第一章n阶行列式教案讲稿【哈工大版】

第一章n阶行列式教案讲稿【哈工大版】
第一章n阶行列式教案讲稿【哈工大版】

教学单元教案格式

线性代数课程教案

线性代数课程教案

第三章行列式

第二章 行列式 课外习题 一、判断题 1.若在n 阶行列式中等于零的元素个数超过2 n n -个,则这个行列式的值等于零。( ) 2.1112 13111213 21 22232122 331 323331 32 33 ca ca ca a a a a a a c a a a a a a a a a = ( ) 二、单选题 1. 若行列式21 1 2031 2 x --=-, 则x =( ) A. –2 B. 2 C. -1 D. 1 2.n 阶行列式0001 0010 01001 00 的值为( ) A. (1)n - B. 1 (1)2 (1) n n -- C. 1 (1)2 (1) n n +- D. 1 3.设ij A 是行列式A 的元素(),1,2,,ij a i j n = 的代数余子式,当i j ≠时下列各式中错误的是( ) A. 1122i j i j in jn A a A a A a A =++ B. 1122i i i i in in A a A a A a A =++ C. 1122j j j j nj nj A a A a A a A =++ D. 11220i j i j in jn a A a A a A =++ 4.行列式 0000 00000a b c d e f 的值等于( ) A. abcdef B. abdf - C. abdf D. cdf

5. 1111 222 2 0000000 a b c d a b c d =( ) A. 11222121a c b d a b c d - B. 22112211()()a b a b c d c d -- C. 12121212a a bb c c d d D. ()12211221()a b a b c d c d -- 6.设行列式1 112 2233 3,a b c D a b c a b c = 则 111111 2 22 222333 333223223223c b c a b c c b c a b c c b c a b c +++++++++ =( ) A. -D B. D C. 2D D. -2D 7.如行列式11 1213 21 22 2331 32 33a a a a a a d a a a =, 则31 3233 21222311 12 13 333222a a a a a a a a a ---=( ) A . -6d B . 6d C . 4d D . -4d 三、填空题 1. 四阶行列式 108519 620 73004000 =( ). 2. 排列12345a a a a a 的逆序数等于3,排列54321a a a a a 的逆序数等于( ). 3. n 阶行列式A 的值为c ,若将A 的第一列移到最后一列,其余各列依次保持原来的 次序向左移动,则得到的行列式值为( ). 4. n 阶行列式A 的值为c ,若将A 的所有元素改变符号,得到的行列式值为( ). 5. n 阶行列式A 的值为c ,若将A 的每个第(),i j 个元素ij a 换到第 () 1,1n i n j -+-+个元素的位置上,得到的行列式的值为( ). 6. n 阶行列式A 的值为c ,若将A 的每个ij a 换成()1i j ij a +-,则得到的行列式的值为 ( ). 7. n 阶行列式A 的值为c ,若将A 的每个ij a 换成() ()0i j ij b a b -≠,则得到的行列式 的值为( ). 8. n 阶行列式A 的值为c ,若从第二列开始每一列加上它前面的一列,同时对第一列 加上A 的第n 列,则得到的行列式的值为( ).

工程数学教案行列式的性质与计算

教案头 教学详案 一、回顾导入(20分钟) ——复习行列式的概念,按照定义计算一个四阶行列式,一般需要计算四个三阶行列式,如果计算阶数较高的行列式利用定义直接计算会比较麻烦,为简化行列式的计算,我们需要研究行列式的主要性质。 二、主要教学过程(60分钟,其中学生练习20分钟) 一、行列式的性质 定义 将行列式D 的行换为同序数的列就得到D 的转置行列式,记为T D 。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行(列),行列式变号。 推论 如果行列式有两行(列)完全相同,则此行列式为零。性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式。 推论 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。性质4 行列式中如果有两行(列)元素成比例,则此行列式为零。性质5 若行列式的某一列(行)的元素都是两数之和。 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。二、行列式按行(列)展开 定义 在n 阶行列式中,把元素 ij a 所在的第i 行和第j 列划去后,留下来的1-n 阶行列式叫做元素ij a 的余子式,记作ij A 。记ij j i ij M A +-=)1(,叫做元素ij a 的代数余子式。引理 一个n 阶行列式,如果其中第i 行所有元素除ij a 外都为零,那末这行列式等于ij a 与它的代数余子式的乘积,即 ij ij A a D =。定理 行 列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即 ),,2,1(,2211n i A a A a A a D in in i i i i =+++=。 推论 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即 j i A a A a A a D jn in j i j i ≠+++=,2211 。 行列式的代数余子式的重要性质: ???≠===∑=;,0,,1j i j i D D A a ij n k kj ki 当当δ???≠===∑=;,0, ,1j i j i D D A a ij n k jk ik 当当δ

