高维空间中一类正多面体的构造与其体积

高维空间中一类正多面体的构造与其体积
高维空间中一类正多面体的构造与其体积

三维化学-空间正多面体

高中化学竞赛辅导专题讲座——三维化学 第八节空间正多面体 前面几节我们学习了五种正多面体,以及它们在化学中的应用。此节我们将继续对这一内容进行讨论、总结与深化。 何为正多面体,顾名思义,正多面体的每个面应为完全相同的正多边形。对顶点来说,每个顶点也是等价的,即有顶点引出的棱的数目是相同的,相邻棱的夹角也应是一样的。那么三维空间里的正多面体究竟有多少种呢? 【例题1】利用欧拉定理(顶点数-棱边数+面数=2),确定三维空间里的正多面体。 【分析】从两个角度考虑:先看每个面,正多边形可以是几边形呢?我们知道三个正六边形共顶点是构成平面图形的。因此最多只可以是正五边形,当然还有正三角形和正方形;再看顶点,每个顶点至少引出三条棱边,最多也只有五条棱边(六条棱边时每个角应小于60°,不存在这样的正多边形)。因此,每个面是正五边形时,三棱共顶点;正方形时,也只有三棱共顶点(四个正方形共顶点是平面的);正三角形时,可三棱、四棱、五棱共顶点(六个正三角形共顶点也是平面的),当然也可以说,一顶点引出三条棱边时可以为正三角形面、正方形面和正五边形面;一顶点引出四条棱边时只可以为正三角形面;一顶点引出五条棱边时也只可以为正三角形面——共计五种情况,是否各种情况都存在呢?(显然是,各种情况前面均已讨论)我们用欧拉定理来计算。 ①正三角形,三棱共顶点:设面数为x,则棱边数为3x/2(一面三棱,二面共棱),顶点数为x(一面三顶点,三顶点共面),由欧拉定理得x-3x/2+x=2,解得x=4,即正四面体; ②正三角形,四棱共顶点:同理,3x/4-2x+x=2,解得x=8,即正八面体; ③正三角形,五棱共顶点:同理,3x/5-3x/2+x=2,解得x=20,即正二十面体; ④正方形,三棱共顶点:同理,4x/3-2x+x=2,解得x=6,即正方体; ⑤正五边形,三棱共顶点:同理,5x/3-5x/2+x=2,解得x=12,即正十二面体。 【解答】共存在五种正多面体,分别是正四面体、正方体、正八面体、正十二面体、正二十面体。 【例题2】确定各正多面体的对称轴类型Cn和数目(Cn表示某一图形绕轴旋转360°/n后能与原图形完全重合) 【分析】①正四面体:过一顶点和对面的面心为轴,这是C3轴,显然共有四条;有C2轴吗?过相对棱的中点就是C2轴,共三条。将正四面体放入

常见几何体的体积和表面积公式及三视图

常见几何体的体积和表面积公式及三视图 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常见几何体的体积和表面积公式及三视图谨记常见几何体的三视图特点:一般情况下,(1)视图中有两个是矩形的几何体是柱体;(2)视图中有两个是三角形的几何体是锥体;(3)视图有两个是梯形的几何体是台体;(4)视图中有两个是圆的几何体是球. (2016年全国II高考)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(2016年山东高考)有一个半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为 【2011全国新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【2017浙江,3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是 【2013课标全国Ⅰ,理8】某几何体的三视图如图所示,则该几何体的体积为(2016年浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3. (2016年全国I高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是 28π3,则它的表面积是 【2017山东,理13】由一个长方体和两个1 4 圆柱体构成的几何体的三视图如右图,则该 几何体的体积为 . 【2014课标Ⅰ,理12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()

正多面体与平面展开图

正多面体 与平面展开 图 By Laurinda..201604开始总结,网络搜集 正四面体正六面体正八面体正十二面体正二十面体正四面体正六面体 正八面体正十二面体 正二十面体

正方体展开图 相对的两个面涂上相同颜色,正方体平面展开图共有以下11种。

邻校比我们学校早了几天举行段考,拿他们的数学卷子提供给学生充做模拟考,其中有一题作图题,不好做,它要求将右图,一个由正方形和等腰直角三角形组成的五边形,以两条线切割,重组成一个等面积的等腰直角三角形。 这题让学生和我「奋战」了几节课,却总是画不成。理论上它是可以成立的,因为等腰直角三角形可以和一个正方形等面积,而且由商高定理可以知道,存在一个正方形A,它的面积等于任意两个正方形B、C的面积和。只要A的边长是这两个正方形B、C的边长平方和的正平方根即可。而正方形当然可以等积于一个等腰直角三角 形。 但是如何以两条直线完成这道题呢? 今天(5/19),我利用周休继续思考这道题,终于完成了,做法如左。

多面体之Euler's 公式(V - E + F = 2) V =顶点数( number of vertices) ; E = 边数(number of edges) ; F = 面数(number of faces) 正四面体(Tetrahedron) V=4,E=6,F=4, 4 - 6 + 4 = 2 正六面体(Cube) V=8,E=12,F=6, 8 - 12 + 6 = 2 正八面体(Octahedron) V=6,E=12,F=8, 6 - 12 + 8 = 2 正十二面体(Dodecahedron) V=20,E=30,F=12, 20 - 30 + 12 = 2 正二十面体(Icosahedron) V=12,E=30,F=20,12 - 30 + 20 = 2

