消防给水及消火栓系统技术规范标准规范标准设计GB509742014

消防给水及消火栓系统技术规范标准规范标准设计GB509742014
消防给水及消火栓系统技术规范标准规范标准设计GB509742014

1 总则

1.0.1 为了合理设计消防给水及消火栓系统,保障施工质量,规范验收和维护管理,减少火灾危害,保护人身和财产安全,制定本规范。

1.0.2 本规范适用于新建、扩建、改建的工业、民用、市政等建设工程的消防给水及消火栓系统的设计、施工、验收和维护管理。

1.0.3 消防给水及消火栓系统的设计、施工、验收和维护管理应遵循国家的有关方针政策,结合工程特点,采取有效的技术措施,做到安全可靠、技术先进、经济适用、保护环境。

1.0.4 工程中采用的消防给水及消火栓系统的组件和设备等应为符合国家现行有关标准和准入制度要求的产品。

1.0.5 消防给水及消火栓系统的设计、施工、验收和维护管理,除应符合本规范外,尚应符合国家现行有关标准的规定。

条文说明

1 总则

1.0.1 本条规定了本规范的编制目的。

建国60年来我国消防给水及消火栓系统设计、施工及验收规范从无到有,至今已建立了完整的体系。特别是改革开放30年来,快速的工业化和城市化使我国工程建设有了巨大地发展,消防给水及消火栓系统伴随着工程建设的大规模开展也快速发展,与此同时与国际交流更加频繁,使我们更加认识消防给水及消火栓系统在工程建设中的重要性,以及安全可靠性与经济性的关系,首先是安全可靠性,其次是经济合理性。

水作为火灾扑救过程中的主要灭火剂,其供应量的多少直接影响着灭火的成效。根据统计,成功扑救火灾的案例中,有93%的火场消防给水条件较好;而扑救火灾不利的案例中,有81.5%的火场缺乏消防用水。例如,1998年5月5日,发生在北京市丰台区玉泉营环岛家具城的火灾,就是因为家具城及其周边地区消防水源严重缺乏,市政消防给水严重不足,消防人员不得不从离火场550m、600m的地方接力供水,从距离火场1400m的地方运水灭火,延误了战机,以至于两万平方米的家具城及其展销家具均被化为一片灰烬,直接经济损失达2087余万元。又如2000年1月11日晨,安徽省合肥市城隍庙市场庐阳宫发生特大火灾,火灾过火面积10523m2,庐阳宫及四周126间门面房内的服装、布料、五金和塑料制品等烧损殆尽,1人被烧死,619家经营户受灾,烧毁各类商品损失折款1763万元,庐阳宫主体建筑火烧损失416万元,两项合计,庐阳宫火灾直接经济损失2179万元,这场火灾的主要原因是没有设置室内消防给水设施,以致火灾发生后蔓延迅速,直至造成重大损失。火灾控制和扑救所需的消防用水主要由消防给水系统供应,因此消防给水的供水能力和安全可靠性决定了灭火的成效。同时消防给水的设计要考虑我国经济发展的现状,建筑的特点及现有的技术水平和管理水平,保证其经济合理性。本规范的制订对于减少火灾危害、促进改革开放、保卫我国经济社会建设和公民的生命产安全是十分必要的。本规范在制订过程中规范组研究了大量文献、发达国家的标准规范,并在全国进行了调研,同时参考了公安部天津消防研究所“十一五”国家科技支撑计划专题“城市消防给水系统设置方法”的研究成果。

消防给水是水灭火系统的心脏,只有心脏安全可靠,水灭火系统才能可靠。消防给水系统平时不用,无法因使用而检测其可靠性,因此必须从设计、施工、日常维护管理等各个方面加强其安全可靠性的管理。

