复变函数 小结

复变函数 小结
复变函数 小结

《复变函数》 小结

第一章

一、

复数基本概念及其运算

1. 复数:z x yi =+

,i (2)共轭复数:z x i y =-,记作:z 。

性质:z z =; 1212z z z z = ;“ ”可以是:“,,,+-?÷

()()22

22Re Im z z z z x y ?=+=+;

Re 2z z x z +==,Im 2

z z

y z -== (3)复数的模、主辐角a r g

(,]z ππ∈-、辐角

z =

()

()()arctan 0,arctan 0,0arg arctan 0,020,0

20,0

y x x y y x x y z y x x y x y x y ππ

ππ?>??

+<≥??

=-<??-=

rg arg 2A z z k π=+

2. 复数的表示

代数表示:复数z x i y =+11-←?→向量(,)x y 11

-←?→点z ; 三角表示: cos sin z r i r θθ=+(cos sin )r i θθ=+

指数表示:(cos sin )z r i θθ=+i r e θ

=.

注:r 是z 的模,θ是z 的任意一个辐角。 3. 复数的运算

四则运算:设有111z x iy =+,222z x i y =+两个复数:

121212()z z x x i y y ±=±+±; 1212121221()()z z x x y y i x y x y ?=-++; 1

2

z z z =

; 乘幂与方根(利用指数表示、三角表示)

设有复数i z r e θ

=,则()n

i n

n in z re r e

θθ

==

;

21k i n n n k w r e

θπ??

+ ???

= (0,1,21k n =- )

Note :① 1212||||z z z z ?=?;1212Arg()Arg Arg z z z z ?=+;

1122||

||z z z z =;1122Arg Arg Arg z z z z ??=- ???

三、复变函数及其运算 1. 复变函数:()w f z =。

几何意义:把z 平面上的一个点集???→映射

w 平面的一个点集。 与实变函数的关系:设z x i y =+,w u i v =+,则()w f z =可以写成:

()w u iv f x i y =+=+ (,)(,)u x y i v x y =+

第二章

一、复变函数的导数与微分 1. 定义:()w f z =,0()f z '=0lim

z w z ?→??000()()lim

z f z z f z z ?→+?-=?; 或记作0

z z dw

dz =. 2.求导法则:四则运算、 复合函数求导、反函数求导与一元函数相同; 3. 微分:d ()d w f z z '=; 二、解析函数※

1.定义:如果函数()f z 在0z 点以及0z 点的邻域内处处可导,则称()f z 在0z 点解析;

2.判别解析函数的方法 (1)定义:()f z '=0lim

z w z ?→??0()()

lim

z f z z f z z

?→+?-=? (2)Cauchy-Riemann 方程:

函数()(,)(,)w f z u x y i v x y ==+在点z x i y =+处可导 ?

(,)u x y ,(,)v x y 在点(,)x y 处可微,且满足柯西-黎曼(Cauchy-Riemann )方程:

u v x y ??=??,u v

y

x ??=-??

注:

(3)解析函数的性质:

①在区域 D 内(),()f z g z 解析,则()0

()

()(),()(),()g z f z f z g z f z g z g z ≠±?在区域 D 内也

解析;

②复合函数[()]w f g ξ= 在 D 内解析;

③()w f z =的反函数()z w ?=在值域内解析,且()

1

()()z w w f z ??='='。

3. 解析函数的构造

问题:已知实部函数(,)u x y ,求虚部(,)v x y (或者已知虚部 v ,求实部 u ),

使得()(,)(,)f z u x y i v x y =+解析,且满足指定的条件。 方法1:偏积分

x y v u =-

(,)v x y =d ()y u x y ?-+?

由(,)y v x y =x u ,()y ??

方法2:第二类曲线积分

①x y dv v dx v dy =+:,x y y x v u v u =-=

②由(,)dv v x y ????→曲线积分

全微分

00(,)(,)

(,)d d x y y x x y v x y u x u y =-+?

00

(,)d (,)d x y y x u x y x u x y y c =-++??

其中,0C C =或12C C +; 二、

初等函数

1. 指数函数:(cos sin )z

x iy

x w e e

e y i y +===+

注:整个复平面解析;()z

z

e e

'=

2. 对数函数:Ln ln||arg 2w z z i z i k π==++

主值lnz

注:各分支在除去原点及负实轴的复平面内连续、解析;

d ln d z z =1

z

3. 幂函数:规定Ln z

w z e

αα==

注:z α+

=,处处解析;z α-

=,(除原点)处处解析

α=有理数+无理数,除去原点及负实轴的复平面内解析、多值;

4. 三角函数:cos 2iz

iz

z e e

-=+;sin 2i z i z z e e i -=-

注:整个复平面解析;导数公式与实变一样;

第三章

一、复变函数的积分的基本概念、性质 1.定义

()d C

f z z ?