n阶行列式的计算方法

n 阶行列式的计算方法 徐亮 (西北师大学数信学院数学系 , 730070 ) 摘 要:本文归纳总结了n 阶行列式的几种常用的行之有效的计算方法,并举列说明了它们的应运. 关键词:行列式,三角行列式,递推法,升降阶法,得蒙行列式 The Calculating Method of the N-order Determinant Xu Liang (College o f M athematics and Information Scien ce ,North west Normal Uni versit y , Lanzhou 730070,Gansu ,Chin a ) Abstract:This paper introduces some common and effective calculating methods of the n-order determinant by means of examples. Key words: determinant; triangulaire determinant; up and down order; vandermonde determinant 行列式是讨论线形方程组理论的一个有力工具,在数学的许多分支中都有这极为广泛的应用,是一种不可缺少的运算工具,它是研究线性方程组,矩阵,特征多项式等问题的基础,熟练掌握行列式的计算是非常必要的.行列式的计算问题多种多样,灵活多变,需要有较强的技巧.现介绍总结的计算n 阶行列式的几种常用方法. 1. 定义法 应用n 阶行列式的定义计算其值的方法,称为定义法. 根据定义,我们知道n 阶行列式 12121211 12121222() 1212(1)n n n n n j j j j j nj j j j n n nn a a a a a a a a a a a a π= -∑ L L L L L M M L M L .

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

计算N阶行列式若干方法

网上搜集的计算行列式方法总结, 还算可以. 计算n 阶行列式的若干方法举例 闵 兰 摘 要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。 关键词:n 阶行列式 计算方法 n 阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100200 10 000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 1122 11!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式n ij D a =的元素满足

,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明 由ij ji a a =-知ii ii a a =-,即 0,1,2, ,ii a i n == 故行列式D n 可表示为 1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a =

高二数学上册 9.4《三阶行列式》教案(3) 沪教

9.4(1)三阶行列式 一、教学内容分析 三阶行列式是二阶行列式的后继学习,也是后续教材学习中一个有力的工具.本节课的教学内容主要围绕三阶行列式展开的对角线法则进行,如何理解三阶行列式展开的对角线法则和该法则的应用是本节课的重点内容. 二、教学目标设计 经历观察、比较、分析、归纳的数学类比研究,从二阶行列式的符号特征逐步形成三阶行列式的符号特征,从二阶行列式展开的对角线法则逐步内化形成三阶行列式展开的对角线法则,感悟类比思想方法在数学研究中的应用. 三、教学重点及难点 三阶行列式展开的对角线法则、三阶行列式展开的对角线法则形成的过程. 四、教学用具准备 可以计算三阶行列式值的计算器 五、教学流程设计 六、教学过程设计 一、情景引入 1.观察