消火栓是消防队员和建筑物内人员进行灭火的重要消防设施,本规范以人为本,更加重

视消火栓的设置位置与消防队员扑救火灾的战术和工艺要求相结合,以满足消防部队第一出动灭火的要求。

1.0.2 本条规定了本规范的适用范围。

本规范适用于新建、扩建及改建的工业、民用、市政等建设工程的消防给水及消火栓系统。

新建建筑是指从无到有的全新建筑,扩建是指在原有建筑轮廓基础上的向外扩建,改建是指建筑变更使用功能和用途,或全面改造,如厂房改为餐厅、住宅改为宾馆、办公改为宾馆或办公改为商场等。

1.0.3 本条规定了采用新技术的原则规定。

本条规定根据工程的特点,为满足工程消防需求和技术进步的要求,在安全可靠、技术先进、经济适用、保护环境的情况下选择新工艺、新技术、新设备、新材料,采用四新的原则是促进消防给水及消火栓系统技术进步,使消防给水及消火栓系统走“科学—技术—应用”的工程技术科学的发展道路,使消防给水及消火栓系统更加具有安全可靠性和经济合理性。四新技术的应用应符合国家有关部门的规定。

1.0.4 本条规定了消防给水及消火栓系统的专用组件、材料和设备等产品的质量要求。

消防给水及消火栓系统平时不用,仅在火灾时使用,其特点是系统的好坏很难在日常使用中确保系统的安全可靠性,这是在建设工程中唯一独特的系统,因为其他的机电系统在建筑使用过程中就能鉴别好坏。尽管本规范给出了消防给水及消火栓系统的设计、施工验收和日常维护管理的规定,但系统还是应从产品质量抓起。如美国统计自动喷水灭火系统失败有3%~5%,英国则有8%左右。因此一方面要加强系统维护管理,另一方面要提高产品质量,消防给水及消火栓系统组件的安全可靠性是系统可靠性的基础,所以要求设计中采用符合现行的国家或行业技术标准的产品,这些产品必须经国家认可的专门认证机构认证以确保产品

质量,这也是国际惯例。所以专用组件必须具备符合国家市场准入制度要求的有效证件和产品出厂合格证等。

我国2008年颁布的《消防法》第二十四条规定:消防产品必须符合国家标准;没有国家标准的,必须符合行业标准。禁止生产、销售或者使用不合格的消防产品以及国家明令淘汰的消防产品。依法实行强制性产品认证的消防产品,由具有法定资质的认证机构按照国家标准、行业标准的强制性要求认证合格后,方可生产、销售、使用。实行强制性产品认证的消防产品目录,由国务院产品质量监督部门会同国务院公安部门制定并公布。新研制的尚未制定国家标准、行业标准的消防产品,应当按照国务院产品质量监督部门会同国务院公安部门规定的办法,经技术鉴定符合消防安全要求的,方可生产、销售、使用。依照本条规定经强制性产品认证合格或者技术鉴定合格的消防产品,国务院公安部门消防机构应当予以公布。

我国《产品质量法》第十四条规定:国家根据国际通用的质量管理标准,推行企业质量体系认证制度。企业根据自愿原则可以向国务院产品质量监督管理部门认可的或者国务院产品质量监督部门授权的部门认可的认证机构申请企业质量体系认证。经认证合格的,由认证机构颁发企业质量体系认证证书。国家参照国际先进的产品标准和技术要求,推行产品质量认证制度。企业根据自愿原则可以向国务院产品质量监督管理部门认可的或者国务院产品质量监督管理部门授权的部门认可的认证机构申请产品质量认证。经认证合格的,由认证机构颁发产品质量认证证书,准许企业在产品或者其包装上使用产品质量认证标志。