=0

1

lim ()n

k k k f z λζ→=?∑

注:

()d C

f z z ?

表示沿闭曲线C 的正方向(逆时针)积分;

2.复积分的性质

[()()]d ()d ()d C

C

C

f z

g z z f z z g z z αβαβ+=+??

?;

()d ()d C

C f z z f z z -

=-?

?

1

2

()d ()d ()d C

C C f z z f z z f z z =+?

??;

二、复积分的计算

1. ()f z 在D 内不一定解析:设曲线:()()()C z z t x t i y t ==+,:t a b →,则

[]()d [()]d ()[()]()d b b

C

a

a

f z z f z t z t f z t z t t '=?

?? ,其中,()()()z t x t i y t '''=+

注:重要的结论:

()

21

d 01n

C

πi n z

n z z =?=?≠-?

? ,(曲线C 包含0z );

2. ()f z 在单连通域D 内解析: (1)C 为D 内的任意一条简单闭曲线,则()d 0.C

f z z =?

(2)C 为D 内的任意一条简单曲线,则

10

10()d ()()()z

z C

f z z G z G z G z ==-?

(3)()f z 在单连通域D 内解析,D 内闭曲线C 包含0z ,则

00()d ()2C f z z f z πi z z =?-? , ()

01

0()2d ()()!

n n C f z πi z f z z z n +=-? 3. ()f z 在多连通域D 内解析:

1

2

()d ()d ()d ()d .n

C

C C C f z z f z z f z z f z z =+++?

???

注:,i C C 为逆时针方向;

第四章 一、复数项级数 (其余的概念及性质类似) 1.复数列:{}1,2,n n α= ,其中n n n a ib α=+;

Note :{}n α收敛?0n n a →∞

???→,0n n b →∞

???→

2.

n

n α

+∞

=∑敛散性的判别:(1)实部

1

n

n a

+∞

=∑、虚部

1n

n b

+∞

=∑都收敛;

(2)lim 0n n α→+∞

≠,则

n

n α

+∞

=∑发散;

(3)若

1n

n α

+∞

=∑收敛,则称

1n

n α

+∞

=∑绝对收敛。(模)

(4)若

1

n

n α

+∞

=∑发散,

1

n

n α

+∞

=∑收敛,则称

1

n

n α

+∞

=∑条件收敛。

二、复变函数项级数 (其余的概念及性质类似) 1.收敛域:标准型

0n n n c z +∞

=∑收敛圆半径:1||

lim

||

n n n c R c →+∞+=

一般型

()

n

t z z n

n c z z +∞

=-=-???→∑0

n n n c z +∞

=∑

2.和函数:借助基本展式

1

1n

n z

z

+∞

==

-∑,通过变形(求导、积分、拆项)求和。 三、将函数展成泰勒、洛朗级数

(1)根据奇点的个数,将复平面分为几个解析环; (2)根据所借助解析环的范围,将函数变形

1

1z

-(拆项、逐项求导、逐项求积),借助230

1

11n n z z z z z +∞

===+++-∑

第五章 留数

一、孤立奇点

1

01000

()()()m m m c c f z c c z z z z z z --=+

++

+-+-- 本性奇点

可去奇点

阶极点

可去奇点:0

0lim ()z z f z c →=;

m 阶极点:0

lim ()z z f z →=∞; note :该条件只能判断是极点;

0lim ()()m

m z z f z z z c -→-=(有限值),则0z 为()f z 的m 阶极点

本性奇点:0

lim ()z z f z →不存在,且不为∞;

二、留数

1. 留数:设0z 为函数()f z 的孤立奇点,将()f z 在0z 的去心邻域内展成洛朗级数:

0()()n n n f z c z z +∞

=-∞

=-∑1

0100

()c c c z z z z -=+

++-+- 称1c - ()f z 在0z 的留数。记作:01Res[(),]f z z c -=1()d 2C

f z z πi

=?

其中,C 是0z 的去心邻域内绕0z 的一条简单闭曲线。 注:

1()d 2C

f z z πi c -=??

2. 留数的计算方法

(1)若0z 为()f z 的可去奇点,则10C -=;

(2)若0z 为()f z 的1阶极点,0

00Res[(),]lim()()z z f z z z z f z →=-

若0z 为()f z 的m 阶极点,则

()()011011lim ()1!m m

m z z d c z z f z m dz ---→??=-??-

1c -()

1

1

1

()

()d d 22n C

C

g z f z z z πi

πi

z z +=

=

-?