(1)观察二阶行列式的符号特征: 1325 023 1 - 612 711 - a b c d (2)观察二阶行列式的展开式特征: 13112321=?-? 02013(2)3 1-=?-?- 6 12 6(11)712711 =?--?- a b a d c b c d =?-? 2.思考 (1)二阶行列式算式的符号有哪些特征? (2)你能总结一下二阶行列式的展开式有哪些特征吗? [说明] (1)请学生观察二阶行列式的符号特征,主要是观察二阶行列式有几个元素,这几个元素怎么分布?从而可以类比得到三阶行列式的符号特征. (2)请学生观察和总结二阶行列式的展开式特征,可以提示学生主要着力于以下几个方面: ① 观察二阶行列式的展开式有几项? ② 二阶行列式的展开式中每一项有几个元素相乘;这几个元素在行列式中的位置有什么要求吗? ③ 二阶行列式的元素在其展开式中出现了几次?每个元素出现的次数一样吗? 二、学习新课 1.新课解析 【问题探讨】 结合情景引入的两个思考问题,教师可以设计一些更加细化的问题引导学生发现二阶行列式的符号特征以及二阶行列式的展开式特征,从而类比得到三阶行列式相应特征.比如教师可以设计如下几个问题: 问题一,通过学习和观察,我们发现二阶行列式就是表示四个数(或式)的特定算式,这四个数分布成两行两列的方阵,那么三阶行列式符号应该有怎么样的特征呢? 问题二,说出二阶行列式的展开式有哪些特征? (① 二阶行列式的展开式共有两项;② 二阶行列式的展开式中每一项有两个元素相乘;③ 相乘的两个元素在行列式位于不同行不同列;④ 二阶行列式的元素在其展开式中出现了

#行列式的计算方法 (1)

计算n 阶行列式的若干方法举例 1.利用行列式的性质计算 例: 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称 行列式, 证明:奇数阶反对称行列式为零. 证明:由ij ji a a =-知ii ii a a =-,即0,1,2, ,ii a i n == 故行列式D n 可表示为1213112 23213 233123000 n n n n n n n a a a a a a D a a a a a a -=-----,由行列式的性质A A '=,1213112 23213 23312300 00 n n n n n n n a a a a a a D a a a a a a -----=-12131122321323312300( 1)0 n n n n n n n a a a a a a a a a a a a -=------(1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 2.化为三角形行列式 例2 计算n 阶行列式123123 1 23 1 2 3 1111n n n n a a a a a a a a D a a a a a a a a ++=++. 解 这个行列式每一列的元素,除了主对角线上的外,都是相同的,且各列的结构相似,因此n 列之和全同.将第2,3,…,n 列都加到第一列上,就可以提出公因子且使第一列的元素全是1. [][]()()()()()()122323122 3231223231122 3 2 3 211 12, ,2,,11 111 1 1111 1111 11 1n n n n n n n n n i n i n n n n i i i i i n i n a a a a a a a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a a a a a ==+-==+++ +++++++??+++++=++ ??? +++ +++?? + ??? ∑∑3110100 111 . 00100 1 n n n i i i i a a a ==?? =+=+ ??? ∑∑

第三章 行列式讲解

第三章 行列式 在第一章中,我们用矩阵的初等行变换解决了线性方程组是否有解及求解的问题. 但这种方法,早已把方程组的系数和常数项变得面目全非了,无法给出解与方程组的系数和常数项之间的关系,本章就利用行列式来解决这一问题. 行列式不仅是研究线性代数的重要工具,在其它领域也有广泛应用. 本章介绍行列式的概念、性质、计算及应用. 3. 1行列式的概念 一、二阶和三阶行列式 首先我们通过解二元、三元线性方程组引入二阶和三阶行列式的定义. 对于二元线性方程组1111221 2112222 a x a x b a x a x b +=??+=?,利用消元法知,当112212210a a a a -≠时,求 得其解为 122212211121121122122111221221 ,b a b a b a b a x x a a a a a a a a --= =--. (3. 1) 上式作为二元线性方程组解的公式,给出了解与方程组的系数和常数项之间的关系, 但不好记忆. 为便于应用这个公式,我们引入二阶行列式的定义. 我们把四个数11122122,,,a a a a 排成两行两列构成的二阶方阵11122122a a A a a ?? = ??? 所确定的算式11221221a a a a -称为二阶行列式. 记为 1112 2122 a a a a 或A 或D ,即 1112 112212212122 == =-a a D A a a a a a a . 二阶行列式的定义可以用对角线法则来记忆,把11a 到22a 所在的连线称为主对角线,把12a 到21a 所在的连线称为副对角线,则二阶行列式等于主对角线上两元素乘积减去副对角线上两元素乘积. 利用二阶行列式的定义,(3. 1)式中1x ,2x 的分母可记为 1112 112212212122 a a a a a a D a a -==,称为线性方程组的系数行列式. 分子可记为