消防产品强制性认证产品目录可查询公安部消防产品合格评定中心每年颁布的《强制性认证消防产品目录》。

2 术语和符号

.1 术语

2.1.1 消防水源fire water

向水灭火设施、车载或手抬等移动消防水泵、固定消防水泵等提供消防用水的水源,包括市政给水、消防水池、高位消防水池和天然水源等。

2.1.2 高压消防给水系统constant high pressure fire protection water

supply system

能始终保持满足水灭火设施所需的工作压力和流量,火灾时无须消防水泵直接加压的供水系统。

2.1.3 临时高压消防给水系统temporary high pressure fire protection

water supply system

平时不能满足水灭火设施所需的工作压力和流量,火灾时能自动启动消防水泵以满足水灭火设施所需的工作压力和流量的供水系统。

2.1.4 低压消防给水系统low pressure fire protection water supply system

能满足车载或手抬移动消防水泵等取水所需的工作压力和流量的供水系统。

2.1.5 消防水池fire reservoir

人工建造的供固定或移动消防水泵吸水的储水设施。

2.1.6 高位消防水池gravity fire reservoir

设置在高处直接向水灭火设施重力供水的储水设施。

2.1.7 高位消防水箱elevated/gravity fire tank

设置在高处直接向水灭火设施重力供应初期火灾消防用水量的储水设施。

2.1.8 消火栓系统hydrant systems/standpipe and hose systems

由供水设施、消火栓、配水管网和阀门等组成的系统。

2.1.9 湿式消火栓系统wet hydrant system/wet standpipe system

平时配水管网内充满水的消火栓系统。

2.1.10 干式消火栓系统dry hydrant system/ dry standpipe system

平时配水管网内不充水,火灾时向配水管网充水的消火栓系统。

2.1.11 静水压力static pressure

消防给水系统管网内水在静止时管道某一点的压力,简称静压。

2.1.12 动水压力residual/running pressure

消防给水系统管网内水在流动时管道某一点的总压力与速度压力之差,简称动压。

2.2 符号

A——消防水池进水管断面面积;

B max——最大船宽度;

C——海澄—威廉系数;

C v——流速系数;

c——水击波的传播速度;

c o——水中声波的传播速度;

d g——节流管计算内径;

d k——减压孔板孔口的计算内径;

d i——管道计算内径;

E——管道材料的弹性模量;

F——着火油船冷却面积;

f max——最大船的最大舱面积;

g——重力加速度;

H——消防水池最低有效水位至最不利点处水灭火设施的几何高差;

H g——节流管的水头损失;

H k——减压孔板的水头损失;

i——单位长度管道沿程水头损失;

K——水的体积弹性模量;

k1——管件和阀门当量长度换算系数;

k2——安全系数;

k3——消防水带弯曲折减系数;

L——管道直线段长度;

L d——消防水带长度;

L j――节流管长度;

L max——最大船的最大舱纵向长度;

L p——管件和阀门等当量长度;

L s——水枪充实水柱长度在平面上的投影长度;

m——建筑同时作用的室内水灭火系统数量;

n——建筑同时作用的室外水灭火系统数量;

nε——管道粗糙系数;

P——消防给水泵或消防给水系统所需要的设计扬程和设计压力;p o——最不利点处水灭火设施所需的设计压力;

p f——管道沿程水头损失;

p n——管道某一点处的压力;

p p——管件和阀门等局部水头损失;

p t——管道某一点处的总压力;

p v——管道速度压力;

Δp——水锤最大压力;

q——管段消防给水设计流量;

q t——火灾时消防水池的补水流量;

q1i——室外第i种水灭火设施的设计流量;

q2i——室内第i种水灭火设施的设计流量;R——管道水力半径;

R o——消火栓保护半径;

Re——管道雷诺数;

S k——水枪充实水柱长度;

T——水的温度;

t1i ——室外第i种水灭火系统的火灾延续时间;t2i ——室内第i种水灭火系统的火灾延续时间;υ——管道内水的平均流速;

V——建筑物消防给水一起火灾灭火用水总量;V1——室外消防给水一起火灾灭火用水量;

V2——室内消防给水一起火灾灭火用水量;

V g――节流管内水的平均流速;

V k――减压孔板后管道内水的平均流速;

y——系数;

λ——水头损失沿程阻力系数;

ρ——水的密度;

μ——水的动力黏滞系数;

ν——水的运动黏滞系数;

ε——当量粗糙度;

ζ1――减压孔板的局部阻力系数;