? ;

(第三章) (3)由洛朗展式取1c -。(本性奇点)

我们在计算的时候要灵活选择方法,不要拘泥于一种方法。

三、留数在实定积分计算中的应用 1. 形如

20

(cos ,sin )d R π

θθθ?

的积分

方法:(1)令i z e θ

=cos sin i θθ=+,则

d d i z i

e θθ=d i z θ=?d d z

i z

θ=

cos 2i i e e θθθ-+=12z z -+=212z z +=,21

sin 2z i z

θ-= []0,2:1i z e

C z θ

θπ=∈???→=

(2)原式=221111

,22z z z R dz z

i z i z =??+- ???? ||1()d z f z z ==? 2Res[(),].k k πi f z z =∑

2. 形如

()d R x x +∞

-∞

?

,()d (0)iax R x e x a +∞

-∞

>?的积分

说明:(1)()

()()

P x R x Q x =

,(),()P x Q x 为多项式; (2)分母()Q x 的次数比分子()P x 的次数至少高二次(高一次); (3)分母()Q x 无实根。 方法:

()d R x x +∞

-∞

?

()2Res[(),]k C

k

R z dz πi R z z ==∑?

注:C :包含()R z 所有上半复平面内的奇点的闭曲线,k z 是()R z 在上半平面内的孤立奇点。 方法:

()d iax R x e x +∞

-∞

?

2Res[(),].iaz k k

πi R z e z A i B ==+∑

其中,k z 是()R z 在上半平面内的孤立奇点。 Note :()d iax R x e x +∞

-∞

=

?

()cos d R x ax x +∞

-∞

?

+()sin d .R x ax x A iB +∞

-∞

=+?

第七章 Fourier 变换

1.定义: Fourier 正变换:()()e d i t F ωf t t ω+∞

--∞

=

=?

F [()]f t

Fourier 逆变换:1()()e d 2i t

f t F πωωω+∞-∞

=

=? F

1

-[()]F ω

2.性质:

① F 12[()()]af t bf t +12()()aF bF ωω=+ ⑤ F

1

()d ()t

f t t F i ωω

-∞

??=?????

② F 0[()]f t t -0

()i t e

F ωω-= ⑥ F [()]2()F t f πω=-

③ F [()]()f t i F ωω'= ⑦ F 1[()]f at F a a

ω??=- ???

④ F []()tf t ()iF ω'= 3. δ函数

()()d (0)t f t t f δ+∞

-∞

=?

; ()()t t δδ=-;()()d (0)t f t t f δ+∞

-∞

''=-?;

F

[]()1t δ=; F []12

()πδω=; F 002(

)i t

e ωπδωω??=-??; F 002()i t

e ωπδωω-??=+??; F []1

()()u t i πδωω

=

+;

第八章Laplace 变换

1.定义:Laplace 变换:0

()()e d s t F s f t t +∞

-==?

L [()]f t

2.性质:

① L 12[()()]af t bf t +12()()aF s bF s =+ ⑤ L

01

()d ()t

f t t F s s ??=???

?

?

② L [()()]f t u t ττ--()s e F s τ-= ⑥ L ()()s

f t F s ds t +∞

??

=????

?

③ L [()]()(0)f t sF s f '=- ⑦ L 1[()]s f at F a a ??= ???

④ L []()tf t ()F s '=- 3. 常用的Laplace 变换

L []1()u t s

=

; L []()1t δ=; L 1kt

e s k ??=??-; L 1

!m

m m t s +??=??; L []22sin k kt s k =+; L []22

cos s kt s k =+

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数总结

第一章 复数的运算与复平面上的拓扑 1.复数的定义 一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。 复数的表示方法 1) 模: z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与 arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

4)若 12 1122,i i z z e z z e θθ==, 则 () 121212i z z z z e θθ+=; ()121122 i z z e z z θθ-= 5.无穷远点得扩充与扩充复平面 复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系, 而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面. 扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集 复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。 第二章 复变量函数 1.复变量函数的定义 1)复变函数的反演变换(了解) 2)复变函数性质 反函数 有界性 周期性, 3)极限与连续性 极限: 连续性 2.复变量函数的形式偏导 1)复初等函数 ). ( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设. )( )(,)0(0 )( ,0 , , 0 )( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<= . )( , )( . )( ),()(lim 000 内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→