趣味数学高中数学第10课时立体几何趣题正多面体拼接构成新多面体面数问题教学

立体几何趣题——第10课时正多面体拼接构成新多面体面数问题训练学生空间想象能力,动手动脑能力,提高学习数学兴趣教学要求: 教学过程:一、问题提出“立体几何多面体”一节的课堂教学中,老师给出了一道例题:)》在《数学(高二下册所使一个表面重合,“已知一个正四面体和一个正八面体的棱长都相等,把它们拼接起采,他们通过直观感知,对于这个问题学生们表现出了极大的兴趣.得的新多面体有多少个面?”个面,两者各有一个面重叠,因此减少两个12提出了自己的看法:正四面体和正八面体共个面.面,所以重合之后的新多面体有10 二、故事介绍 多年前美国的一次数学竞赛教师乘着学生浓厚的兴趣讲了一个与这道例题有关的故事. 问重合一个面后还有几所有棱长都相等,中有这样一道题:一个正三棱锥和一个正四棱锥,个面,9大学教授给这道竞赛题的参考答案是7个面,他们认为正三棱锥和正四棱锥共个面?但佛罗里达州的一名参赛减少两个面,所以重合之后还有7个面。两者各有一个面重叠,于是5个面,与参考答案不合而被判错误,对此丹尼尔一直有所疑惑,学生丹尼尔的答案是个面;他动手拼接了符合题意的正三棱锥和正四棱锥实物模型,结果正如他所判断的只有5教授们接受了他的想法并改正了这道题的答他将自己的结论和实物模型提交给竞赛组委会,案。三、操作确认请同学们拿出故事讲完后学生立刻对丹尼尔的结论进行了激烈地讨论.于是教师建议:学)来确认自己的结论.(课前分组做出上述两个问题的实物模型,通过自己的操作模型组合生展示大小不一的实物模型.教师让每个组的学生代表在讲台上演示实物模型的组合过全班同学明白丹尼尔结论的原因所在.同时也观察到了正四面体和正程.通过观察、讨论,这与学生们在上一节课通过直观感知所得的结论是不八面体重合之后新多面体只有七个面,原因在于他们发现在重合过程中正四面体和正八面体另有两个侧面分别拼接成一个一致的。面了.四、思辩论证老师要求学生利用立体几何的相关知识,对操作实物模型得出的结论进行证明。学生将正八面体和正四面体拼接的两个侧面想象成两个半平面拼对照实物模型提出了证明思路: 180在正八面体.证明如下:如图1接成一个平面即表示这两个半平面所构成的二面角为,.设正八面体的棱长OBE于点交平面AC中,连结AC

专题18多面体的表面积和体积(解析版)

1 8 专题18 多面体的表面积和体积(解析版) 多面体,因其具有考查直观想象、逻辑推理、数学抽象的素养的特性,越来越引起出题专家组的青睐。 易错点1:基础知识不扎实 (1)对立几中一些常见结论要做到了然于胸,如:关于三棱锥中顶点在底面三角形上的射影问题的相关条件和结论要在理解的基础上加以熟记; (2)在思维受阻时,要养成回头看条件的习惯,问一问自己条件是否都用了呢? 易错点2:平面化处理意识不强,简单的组合体画不出适当的截面图致误 易错点3:“想图、画图、识图、解图”能力的欠缺,多面体与几何体的结构特征不清楚导致计算错误 易错点4:空间想象能力欠缺 题组一 1.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三 视图,则该多面体的表面积为 A .18+ B .54+ C .90 D .81 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是 9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右 两个侧面是矩形,边长为3 ,故面积都为,则该几何体的表面积为2(9 +18+ 2.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积 为

2 8 A .20π B .24π C .28π D .32π 【解析】该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得2r =,2π4πc r ==,由勾股定理得:( ) 2 2223 4l =+=, 21 π2 S r ch cl =++表4π16π8π=++28π=,故选C . 3.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几 何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r = A .1 B .2 C .4 D .8 【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为 22222422016r r r r ππππ+++=+,所以2r =. 题组二 4.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视 图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为

最常用的面积体积计算公式

用求面积、体积公式 1 平面图形面积 平面图形面积见表1-73。 平面图形面积表1-73 2 多面体的体积和表面积 多面体的体积和表面积见表1-74。 多面体的体积和表面积表1-74 3 物料堆体积计算 物料堆体积计算见表1-75。 物料堆体积计算表1-75 4 壳体表面积、侧面积计算 1-3-4-1 圆球形薄壳(图1-1) 图1-1 圆球形薄壳计算图 4-2 椭圆抛物面扁壳(图1-2) 图1-2 椭圆抛物面扁壳计算图1-3-4-3 椭圆抛物面扁壳系数计算 见图1-2,壳表面积(A)计算公式:

A=S x ·S y =2a×系数K a ×2b×系数K b 式中 K a 、K b ——椭圆抛物面扁壳系数,可按表1-76查得。 椭圆抛物面扁壳系数表表1-76 查表说明 [例]已知2a=24.0m,2b=16.0m,h x =3.0m,h y =2.8m,试求椭圆抛物面扁壳表面 积A。 先求出h x /2a=3.0/24.0=0.125 h y /2b=2.8/16.0=0.175 分别查表得系数K a 为1.0402和系数K b 为1.0765,则扁壳表面积A=24.0×1.0402× 16.0×1.0765=429.99m2 1-3-4-4 圆抛物面扁壳(图1-3) 图1-3 圆抛物面扁壳计算图 1-3-4-5 单、双曲拱展开面积 1.单曲拱展开面积=单曲拱系数×水平投影面积。 2.双曲拱展开面积=双曲拱系数(大曲拱系数×小曲拱系数)×水平投影面积。 单、双曲拱展开面积系数见表1-77。单双曲拱展开面积计算图见图1-4。 图1-4 单、双曲拱展开面积计算图

高三数学多面体与正多面体

高三数学多面体与正多面体 9.11多面体与正多面体 【教学目标】 了解多面体、正多面体的概念 【知识梳理】 1若干个平面多边形围成的几何体,叫做多面体. 2把多面体的任何一个面伸展为平面,如果所有其他各面都 在这个平面的同侧,这样的多面体叫做凸多面体. 3每个面都是有相同边数的正多边形,且以每个顶点为其一 端都有相同的数目的棱的凸多面体,叫做正多面体. 4.正多面体有且只有5种:正四面体、正六面体、正八面体、正十二面体、正二十面体 【点击双基】 1.一个正方体内有一个内切球面,作正方体的对角面,所得 截面图形是 答案:B 2.正多面体只有_____________种,分别为 ________________. 答案:5 正四面体、正六面体、正八面体、正十二面体、 正二十面体 3.在正方体ABCD-A1B1C1D1中,M、N分别是A1B1、BB1的中

点,则直线AM与CN所成的角的余弦值是_____________. 解析:过N作NP∥AM交AB于点P,连结C1P,解三角形即可. 答案: 【典例剖析】 【例1】已知甲烷CH4的分子结构是中心一个碳原子,外围有4个氢原子(这4个氢原子构成一个正四面体的四个顶点).设中心碳原子到外围4个氢原子连成的四条线段两两组成的角为θ,则cosθ等于 A.- B. C.- D. 解析:将正四面体嵌入正方体中,计算易得 cosθ==-(设正方体的棱长为2). 答案:A 【例2】试求正八面体二面角的大小及其两条异面棱间的距离. 解:如图,设正八面体的棱长为4a,以中心O为原点,对角线DB、AC、QP为x轴、y 轴、z轴建立空间直角坐标系,则A(0,-2a,0)、B(2a,0,0)、C(0,2a,0)、P(0,0,2a),设E为BC的中点,连结PE、QE、OE,则∠PEQ=2∠PEO即为所求二面角的平面角,∵OE=2a,OP=2a,∴tan∠PEO=,∠PEQ=2arctan.设n=(x,y,z)是AB与PC的公垂线的一个方向向量,则有n?=x+y=0,n?=y-z=0,解得

多面体的体积和表面积计算公式大全

多面体的体积和表面积 「-一个蛆含三馅形的面积 M -粗合三角形的个数 u-惟底备嗣角皤交点 S = Q71+ 气+ 0 Si=an 国荏: 矿=*?』 5 = 2?cfi ? h +3寂。 6 ■ 2trR * h 空心直回柱: F =双中T 气=由耕 s= Mjnmdj?顼) 尺寸符号 体税(/)底面积(月 表面税(罚刨表面积(用) 『 =(? 4 =物' 长 方 体 A 棱 住 V V =a*b*h S = + a ? fi +b * h) d 三J/w*十护 V = ^F*h 3 S 二刀?丁 ■+ F 3\= ?!?/

矿?上如 3 § = 2上'七= ftr/ s 4 7 ntf‘ 5 V - _q ------------- 0.52W 3 3 6 h H =/ni 2 H ■三仲电曜44鬼 3 5=号伽+tn = 157g+d) GUX 员=使儡+AJ 矿.晋.(炉+ F + &) & M H?侦廿)

方-球缺的高 「-球缺半径 《-平切圆直径跖 =曲面面积『球缺 表面积 成-球半径 出。-底面半径 有-腰局 & -球心。至带底回心3)的距离 为-中间断面直径 I-底直径 [-桶高 a,b,c-半轴 r—圈注半役 tJ-?柱长F = *(『_鸟 3 43 $?点仲小) 芥=飒为-的) 矿小snfw’ S-4^2Ry?/以■明4无阳 矿.史(3爬+3词+殆 S = +西村 +的) 对于胭物嬲形棉体 J/ =史(2户+应4■兰占。 15 4 对于圆形橘体 4君渺十户) p = H]_

冬5-下底边长m-上底迓长卜上、下底遭距离(高) 尺寸符号V- -[(2^ +flj)& +口灼+a)6J 6 二一[口8 H 口中口U(b+ 四)+豹刀 6 fl = /? = 0.77^ 4 = 1414? =1.414./? J郭L+勺 -'血 fin er 2 常用图形求面积公式 田-边长 b-对角投 d"厂对墙恭 Ct-对龟钱夹侑 面积(F)表面积(S)