n阶行列式的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Key words (1) 引言 (1) 1定义法 (1) 2利用行列式的性质 (23) 化三角形行列式 (3) 4行列式按一行(列)展开 (4) 5 升阶法 (5) 6 递推法 (6) 7 范德蒙德行列式 (7) 8 拉普拉斯定理 (7) 9 析因法 (8) 小结 (10) 参考文献 (11)

n阶行列式的计算方法 学生姓名:孙中文学号:20120401217 数学与计算机科学系数学与应用数学专业 指导老师:王改霞职称:讲师 摘要:行列式是高等代数中最基本也是最重要的内容之一,是高等代数学习中的一个难点.本文主要探讨一般n阶行列式的计算方法和一些特殊的行列式求值方法.如:化三角形法、拉普拉斯定理法、升阶法等.总结了每种方法的行列式特征. 关键词:行列式;定义;计算方法 Abstract: Determinant is one of higher algebra the most fundamental and important content, is a difficult point in Higher Algebra Learning. This paper mainly discusses the general order determinant of calculation method and some special determinant evaluation method. Such as: triangle method, method of Laplace theorem, ascending order method. This paper summarizes the determinant of the characteristics of each method. Keywords: Determinant ;Definition ;Calculation method 引言 行列式是高等代数的一个非常重要的内容,同时它也是非常复杂的.它的计算方法多种多样.在我们本科学习中只解决了一些基本的有规律的行列式.当遇到低阶行列式时,我们可以根据行列式的性质及其定义便能计算得出结果.但对于一些阶数较大的n阶行列式来说,用定义法就行不通了,本文根据各行列式的特征总结了一些对应方法. 1定义法 n阶行列式计算的定义:

线性代数第三章习题解

线性代数第三章习题解 1. 计算下列行列式: 1) 4 321; 2) 2 2b b a a ; 3) 7 04 0- 解: 1) 26432414 321-=-=?-?=; 2) )(222 2a b ab b a ab b b a a -=-=; 3) 0)4(0707 40=-?-?=-. 2. 计算下列三阶行列式: 1) 241130 4 21--; 2) 320001753-; 3) b a c a c b c b a 解: 1) 将行列式按第一列展开 2) 将行列式按第二行展开 3) 3. 计算下列行列式: 1) 0 00 0000005 5 4433 2222211111b a b a b a e d c b a e d c b a ; 2) x y y x y x y x D n 0 0000 000 00 =; 3) f e d c b a 00000000 解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得 3) 先对第一列展开, 然后对第二列展开, 得 4. 利用行列式的性质计算下列行列式

1) 2 60 5 232112131412 -; 2) ef cf bf de cd bd ae ac ab ---; 3) 2 2 2 2 2222 2 2222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a 解: 下面都将所求行列式的值设为D . 1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得 3) 将第2,3,4列都展开, 并统统减去第1列, 得 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得 5. 把下列行列式化为上三角形行列式, 并计算其值 1) 1 5 2 3 21353140422 -----; 2) 2 1 6 4 72954 1732152----- 解: 1) 2) 6. 计算下列n 阶行列式 1) 12125 4 3 1432321-n n n 2) a b b b a b a 解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为 )1(2 1 321+= ++++n n n , 将此公因式提出, 因此有 再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得 2) 此题和第3题的2)一样, 因此有n n n b a D 1 )1(+-+= 7. 证明下列行列式 1) ))()((1 11 a c c b b a ab ca bc c b a ---=

线代教案第1章行列式

第1章行列式(共4学时) 一、教学目标及基本要求 1.了解逆序数的概念 2.掌握n阶行列式的定义和行列式的性质 3.掌握行列式的按行(列)展开定理 4.利用行列式的性质和展开定理计算行列式的值 二、教学内容与学时分配 1.预备知识 2.n阶行列式的定义(2学时) 3.行列式的性质 4.行列式的展开(2学时) 三、教学内容的重点及难点 重点:利用行列式性质及展开计算行列式 难点:行列式的计算技巧 四、教学内容的深化和拓宽 行列式的拉普拉斯展开定理及行列式在实际中的应用,或讲稿中部分结论推广 五、思考题与习题 思考题:见讲稿 作业:2,(2),(4),(6);3,(1),(3);7,(1),(3),(5) 六、教学方式与手段 注意行列式定义的引入,应用启发式