复变函数论第三版课后习题答案 2

第一章习题解答 (一) 1 .设z =z 及Arcz 。 解:由于3i z e π -== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 4 12 12222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1 -+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤解:(1)2 cos sin 22 i i i e π ππ =+=

(2 )1-+23 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+- )sin()](cos2sin 2)12 12 i i π π θθ=- +- + (2)12 )sin(2)]12 12 i i π θπ π θθ- =- +- =

复变函数学习指导书

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数论文

复变函数在GIS上的运用与地位 一摘要 该论文主要研究复变函数在GIS专业上的作用和地位,通过复变函数发展简介和内容,我们认识到复变函数的发展史和学术地位,因为它运用广泛,作为当代大学生,我们应该明白它在学习中起到举足轻重的作用,从学习中的地位延伸到专业中的地位,从而了解他在GIS的运用,借助复变函数推出柯西—黎曼曲面,进而导出复球面的紧性,得出扩充复平面是紧的,得出结论,体会,心德和认识,最后对结论进行推导和运用。 二关键词 复变函数,地理信息系统,复平面,柯西—黎曼曲面 三正文 (一)复变函数的发展简况与内容 复变函数理论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。复变函数理论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。为复变函数理论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。复变函数理论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数理论主要包括解析函数理论、黎曼曲面理论、几何函数论、留数理论、积分和级数、广义解析函数等方面的内容。复变函数理论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

《复变函数》总结

复变小结 1.幅角(不赞成死记,学会分析) .2 argtg 20,0,0,0,arctg 0,0,20,arctg arg ππ πππ<<-???? ?????=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏

b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式: (向量) OC=tOA+(1-t )OB=OB+tBA c.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。 d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.8 4.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程 a.在某个区域内可导与解析是等价的。但在某一点解析一定可导,可导不一定解析。 b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加) c.指数函数:复数转换成三角的定义。 d.只需记住:Lnz=ln[z]+i(argz+2k π) e.幂函数:底数为e 时直接运算(一般转换成三角形式) 当底数不为e 时,w= z a = e aLnz (幂指数为Ln 而非ln) 能够区分: 的计算。 f.三角函数和双曲函数: 只需记住: 及 其他可自己试着去推导一下。 反三角中前三个最好自己记住,特别 iz iz i z -+-=11Ln 2Arctg 因为下一章求积分会用到 11)(arctan ,2+=z z (如第三章的习题9) 5.复变函数的积分 ,,,i e e i i e i ππ+)15.2(.2e e sin ,2e e cos i z z iz iz iz iz ---=+=???????=-==+=--y i i iy y iy y y y y sh 2e e sin ch 2e e cos

(完整版)《复变函数》教学大纲

《复变函数》教学大纲 说明 1.本大纲适用数学与应用数学本科教学 2.学科性质: 复变函数论是成人高等师范数学专业基础课程之一,它在微分方程、概率论、力学等学科中都有应用,复变函数论方法是工程、科技的常用方法之一。复变函数论主要研究解析函数。解析函数定义的几种等价形式,表现了解析函数这一概念在不同方面的特性。复变函数论的基本理论以柯西定理为主要定理,柯西公式为重要公式,留数基本定理是柯西定理的推广。保形映照是复变函数几何理论的基本概念。;留数理论和保形映照也为实际应用提供了特有的复变函数论方法。 3.教学目的: 复变函数论是微积分学在复数域上的推广和发展,通过复变函数论的学习能使学生对微积分学的某些内容加深理解,提高认识。复变函数论在联系和指导中学数学教学方面也有重要的作用,学生通过复变函数论的学习对中学数学的某些知识有比较透彻的理解与认识,从而增加做好中学数学教育工作的能力。 4.教学基本要求: 通过本课程的学习,要求学生达到: 1.握基本概念和基本理论; 2.熟练的引进基本计算(复数、判断可导性及解析性、复积分、函数 的展式、孤立奇点的判断、留数的计算及应用、求线性映照及简单映 照等); 2.固和加深理解微积分学的有关知识。 5.教学时数分配: 本课程共讲授72学时(包括习题课),学时分配如下表: 教学时数分配表

以上是二年制脱产数学本科的教学时数。函授面授学时不低于脱产的40%,可安排28~30学时。 教学内容 第一章复数与复变函数 复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。 (一)教学内容