【趣味数学】高中数学校本课程:第10课时 立体几何趣题——正多面体拼接构成新多面体面数问题

第10课时立体几何趣题—— 正多面体拼接构成新多面体面数问题 教学要求:训练学生空间想象能力,动手动脑能力,提高学习数学兴趣 教学过程: 一、问题提出 在《数学(高二下册)》“立体几何多面体”一节的课堂教学中,老师给出了一道例题:“已知一个正四面体和一个正八面体的棱长都相等,把它们拼接起采,使一个表面重合,所得的新多面体有多少个面?”对于这个问题学生们表现出了极大的兴趣.他们通过直观感知,提出了自己的看法:正四面体和正八面体共12个面,两者各有一个面重叠,因此减少两个面,所以重合之后的新多面体有10个面. 二、故事介绍 教师乘着学生浓厚的兴趣讲了一个与这道例题有关的故事.多年前美国的一次数学竞赛中有这样一道题:一个正三棱锥和一个正四棱锥,所有棱长都相等,问重合一个面后还有几个面?大学教授给这道竞赛题的参考答案是7个面,他们认为正三棱锥和正四棱锥共9个面,两者各有一个面重叠,减少两个面,所以重合之后还有7个面。但佛罗里达州的一名参赛学生丹尼尔的答案是5个面,与参考答案不合而被判错误,对此丹尼尔一直有所疑惑,于是他动手拼接了符合题意的正三棱锥和正四棱锥实物模型,结果正如他所判断的只有5个面;他将自己的结论和实物模型提交给竞赛组委会,教授们接受了他的想法并改正了这道题的答案。 三、操作确认 故事讲完后学生立刻对丹尼尔的结论进行了激烈地讨论.于是教师建议:请同学们拿出课前分组做出上述两个问题的实物模型,通过自己的操作(模型组合)来确认自己的结论.学生展示大小不一的实物模型.教师让每个组的学生代表在讲台上演示实物模型的组合过程.通过观察、讨论,全班同学明白丹尼尔结论的原因所在.同时也观察到了正四面体和正八面体重合之后新多面体只有七个面,这与学生们在上一节课通过直观感知所得的结论是不一致的。原因在于他们发现在重合过程中正四面体和正八面体另有两个侧面分别拼接成一个面了. 四、思辩论证 老师要求学生利用立体几何的相关知识,对操作实物模型得出的结论进行证明。学生对照实物模型提出了证明思路:将正八面 体和正四面体拼接的两个侧面想象成两个半平 面拼接成一个平面即表示这两个半平面所构成 180.证明如下:如图1,在正八面 的二面角为 体AC中,连结AC交平面BE于点O.设正八 面体的棱长为1,BF的中点为D,连结AD、 CD,易得∠ADC为二面角A―BF―C的平面

多面体与正多面体

高三第一轮复习数学---多面体 一、教学目标:了解多面体、正多面体的概念,了解多面体的欧拉公式,并利用欧拉公式解决有 关问题; 二、教学重点: 1、欧拉公式 (如何运用) 2、割补法求体积 三、教学过程: (一)主要知识: 1、若干个平面多边形围成的几何体,叫做多面体. 2、把多面体的任何一个面伸展为平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体. 3、表面经过连续变形可变为球面的多面体叫做简单多面体。一切凸多面体都是简单多面体。 4、每个面都是有相同边数的正多边形,且以每个顶点为其一端都有相同的数目的棱的凸多面体,叫做正多面体. 5、如果简单多面体的顶点数为V,面数为F,棱数为E,那么V+F-E=2,这个公式叫做欧拉公式. 6 思维方式: 空间想象及转化思想 特别注意: 研究多面体时,不要脱离棱柱棱锥的概念和性质,而要以它们为基础去认识多面体,并讨论多面体的特点和性质.欧拉公式的适用范围为简单多面体. (二)例题分析: 例1:(1)给出下列命题①正四棱柱是正多面体②直四棱柱是简单多面体③简单多面体就是凸多面体④以正四面体各面中心为顶点的四面体仍为正四面体,其中真命题个数为( )个 A.1 B.2 C.3 D.4 (2)一个凸多面体的棱数为30,面数为12,则它的各面多边形的内角总和为__ 解:(1) B (2)同欧拉公式V=E-F+2=20,所以内角总和为(V-2)×360°=6480°. 思考题:一个多面体,每个面的边数相同且小于6,每个顶点出发的棱数也相同,若各个面的内角总和为3600°,求这个多面体的面数、顶点数及棱数.(20,12,30) 思维点拨:运用公式V+F-E=2 例2: 已知某金属元素的单晶体外形是简单几何体,此晶体有三角形和八边形两种晶面,如果此晶体有24个顶点,以每个顶点为一端都有三条棱,计算此晶体的两种晶面的数目. 解:由于晶体各面不都是边数相同的多边形,因此面数是两种多边形面数之和,棱数仍然是各面边数总和的一半,另一方面,由顶点数及每一顶点发出的棱数也可求出多面体的棱数,设三角形晶面x 个,八边形晶面有y 个,则F=x+y ,同时V=24,∴E=36,由欧拉公式:24+(x+y)-36=2, x+y=14, E= 2 1(3x+8y)=36, ∴x=8, y=6.