讲稿内容 1.1 预备知识 为什么要学习行列式呢?因为它是一个很重要的数学工具,在数学的各个分支中都经常用到,比如,用二阶行列式来解二元线性方程组,用三阶行列式来解三元方程线性组等;又如,已知平面的三点 ),(),,(),,(332211y x y x y x ,则以这三点为顶点的三角形面积为下面行列式的绝对值:.1112 1 3 3 22 11 y x y x y x 这一章主要引进行列式的概念并讨论行列式的性质,以及利用行列式的性来计算行列式的值。下面我们利用线性方程组的求解引入行列式的概念。 设有二元线性方程组 ?? ?? ?=+=+)2()1(22221211212111b x a x a b x a x a 可用消元法来解该方程组。 1222211211222111222)(:)2()1(a b a b x a a a a a a -=-?-? 2111122211222112111)(:)1()2(a b a b x a a a a a a -=-?-? 若0)(21122211≠-a a a a ,则21 1222112111122211222111222211,a a a a a b a b x a a a a a b a b x --=--= 如果我们定义 bc ad d c b a -=, d c b a 称为二阶行列式,横排称为行,纵排称为列,二阶行列式共有二行 二列四个元素,其值等于主对角线元素之积与次对角线元素之积的差。这样一来,二元线性方程组的解可简 单表示为 D D x D D x 2211,== 其中22 211211a a a a D = 为方程组未知数的系数所组成的行列式称为方程组的系数行列式; 2221211a b a b D = (用方程组的常数项代替系数行列式的第1列) 2 211 11 2b a b a D = (用方程组的常数项代替系数行列式的第2列) 类似地,我们可用三阶行列式来解三元线性方程组: ??? ??=++=+=++33332321 3123232221211 313212111b x a x a x a b x a x a x a b x a x a x a + 定义32211331231233221133 32 31 23222113 1211 a a a a a a a a a a a a a a a a a a D ++==

线性代数§1.2n阶行列式习题与答案

§ n 阶行列式 为了得到更为一般的线性方程组的求解公式,我们需要引入n 阶行列式的概念。为此,先介绍排列的有关知识。 ㈠排列与逆序:(课本P4) 1、排列的定义:由数码1,2,…,n ,组成一个有序数组12n i i i L , 称为一个n 级排列。 【例1】1234是一个4级排列, 3412也是一个4级排列, 而52341是一个5级排列。(课本P4中例) 【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个。 【例3】数字由小到大的n 级排列1234…n 称为自然序排列。 2、逆序的定义:在一个n 级排列12n i i i L 中,如果有较大的数t i 排在s i 的前面,则称t i 与s i 构成一个逆序。(课本P4) 【例4】在4 级排列3412中, 31,32,41,42,各构成一个逆序, 在5 级排列34152中, 31,32,41,42,52,共构成5个逆序。 3、逆序数的定义:一个n 级排列12n i i i L 中逆序的总数,称为这个排列的逆序数,记为12()n N i i i L 。(课本P4) 【例5】排列3412的逆序数为N (3412) = 4, 排列52341的逆序数为N (52341) = 7, 自然序排列的逆序数为0。 4、奇、偶排列的定义:如果排列12n i i i L 的逆序数12()n N i i i L 是奇数,

则将12n i i i L 称为奇排列;如果排列12n i i i L 的逆序数12()n N i i i L 是偶数,则将12n i i i L 称为偶排列。(课本P4) 【例6】由于N (3412) = 4,知排列3412是偶排列, 由于N (52341) =7,知排列52341是奇排列, 由于N (123…n ) = 0,知自然排列123…n 是偶排列。 【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。奇偶排列各占一半。 5、对换的定义:在一个n 级排列1t s n i i i i L L L 中,如果其中某两个数t i 与s i 对调位置,其余各数位置不变,就得到另一个新的n 级排列 1s t n i i i i L L L ,这样的变换称为一个对换,记作(,)t s i i 。(课本P5) 【例8】在排列3412中,将4与2对换, 得到新的排列3214。 【例9】偶排列3412经过4与2的对换后,变成了奇排列3214; 反之,奇排列3214经过2与4的对换后,变成了偶排列3412。 定理 任意一个排列经过一个对换后,其奇偶性改变。(课本P5) 定理的证明见课本P5。 【例10】奇排列132经对换(3,2)得到偶排列123, 偶排列312经对换(1,2)得到奇排列321。 定理1. 2 n 个数码(2n )共有n !个n 级排列,其中奇、偶排列各占一半。(课本P6) 定理的证明见课本P6。 【例11】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3! = 6个,其中,奇排列有132,213,321三个,偶排列有