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

(完整版)复变函数第六章留数理论及其应用知识点总结

第六章留数理论及其应用 §1.留数 1.(定理6.1 柯西留数定理): ∫f(z)dz=2πi∑Res(f(z),a k) n k=1 C 2.(定理6.2):设a为f(z)的m阶极点, f(z)= φ(z) (z?a)n , 其中φ(z)在点a解析,φ(a)≠0,则 Res(f(z),a)=φ(n?1)(a) (n?1)! 3.(推论6.3):设a为f(z)的一阶极点, φ(z)=(z?a)f(z),则 Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点 φ(z)=(z?a)2f(z)则 Res(f(z),a)=φ′(a) 5.本质奇点处的留数:可以利用洛朗展式 6.无穷远点的留数: Res(f(z),∞)= 1 2πi ∫f(z)dz Γ? =?c?1 即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1 z 这一项系数的反号 7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。 注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。 8.计算留数的另一公式:

Res (f (z ),∞)=?Res (f (1t )1t 2,0) §2.用留数定理计算实积分 一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ 注:注意偶函数 二.∫P(x)Q(x)dx +∞?∞型积分 1.(引理6.1 大弧引理):S R 上 lim R→+∞zf (z )=λ 则 lim R→+∞∫f(z)dz S R =i(θ2?θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中 P (z )=c 0z m +c 1z m?1+?+c m (c 0≠0) Q (z )=b 0z n +b 1z n?1+?+b n (b 0≠0) 为互质多项式,且符合条件: (1)n-m ≥2; (2)Q(z)没有实零点 于是有 ∫ f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0 +∞ ?∞ 注:lim R→R+∞ ∫f(x)dx +R ?R 可记为P.V.∫f(x)dx +∞?∞ 三. ∫P(x)Q(x)e imx dx +∞?∞ 型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且 lim R→+∞g (z )=0 在ΓR 上一致成立。则 lim R→+∞ ∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:

复变函数考试试题与答案各种总结

《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ =∞ →n n z lim ,则= +++∞→n z z z n n (i) 21______________. = )0,(Re n z z e s ,其中n 为自然数.

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

《复变函数论》试题库汇编

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 } {n z 收敛,则 } {Re n z 与 } {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________.

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数习题总汇与参考答案

复变函数习题总汇与参考答案 第1章 复数与复变函数 一、单项选择题 1、若Z 1=(a, b ),Z 2=(c, d),则Z 1·Z 2=(C ) A (ac+bd, a ) B (ac-bd, b) C (ac-bd, ac+bd ) D (ac+bd, bc-ad) 2、若R>0,则N (∞,R )={ z :(D )} A |z|R 3、若z=x+iy, 则y=(D) A B C D 4、若A= ,则 |A|=(C ) A 3 B 0 C 1 D 2 二、填空题 1、若z=x+iy, w=z 2=u+iv, 则v=( 2xy ) 2、复平面上满足Rez=4的点集为( {z=x+iy|x=4} ) 3、( 设E 为点集,若它是开集,且是连通的,则E )称为区域。 4、设z 0=x 0+iy 0, z n =x n +iy n (n=1,2,……),则{z n }以z o 为极限的充 2z z +2z z -i z z 2+i z z 2-)1)(4() 1)(4(i i i i +--++∞ →n lim +∞ →n lim

分必要条件是 x n =x 0,且 y n =y 0。 三、计算题 1、求复数-1-i 的实部、虚部、模与主辐角。 解:Re(-1-i)=-1 Im(-1-i)=-1 |-1-i|= 2、写出复数-i 的三角式。 解: 3、写出复数 的代数式。 解: 4、求根式 的值。 解: ππ4 5 |11| arctan ),1(12)1()1(=--+=--∴--=-+-i ary i 在第三象限 π π2 3 sin 23cos i i +=-i i i i i i i i i i i i i i i 2 12312 1 21)1()1)(1()1(11--=--+-=?-+ +-+= -+ -i i i i -+-113 27 -)27arg(3 273π =-=

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

《复变函数论》试题库及答案

《复变函数论》试题库 《复变函数》考试试题(一) 一、 判断题(20分): 1.若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析. ( ) 2.有界整函数必在整个复平面为常数. ( ) 3.若 }{n z 收敛,则} {Re n z 与} {Im n z 都收敛. ( ) 4.若f(z)在区域D 内解析,且 0)('≡z f ,则C z f ≡)((常数). ( ) 5.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数. ( ) 6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( ) 7.若 ) (lim 0 z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( ) 8.若函数f(z)在是区域D 内的单叶函数,则)(0)('D z z f ∈?≠. ( ) 9. 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=? C dz z f . ( ) 10.若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数.( ) 二.填空题(20分) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 22cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n (i) 21______________.

(完整版)复变函数与积分变换重要知识点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

相关文档
最新文档