:5; Y0=[3 4 20 4 5 21]; hold on m=0.5;n=0.5; [t,y]=ode45(@chen,tspan,Y0); plot(t,y(:,1)-y(:,4),'r') legend('m=n=0.5') 2、微分函数 函数名: 代码: chen.m function dy=chen(t,y) format long a=35;b=3;c=28; % dy=zeros(3,1); % dy(1)=a*(y(2)-y(1)); % dy(2)=(c-a)*y(1)-y(1)*y(3)+c*y(2); % dy(3)=y(1)*y(2)-b*y(3); % 同步 global m n; u=5; dy=zeros(6,1); D1=funD(y(1),y(2),y(3)); D2=funD(y(4),y(5),y(6)); % 驱动系统 dy(1)=a*(y(2)-y(1))+m*0; dy(2)=(c-a)*y(1)-y(1)*y(3)+c*y(2)+m*(D1(2,:)-D2(2,:)); dy(3)=y(1)*y(2)-b*y(3)+m*(D1(3,:)-D2(3,:)); % 响应系统 dy(4)=a*(y(5)-y(4))+n*0; dy(5)=(c-a)*y(4)-y(4)*y(6)+c*y(5)+n*(D2(2,:)-D1(2,:)); dy(6)=y(4)*y(5)-b*y(6)+n*(D2(3,:)-D1(3,:));

非线性系统中的混沌之美

非线性科学中的混沌 XXX 中南大学物理与电子学院,湖南长沙,410083 摘要:本文介绍了非线性科学中的混沌概念和混沌发展历史;论述了混沌在科学认识论中的重要地位;同时分析了混沌产生的基本原理及主要特征,指出混沌现象广泛存在于自然界中;最后综述了混沌在科学研究中的广泛应用,并展望了混沌理论未来的发展前景。 关键词:混沌;蝴蝶效应;非线性科学 The chaos theory in nonlinear science XXX School of physics and electronics,Central South University,Changsha 410083,China Abstract: The main conception and development of chaos are introduced in this paper; The important status of chaos in scientific epistemology is discussed.At the same time ,the basic principle of chaos and the main characteristics of chaos are analyzed.It is also pointed that the Chaos is a common phenomenon in the nature. In the end, the extensive application of chaos in scientific research is summarized and the prospect of chaos theory is discussed. Key words:chaos; Butterfly Effect; nonlinear science

非线性力学和混沌简介

非线性力学和混沌简介 非线性科学是一门研究非线性现象共性的基础学科。它是自本世纪六十年代以来,在各门以非线性为特征的分支学科的基础上逐步发展起来的综合性学科,被誉为本世纪自然科学的“第三次革命”。非线性科学几乎涉及了自然科学和社会科学的各个领域,并正在改变人们对现实世界的传统看法。科学界认为:非线性科学的研究不仅具有重大的科学意义,而且对国计民生的决策和人类生存环境的利用也具有实际意义。由非线性科学所引起的对确定论和随机论、有序与无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻地影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。 一线性与非线性的意义 线性”与“非线性”是两个数学名词。所谓“线性”是指两个量之间所存在的正比关系。若在直角坐标系上画出来,则是一条直线。由线性函数关系描述的系统叫线性系统。在线性系统中,部分之和等于整体。描述线性系统的方程遵从叠加原理,即方程的不同解加起来仍然是原方程的解。这是线性系统最本质的特征之一。“非线性”是指两个量之间的关系不是“直线”关系,在直角坐标系中呈一条曲。 最简单的非线性函数是一元二次方程即抛物线方程。简单地说,一切不是一次的函数关系,如一切高于一次方的多项式函数关系,都是非

线性的。由非线性函数关系描述的系统称为非线性系统。 线性与非线性的区别 定性地说,线性关系只有一种,而非线性关系则千变万化,不胜枚举。线性是非线性的特例,它是简单的比例关系,各部分的贡献是相互独立的;而非线性是对这种简单关系的偏离,各部分之间彼此影响,发生偶合作用,这是产生非线性问题的复杂性和多样性的根本原因。正因为如此,非线性系统中各种因素的独立性就丧失了:整体不等于部分之和,叠加原理失效,非线性方程的两个解之和不再是原方程的解。因此,对于非线性问题只能具体问题具体分析。 线性与非线性现象的区别一般还有以下特征: (1)在运动形式上,线性现象一般表现为时空中的平滑运动,并可 用性能良好的函数关系表示,而非线性现象则表现为从规则运动向不规则运动的转化和跃变; (2)线性系统对外界影响的响应平缓、光滑,而非线性系统中参数的极微小变动,在一些关节点上,可以引起系统运动形式的定性改变。在自然界和人类社会中大量存在的相互作用都是非线性的,线性作用只不过是非线性作用在一定条件下的近似。 非线性问题研究的历史概况

非线性电路中的混沌现象

非线性电路中的混沌现象 实验指导及操作说明书 北航实验物理中心 2013-03-09 教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。

5.2 非线性电路中的混沌现象 二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。 5.2.1 实验要求 1.实验重点 ①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。 ②掌握用串联谐振电路测量电感的方法。 ③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。 ④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。了解用计算机实现实验系统控制和数据记录处理的特点。 2.预习要点 (1)用振幅法和相位法测电感 ①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。 ②串联电路的电感测量盒如图5.2-7所示。J1和J2是两个Q9插座,请考虑测共振频率时应如何连线?你期望会看到什么现象? ③考虑如何用振幅法和相位法测量共振频率并由此算得电感量?当激励频率小于、等于和大于电路的共振频率时,电流和激励源信号之间的相位有什么关系?

相关文档
最新文档