方阵的行列式教案

第四章 第一节 行列式的定义 『教案』 一、教学目标: 1. 了解行列式的定义和性质; 2. 掌握二阶、三阶行列式的计算法,会计算简单的n 阶行列式; 3. 了解排列与对换; 4. 会用Gramer 法则解线性方程组。 二、教学重点: 1. 行列式的计算方法。 2. 用行列式求矩阵的秩和逆矩阵。 3. 克莱姆法则。 三、教学难点: 1、行列式的按行(列)展开。 2、、克莱姆法则。 四、教学的必要条件及方法: 1.条件:多媒体网络教室(联网)、黑板 2.教学方法:讲练结合 五、教学课时:2 课时 六、教学环节: 一. 二阶行列式 设二元一次方程组(*)?? ?=+=+2 221 11c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数且不全为零,21,c c 是常数项.) 用加减消元法解方程组(*): 当01221≠-b a b a 时,方程组(*)有唯一解:??? ? ??? --=--=1221122112211221b a b a c a c a y b a b a b c b c x , 引入记号 2 1a a 2 1b b 表示算式1221b a b a -,即 2 1a a 2 1b b 1221b a b a -=. 举例说明: 课本例1 从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行

列式的元素、对角线法则等. 记= D 2 1a a 2 1 b b ,= x D 2 1c c 2 1b b ,= y D 2 1a a 2 1c c , ①则当= D 2 1a a 2 1b b =01221≠-b a b a 时,方程组(*)有唯一解, 可用二阶行列式表示为??? ? ?? ?==D D y D D x y x . ②当D =0时,0x y D D == 无穷组解; ③当D =0时,0,0x y D or D ≠≠ 无解。 系数行列式1 1 2 2 a b D a b = 也为二元一次方程组解的判别式。 二. 三阶行列式 对角线方式展开 三.n 阶行列式 七、教学反思与改进 本次课,让学生掌握了求极限的方法,以及两个重要极限的应用,并举例子让学生练习巩固学生学习。 第四章 第三节 行列式按行(列)展开 『教案』 一、教学目标: 1. 掌握行列式掌握; 2. 用行列式求矩阵的秩和逆矩阵. 二、教学重点: 1. 行列式的计算方法。 2. 用行列式求矩阵的秩和逆矩阵。

第一章 第一节 n阶行列式的定义和性质(2)

第一章 行列式 行列式的概念是在研究线性方程组的解的过程中产生的. 它在数学的许多分支中都有着非常广泛的应用,是常用的一种计算工具。特别是在本门课程中,它是研究后面线性方程组、矩阵及向量组的线性相关性的一种重要工具。 §1.1 n 阶行列式定义和性质 一、 二、三阶行列式定义的引出 1. 二阶行列式 例1:二阶线性方程组 ?? ?=+=+2 2221211 212111b x a x a b x a x a 且021122211≠-a a a a . 解:利用加减消元可求得122122 112121 1211221221 11221221 , .b a a b a b b a x x a a a a a a a a --==-- 取 2112221122 21 1211a a a a a a a a D -== ,21222122 2 1211b a a b a b a b D -== , 得 .,2 21 1D D x D D x = = 定义1 二阶行列式 由22个数排成2行2列所组成下面的式子(或符号) 2112221122 21 1211a a a a a a a a -= 称为二阶行列式,行列式中每一个数称为行列式的元素,数ij a 称为行列式的元素,它的第一个下标i 称为行标,表明该元素位于第i 行,第二个下标j 称为列标, 表明该元素位于第 j 列.位于第i 行第j 列的元素称为行列式的),(j i 元。 2阶行列式由2 2个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!2=项,且正负项的各数相同。 应用:解线性方程 例2:解方程组.328 3221 21 ???-=-=+x x x x 解 D 2 132-=13)2(2?--?=,7-=1D 233 8--=)3(3)2(8-?--?=,7-= 1112112121 21 2 a b D a b b a a b = =-