最新人教版七年级数学上册第四章正多面体

正多面体 有一次一个平常的英国孩子詹姆斯,在醉心于制作多面体模型时,写信给父亲:“……我做了四面体、十二面体以及两个不知道名称的多面体.”他当时还是一个毫无名气的孩子.这些话意味着伟大物理学家詹姆斯·克拉克·麦克斯韦尔诞生了.想象一下,你们自己和你们亲人醉心于制作几何物体模型的情形.本书的这几页是家庭作业.新年临近,这是最欢乐和美丽的节日.除了传统的枫树装饰(炮仗和小挂灯)外,你们可以制作几何玩具.这是用彩色纸做成的正多面体模型.考察下图,在这图上画着四面体、正方体、八面体、十二面体和二十面体.它们的形状是完美的典型! 你们能觉察到一系列有趣的特点,也正是这些性质使它们得到了相应的名称.每一个正多面体的所有面都是相同的正多边形,在每一个顶点集聚着同样数量的棱,而相邻的面在相等角下毗连. 数一下每一个多面体具有的顶点数(V)、棱数(E)和面数(F),并且把结果记入表中. 在最后一栏,这些多面体得到的是同一个结果:V+F-E=2.最令人惊奇的是它不仅对正多面体,而且对所有多面体都正确! 若有兴趣你们可以对某些胡乱取得的多面体进行验证.最伟大的数学家之一列昂纳德·欧拉(1707-1783)证明了这一令人惊叹的关系式,因此公式以他命名:欧拉公式.这位出生于瑞士的天才学者几乎整个一生居住在俄罗斯,我们完全有理由和自傲地将他引为自己的同胞. 正多面体还有一个特点.我们发现:正四面体有一性质:如果把它的每个面的中心作为新的多面体的顶点,那么我们重新得到一个正四面体.余下的4个正多面体恰可分成两对.正方体各面的中心组成一个正八面体,而正八面体各面的中心则组成正方体.同样,可以发生的另一对类似联系是正十二面体和正二十面体. 正多面体所具有的完美的形状和漂亮的数学规律使这五种几何物体具有某种神秘色彩,以致于很久以前它们就是神术者和占星家的必要伴侣.如果你们致力于正多面体的研究和制作,那么肯定会使你们感到欢乐和满意,甚至有可能在新的一年里给你带来好运气! 在下图中给出这些枞树上玩具的展开图.在制作模型时不要忘记在需要的地方留一片瓣膜为粘接用.

高考第一轮复习数学 多面体与正多面体

9.11 多面体与正多面体 ●知识梳理 1.每个面都是有相同边数的正多边形,每个顶点为端点都有相同棱数的凸多面体,叫做正多面体. 2.正多面体有且只有5种.分别是正四面体、正六面体、正八面体、正十二面体、正二十面体. ●点击双基 1.一个正方体内有一个内切球面,作正方体的对角面,所得截面图形是 A B C D 答案:B 2.正多面体只有_____________种,分别为________________. 答案:5 正四面体、正六面体、正八面体、正十二面体、正二十面体 3.在正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是A 1B 1、BB 1的中点,则直线AM 与CN 所成的角的余弦值是_____________. 解析:过N 作NP ∥AM 交AB 于点P ,连结C 1P ,解三角形即可. 答案: 5 2 ●典例剖析 【例1】 已知甲烷CH 4的分子结构是中心一个碳原子,外围有4个氢原子(这4个氢原子构成一个正四面体的四个顶点).设中心碳原子到外围4个氢原子连成的四条线段两两组成的角为θ,则cos θ等于 A.-31 B. 31 C.- 21 D. 21 解析:将正四面体嵌入正方体中,计算易得 cos θ= 3 32)22()3()3(2 22??-+=- 3 1 (设正方体的棱长为2). 答案:A 【例2】 试求正八面体二面角的大小及其两条异面棱间的距离. 解:如图,设正八面体的棱长为4a ,以中心O 为原点,对角线DB 、AC 、QP 为x 轴、y 轴、z 轴建立空间直角坐标系,则A (0,-22a ,0)、B (22a ,0,0)、C (0,22a ,

几种正多面体的相互呼应

几种正多面体的相互呼应 南师附中江宁分校 韦恩培 近年来,在高考中常考查以某一正多面体为背景的立体几何题,此类问题运用不同的方法解决效果是显然不同的。 1、 常用的三种正多面体的呼应 众所周知,正多面体只有五种:正四面体,正六面体,正八面体,正十二面体,正 二十面体。 正四面体,正六面体,正八面体之间可以相互呼应。 在正方体中可以产生正四面体;(正方体对面的一对异面对角线的顶点是正四面体的顶点)如图(1) 在正方体中可以产生正八面体;(正方体六个面的中心是正八面体的顶点)如图(2) 在正八面体中可以产生正方体;(正八面体的八个面的中心是正方体的顶点)如图(3) 在正八面体中可以产生正四面体;(正八面体的两对对面的中心,连线异面的四个面的中心是正四面体的顶点)如图(4) 在正四面体中可以产生正八面体;(正四面体六条棱的中点是正八面面体的顶点)如图(5) 在图(5)的基础上,结合图(4)就能在正四面体中产生正方体。 图(1) 图(2) 图(3) 图(4) 图(6) 相互转化的目的。 2、应用呼应解题