第一讲:n阶行列式

线性代数第一讲 概论 线性代数是一门普通的基础理论课,它被广泛地应用于科技的各个领域,尤其在计算机日益普及的今天,求解线性方程组等问题已成为研究科技问题经常遇到的课题。 线性代数重点研究应用科学中常用的矩阵法,线性方程组的基本知识,另外行列式也是一个有力的工具,在讨论上述问题时都要用到。 本门课程的特点,既有繁琐和技巧性很强的数字计算,又有抽象的概念和逻辑推理,在学习中,需要特别加强这两个方面的训练。 第一章 行列式 §1定义 一、 二阶、三阶行列式 中学学过解二元一次方程组 ?? ?=+=+221 1 21c y b x b c y a x a 如果有解,它的解完全可由他们的系数()212121,,,,,c c b b a a 表示出来。 ?? ?=+=+) 2()1(2 211 21c y b x b c y a x a 1 1 )1()2(b a ??? ?? ?=+=+) 4()3(2 12111112211c a y b a x b a b c y b a x b a ()()1 1211221) 3()4(c b c a y b a b a -=-? -. 若01221≠-b a b a ,则2 1 212111 1 2211121b b a a c b c a b a b a c b c a y ? = --= (2) 同理 2 1 212221b b a a b c a c x = (3) 其中 2 2 212 1 21 2111, ,b c a c b b a a c b c a 均称为二阶行列式 定义1.二阶行列式 bc ad d c b a -= (4) 是一个数,主对角线两数之积减副对角线两数之积(对角线法则) 同样,在解三元一次方程组??? ??=++=++=++3333231 2 2322211131211b z a y a x a b z a y a x a b z a y a x a (5)

线性代数教案 第一章 行列式

第一章 行列式 本章说明与要求: 行列式的理论是从解线性方程组的需要中建立和发展起来的,它在线性代数以及其他数学分支上都有着广泛的应用.在本章里我们主要讨论下面几个问题: (1) 行列式的定义; (2) 行列式的基本性质及计算方法; (3) 利用行列式求解线性方程组(克莱姆法则). 本章的重点是行列式的计算,要求在理解n 阶行列式的概念,掌握行列式性质的基础上,熟练正确地计算三阶、四阶及简单的n 阶行列式. 计算行列式的基本思路是:按行(列)展开公式,通过降阶来计算.但在展开之前往往先利用行列式性质通过对行列式的恒等变形,使行列式中出现较多的零和公因式,从而简化计算.常用的行列式计算方法和技巧有:直接利用定义法,化三角形法,降阶法,递推法,数学归纳法,利用已知行列式法. 行列式在本章的应用是求解线性方程组(克莱姆法则).要掌握克莱姆法则并注意克莱姆法则应用的条件. 。本章的重点:行列式性质;行列式的计算。 。本章的难点:行列式性质;高阶行列式的计算;克莱姆法则。 §1.1 二阶与三阶行列式 行列式的概念起源于解线性方程组,它是从二元与三元线性方程组的解的公式引出来的. 设有二元线性方程组 ???=+=+2 2221211 112111b x a x a b x a x a (1) 用加减消元法知,当a 11a 22 – a 12a 21≠0时,有:211222112122211a a a a b a a b x --=, 21 12221121 12112a a a a a b b a x --= (2) 这是一般二元线性方程组的公式解.但公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源.我们称4个数组成的符号 2112221122 211211a a a a a a a a -=为二阶行列式. 它含有两行,两列.横的叫行,纵的叫列.行列式中的数叫做行列式的元素.从上式知,二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号.