在高考的考查中经常会利用它们之间的相互转化而达到巧解的目的。 例1、一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为( ) A .3π B .4π C .3π3 D .6π 提示:利用图(1)正方体产生正四面体具有共同的外接球,即求棱长为1的正方体的外接球的表面积,易求得为π3,选A 。 例2、有一棱长为a 的正四面体骨架(架的粗细忽略不计),其内放置一气球,对其充气,使其尽可能地膨胀(成为一个球)则气球表面积的最大值为 ( ) A .2 a π B . 22 2a π C .2 2 1a π D . 24 1a π 提示:利用图(2)正方体可以产生正八面体,正八面体可以产生正四面体知,符合条件的球即为棱长为 a 2 2 的正方体的内切球,易求得其表面积为221a π,故选C 。 例3、如图(6)棱长为a 的正方体1111D C B A ABCD -,过11BC A 的平面截去正方体一角(三棱锥111BC A B -),象这样依次截去正方体所有角,则剩下的几何体的体积为 。 提示:根据图(2)在正方体中可以产生正八面体得,所剩下几何体为 正方体的六个面中心作为顶点的正八面体,易求得其体积为 3 6 1a 。 例4、在甲烷的分子式4CH 中,四个H 位于一个正四面体的四个顶点上,C 位于该正四面体的中心,现已知H 与H 之间的距离为a ,则C 与H 之间的距离为 。 提示:由图(1)易知:该问题等价于已知正方体的面对角线长为a ,求正方体对角线长的一半。易求得结果为 a 4 6 。 例5、正三棱锥S —ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成的角等于 ( ) A . 90 B . 60 C . 45 D . 30 提示:根据图(1)易知答案为C 。

正多面体的顶点坐标

正多面體的頂點坐標 國立台灣師範大數學系 陳創義 要利用GSP 來作多面體,先要從立體的基本正多面體下手,在正多面體中有許多的對稱,包括旋轉對稱、面對稱、線對稱、點對稱等,因此下列舉出旋轉對稱中的旋轉軸置於z 軸時,某些較簡單形式的頂點坐標標出來,其中旋轉軸在四面體選取的有點到底面中心的連線及兩稜中點連線兩種,另外,正六面體、正八面體、正十二面體、正二十面體選取的有面中心到面中心的連線、稜中點到稜中點的連線、頂點到頂點的連線三種。若一線段長度為a ,正射影到xy 平面的長度為b ,該線段正投影到z 軸的長度為c ,利用畢氏定理知道它們的關係是a 2=b 2+c 2。 正四面體頂點坐標 令表繞旋轉角度O R O a b a b a b O ==-+(,),(,)(,)(cos s i n ,s i n cos ).00θθθθθθ (一) v v v R O v R O 1001283013312083013424083013 ==-=?-=?-(,,);( ,,);((,)(,),);((,)(,),). (二) v v v v 12301322301330231340231 3 ==-=-=--( ,,);(,,);(,,);(,,). 正六面體頂點坐標

(一 ) 12(3(453;64;71;8 2.v v v v v v v v v v v v =====-=-=-=- (二 ) 12(34(53;64;72;8 1.v v v v v v v v v v v v =====-=-=-=- (三 ) 1111(0,0,1);2( );3(((,120)();4(((,240)();33333354;62;73;8 1.v v v R O v R O v v v v v v v v ===?=?=-=-=-=- 正八面體頂點坐標 (一 ) 12((,1203((,24043;51;6 2.v v R O v R O v v v v v v ==?=?=-=-=- (二 ) 12(3(0,1,0); 43;52;6 1.v v v v v v v v v ====-=-=- (三) 1(1,0,0);2(0,1,0);3(0,0,1);43;52;6 1.v v v v v v v v v ====-=-=-

三年级科技小制作-正多面体

三年级科技小制作-正多面体 正多面体这个是三年级科技小制作,所谓正多面体是指多面体的各个面均呈全等正多边形,每个正多面体的各边的长和顶角的交角均相等。常见正多面体有:正四面体、正六面体、正八面体、正十二面体、正二十面体。三年级科技小制作所需材料和工具:纸板、白胶、铅笔、直尺、广告色、剪刀、美工刀 三年级科技小制作制作过程: 三年级科技小制作相关知识●魔方 魔方,又叫魔术方块,也称鲁比克方块,是匈牙利布达佩斯建筑学院厄尔诺·鲁比克教授于1974年发明的,魔方系由富于弹性的硬塑料制成的六面正方体。魔方与中国人发明的“华容道”,法国人发明的“独立钻石”一起被称为智力游戏界的三大不可思议,而魔方受欢迎的程度更是智力游戏界的奇迹。当初厄尔诺·鲁比克教授发明魔方,仅仅是作为一种帮助学生增强空间思维能力的教学工具。但要使那些小方块可以随意转动而不散开,不仅是个机械难题,还牵涉到木制的轴心、座和榫头等问题。直到魔方在手时,他将魔方转了几下后,才发现如何把混乱的颜色方块复原竟是个有趣而且困难的问题。厄尔诺·鲁比克决心大量生产这种玩具。魔方发明后不久就风靡世界,人们发现这个小方块组成的玩具实在是奥妙无穷。魔方核心是一个轴,并由二十六个小正方体组成。包括中心方块六个,固定不动,只一面有颜色,边角方块八个(三面有色)(角块)可转动,边缘方块十二个(两面有色)(棱块)亦可转动。玩具在出售时,小立方体的排列使大立方体的每一面都具有相同的颜色。当大立方体的某一面平动旋转时,其相邻的各面单一颜色便被破坏,而组成新图案立方体,再转再变化,形成每一面都由不同颜色的小方块拼成。玩法是将打乱的立方体通过转动尽快恢复成六面呈单一颜色。魔方品种较多,平常说的都是最常见的三阶立方体魔方。其实,也有二阶、四阶、五阶等各种立方体魔方(目前有实物的最高阶为九阶魔方)。还有其他的多面体魔方,魔方的面也可以是其他多边形。如五边形十二面体:五魔方,简称五魔,又称正十二面体魔方。 1

正多面体在ProE中的创建方法总结

【概述】: 详细讲解了如何在proe中应用几何约束的方法来创建正四面 体、正八面体、正二十面体、正十二面体和足球多面体的方法,概括性和实用性高 2. 如何构建正多面体? 在数学上,我们要在空间表达构成多面体的正多边形的位置需要经过一番较为复杂的几何推算过程,但利用三维CAD软件的特殊几何约束方式,我们能够通过简单的布置来求解得到这些值,下面我们就通过具体的例子来讲解如何利用这些几何约束来求解。 a)正四面体(四个三角形,同一顶点有三个三角形) 这四面体比较简单,四个正三角形构成 首先,我们创建底部的正三角形,然后以其中的一条边作为旋转中心,草绘一条和已有边长相等的直线段并成60度,然后绕旋转中心旋转180度,很显然我们要求的正四面体的另一个顶点就在这个旋转面的边上 然后考虑这个形状的特殊性,正四面体的另一个顶点必定在通过底面的正三角形的重心并垂直于改平面的中心轴上,这样我们即可以得知中心轴和上面的顶点轨迹的交点就是我们要求的另外一个顶点,求得顶点后,使用底部的三角边和顶部进行边界混成就可以完成我们的正四面体的创建了。 b)正八面体(八个正三角形,同一顶点有四个三角形)

因为对于正八面体,每一个顶点都有4个正三角形,而这四个三角形是相互相邻并完全一样的,所以它们的公共顶点对面的四条边必定是构成一个正方形,考虑到它刚好有8个三角形,那么这个正方形必定是在对称中心,弄明白这个道理后,我们的创建就变得相当简单了,后面的处理方式就和我们的正四面体的处理方式大同小异 同样的方式获得其中一个顶点,然后是边界混成得到一半的形状。然后再镜像过去就完成了最后的正八面体的创建。 c)正二十面体(20个三角形,每个顶点有5个三角形) 对于前面的分析,其实和正八面体是一样的分析方法,因为对于某个顶点而言,它有5个相邻的三角形,这5个三角形的公共顶点对边必定是构成一个正5边形。 正五边形草绘,然后以其中的一边作旋转轴旋转一条60度的直线段,这里我们旋转360度,因为两边都需要使用。

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。 2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9- 29=2 9, ∴A 1O= 223,平行六面体的体积为2 2 345? ?=V 230=。 题型2:柱体的表面积、体积综合问题 例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是

第八节 空间正多面体

第八节空间正多面体 前面几节我们学习了五种正多面体,以及它们在化学中的应用。此节我们将继续对这一内容进行讨论、总结与深化。 何为正多面体,顾名思义,正多面体的每个面应为完全相同的正多边形。对顶点来说,每个顶点也是等价的,即有顶点引出的棱的数目是相同的,相邻棱的夹角也应是一样的。那么三维空间里的正多面体究竟有多少种呢? 【例题1】利用欧拉定理(顶点数-棱边数+面数=2),确定三维空间里的正多面体。 【分析】从两个角度考虑: 先看每个面,正多边形可以是几边形呢?我们知道三个正六边形共顶点是构成平面图形的。因此最多只可以是正五边形,当然还有正三角形和正方形;再看顶点,每个顶点至少引出三条棱边,最多也只有五条棱边(六条棱边时每个角应小于60°,不存在这样的正多边形)。因此,每个面是正五边形时,三棱共顶点;正方形时,也只有三棱共顶点(四个正方形共顶点是平面的);正三角形时,可三棱、四棱、五棱共顶点(六个正三角形共顶点也是平面的),当然也可以说,一顶点引出三条棱边时可以为正三角形面、正方形面和正五边形面;一顶点引出四条棱边时只可以为正三角形面;一顶点引出五条棱边时也只可以为正三角形面——共计五种情况,是否各种情况都存在呢?(显然是,各种情况前面均已讨论)我们用欧拉定理来计算。 ①正三角形,三棱共顶点: 设面数为x,则棱边数为3x/2(一面三棱,二面共棱),顶点数为x(一面三顶点,三顶点共面),由欧拉定理得x-3x/2+x=2,解得x=4,即正四面体; ②正三角形,xx顶点: 同理,3x/4-2x+x=2,解得x=8,即正八面体;③正三角形,五棱共顶点:

同理,3x/5-3x/2+x=2,解得x=20,即正二十面体;④正方形,三棱共顶点: 同理,4x/3-2x+x=2,解得x=6,即正方体;⑤正五边形,三棱共顶点: 同理,5x/3-5x/2+x=2,解得x=12,即正十二面体。 【解答】共存在五种正多面体,分别是正四面体、正方体、正八面体、正十二面体、正二十面体。 【例题2】确定各正多面体的对称轴类型Cn和数目(Cn表示某一图形绕轴旋转360°/n后能与原图形完全重合) 【分析】①正四面体: 过一顶点和对面的面心为轴,这是C 3轴,显然共有四条;有C 2轴吗?过相对棱的中点就是C 2轴,共三条。将正四面体放入正方体再研究一下吧(参考第一节)!C 3轴不就是体对角线吗()?而C 2轴就是正方体的相对面心()。 ②正方体: 存在C 4轴,即过相对面的面心,有三条;C 3轴,过相对顶点,有四条;C 2轴呢?用了面心和顶点,是否可用棱边呢?过相对棱的中点,不就是C 2轴吗?共有六条。

正多面体与平面展开图

正多面体与平面展开图 By Laurinda..201604开始总结,网络搜集 正四面体正六面体正八面体正十二面体正二十面体 正十二面体 正二十面体

正方体展开图 相对的两个面涂上相同颜色,正方体平面展开图共有以下11种。

邻校比我们学校早了几天举行段考,拿他们的数学卷子提供给学生充做模拟考,其中有一题作图题,不好做,它要求将右图,一个由正方形和等腰直角三角形组成的五边形,以两条线切割,重组成一个等面积的等腰直角三角形。 这题让学生和我「奋战」了几节课,却总是画不成。理论上它是可以成立的,因为等腰直角三角形可以和一个正方形等面积,而且由商高定理可以知道,存在一个正方形A,它的面积等于任意两个正方形B、C的面积和。只要A的边长是这两个正方形B、C的边长平方和的正平方根即可。而正方形当然可以等积于一个等腰直角三角 形。 但是如何以两条直线完成这道题呢? 今天(5/19),我利用周休继续思考这道题,终于完成了,做法如左。

多面体之Euler's 公式(V - E + F = 2) V =顶点数( number of vertices) ; E = 边数(number of edges) ; F = 面数(number of faces) 正四面体(Tetrahedron) V=4,E=6,F=4, 4 - 6 + 4 = 2 正六面体(Cube) V=8,E=12,F=6, 8 - 12 + 6 = 2 正八面体(Octahedron) V=6,E=12,F=8, 6 - 12 + 8 = 2 正十二面体(Dodecahedron) V=20,E=30,F=12, 20 - 30 + 12 = 2 正二十面体(Icosahedron) V=12,E=30,F=20,12 - 30 + 20 = 2

多面体简介

MTS2007第一屆全國高中數學教學研討會論文集市立高雄女中林義強 第九場次 第177頁至第192頁 多面體簡介{P o l y h e d r o n} kghs_john@https://www.360docs.net/doc/7113987188.html, 高雄市立高雄女中 林義強 編授 [ Contents ] : {1}.從柏拉圖多面體談起( Platonic Solids ) {2}.阿基米得多面體( Archimedean Solids ) {3}.加泰朗多面體( Catalan Solids ) {4}.喀卜勒-龐索多面體( Kepler-Poinsot Solids ) {5}.自製多面體模型玩具 {6}.參考資料 『Geometry is a skill of the eyes and the hands as well as of the mind.』 『幾何 是 眼、手 及 心靈 的 技能。』 J e a n J.P e d e r s o n 177

多面體簡介 { Polyhedron } 178 {1}. 從柏拉圖多面體談起( P l a t o n i c S o l i d s ) [1]. Construct Platonic Solids [2]. Important facts about Platonic Solids 柏拉圖多面體每面均由全等的正多邊形所組成,且要求每個頂點的組態一致;為"凸"的正多面體,共有正四面體( T e t r a h e d r o n ) , 正六面體( H e x a h e d r o n 或C u b e ) , 正八面體( O c t a h e d r o n ) , 正12面體( D o d e c a h e d r o n ) , 正20面體( I c o s a h e d r o n )等五個。 古希臘人已經知道有上述五個正多面體,柏拉圖( P l a t o , B C 427-B C 347 )在其著作 ( T i m a e u s )中已有描述;時約公元前350年。 歐基里得( E u c l i d o f A l e x a n d r i a , a b o u t B C 325-B C 265 ) 在其"幾何原本( E l e m e n t s )"最後一個命題也已完成証明 "凸正多面體恰有如上述五個"。 (P01). 正四面體: 4{3} (由 4 個正三角形構成) (P02). 正六面體: 6{4} (由 6 個正方形構成) (P03). 正八面體: 8{3} (由 8 個正三角形構成) (P04). 正十二面體: 12{5} (由 12 個正五邊形構成) (P05). 正二十面體: 20{3} (由 20 個正三角形構成)

相关文档
最新文档