行列式的教案

教案1:20071213 课题:9.3.1二阶行列式与二元一次方程组 教学目的:理解二阶行列式的定义; 掌握用二阶行列式解二元一次方程组; 用行列式判断二元一次方程组解的情况。 教学过程: 一、设问:什么叫二阶行列式? (一)定义: 1、我们用记号1 122a b a b 表示算式1221,a b a b - 即1 122a b a b = 1221,a b a b - 其中记号1 122a b a b 叫做行列式,因为它只有两行、两列,故把它叫做二阶行列式。 2、1221,a b a b -叫做行列式1 12 2a b a b 的展开式,其计算结果叫做行列式的值。 3、1221,,,,a b a b 叫做行列式1 122a b a b 的元素。 (二)二阶行列式的展开满足:对角线法则 1 122a b a b 实线表示的对角线叫主对角线,虚线表示的对角线叫副对角线。 二阶行列式是这样两项的代数和:一个是从左上角到右下角的对角线(又叫行列式的主对角线)上两个元素的乘积,取正号;另一个是从右上角到左下角的对角线(又叫次对角线)上两个元素的乘积,取负号. (三)例和练习: 例1、判断以下几项中哪些是二阶行列式?是的,求出值。 (1)1 11222a b c a b c (2)sin cos cos sin α ααα 2815 11112++--a a a 2815

(3)12 3456 (4)sin cos sin cos sin cos a a a a a a -+ (5 )1212 3434 12242 363 -- 例2:将下列各式用行列式表示:——解唯一吗? (1)221 4;(2)5;(3)422b ac x y x x ---+ 例3用行列式解二元一次方程组 (1)???-=+=+61548 115y x y x (2)???=-+=--0120 53y x y x 二、用二阶行列式解二元一次方程组 (四)设有二元一次方程组 111222,(1) ().(2)a x b y c A a x b y c +=??+=? 用加减消元法

第三章 行列式

MATLAB 软件应用 第三章 行列式 例1:输出矩阵311212123A ????=??????,计算 (1)A ; (2) 取出A 的第二列;(3)删除A 第一行. 解:建立m 文件d1.m 如下: clc A=[3 1 1;2 1 2;1 2 3] fprintf('det(A)=%d',det(A)) A1=A(:,2) A(1,:)=[]; A2=A 运行结果如下: A = 3 1 1 2 1 2 1 2 3 det(A)=-4 A1 = 1 1 2 A2 = 2 1 2 1 2 3 例2:计算行列式2324323631063a b c d a a b a b c a b c d D a a b a b c a b c d a a b a b c a b c d ++++++=++++++++++++. 解:建立m 文件d2.m 如下: clc syms a b c d %定义符号变量 A=[a,b,c,d;a a+b a+b+c a+b+c+d;a 2*a+b 3*a+2*b+c 4*a+3*b+2*c+d;... a 3*a+ b 6*a+3*b+ c 10*a+6*b+3*c+d] ; %输出符号矩阵 D=det(A)

运行结果如下: D = a^4 例3: 应用Cramer 法则求解下列线性方程组的解. 123412423412342583 69 254760. x x x x x x x x x x x x x x +-+=??--=??-+=-??+-+=?, ,, 解:建立m 文件d3.m 如下: clc A=[2 1 -5 1;1 -3 0 -6;0 2 -1 2;1 4 -7 6]; b=[8;9;-5;0] D=det(A) C1=[b,A(:,2:4)];D1=det(C1);x1=D1/D C2=[A(:,1),b,A(:,3:4)];x2=D2/D C3=[A(:,1:2),b,A(:,4)];x3=D3/D C4=[A(:,1:3),b];D4=det(C4);x4=D4/D 运行结果如下: x1 = 3 x2 = -4 x3 = -1 x4 = 1 例4:验证行列式的性质:把一行的倍数加到另一行,行列式不变. 解:建立m 文件d4.m 如下: clc A=[5 4 7 8;6 5 2 4;1 0 3 8;5 7 6 6] fprintf('det(A)=%d',det(A)) syms k B=[A(1:3,:);k*A(1,:)+A(4,:)] det(B) 运行结果如下: A = 5 4 7 8 6 5 2 4 1 0 3 8 5 7 6 6

相关文档
最新文档