ζ2――节流管中渐缩管与渐扩管的局部阻力系数之和;

δ——管道壁厚。

3 基本参数

3.1 一般规定

3.1.1 工厂、仓库、堆场、储罐区或民用建筑的室外消防用水量,应按同一时间内的火灾起数和一起火灾灭火所需室外消防用水量确定。同一时间内的火灾起数应符合下列规定:

1 工厂、堆场和储罐区等,当占地面积小于等于100hm2,且附有居住区人数小于或等于1.5万人时,同一时间内的火灾起数应按1起确定;当占地面积小于或等于100hm2,且附有居住区人数大于1.5万人时,同一时间内的火灾起数应按2起确定,居住区应计1起,工厂、堆场或储罐区应计1起;

2 工厂、堆场和储罐区等,当占地面积大于100hm2,同一时间内的火灾起数应按2起确定,工厂、堆场和储罐区应按需水量最大的两座建筑(或堆场、储罐)各计1起;

3 仓库和民用建筑同一时间内的火灾起数应按1起确定。

3.1.2 一起火灾灭火所需消防用水的设计流量应由建筑的室外消火栓系统、室内消火栓系统、自动喷水灭火系统、泡沫灭火系统、水喷雾灭火系统、固定消防炮灭火系统、固定冷却水系统等需要同时作用的各种水灭火系统的设计流量组成,并应符合下列规定:

1 应按需要同时作用的各种水灭火系统最大设计流量之和确定;

2 两座及以上建筑合用消防给水系统时,应按其中一座设计流量最大者确定;

3 当消防给水与生活、生产给水合用时,合用系统的给水设计流量应为消防给水设计流量与生活、生产用水最大小时流量之和。计算生活用水最大小时流量时,淋浴用水量宜按15%计,浇洒及洗刷等火灾时能停用的用水量可不计。

3.1.3 自动喷水灭火系统、泡沫灭火系统、水喷雾灭火系统、固定消防炮灭火系统等水灭火系统的消防给水设计流量,应分别按现行国家标准《自动喷水灭火系统设计规范》GB 50084、《泡沫灭火系统设计规范》GB 50151、《水喷雾灭火系统设计规范》GB 50219和《固定消防炮灭火系统设计规范》GB 50338等的有关规定执行。

3.1.4 本规范未规定的建筑室内外消火栓设计流量,应根据其火灾危险性、建筑功能性质、耐火等级和建筑体积等相似建筑确定。

条文说明

3.1 一般规定

3.1.1 本条规定了工厂、仓库等工业建筑和民用建筑室外消防给水用水量的计算方法。

本条工厂、堆场和罐区是现行国家标准《建筑防火设计规范》GB 50016-2006第8.2.2条的有关内容。

3.1.2 本条规定了消防给水设计流量的组成和一起火灾灭火消防给水设计流量的计算方法。

本条规定了建筑消防给水设计流量的组成,通常有室外消火栓设计流量、室内消火栓设

计流量以及自动喷水系统的设计流量,有时可能还有水喷雾、泡沫、消防炮等,其设计流量是根据每个保护区同时作用的各种系统设计流量的叠加。如一室外油罐区有室外消火栓、固定冷却系统、泡沫灭火系统等3种水灭火设施,其消防给水的设计流量为这3种灭火设施的设计流量之和。如一民用建筑,有办公、商场、机械车库,其自动喷水的设计流量应根据办公、商场和机械车库3个不同消防对象分别计算,取其中的最大值作为消防给水设计流量的自动喷水子项的设计流量。

3.2 市政消防给水设计流量

3.2.1 市政消防给水设计流量,应根据当地火灾统计资料、火灾扑救用水量统计资料、灭火用水量保证率、建筑的组成和市政给水管网运行合理性等因素综合分析计算确定。

3.2.2 城镇市政消防给水设计流量,应按同一时间内的火灾起数和一起火灾灭火设计流量经计算确定。同一时间内的火灾起数和一起火灾灭火设计流量不应小于表3.2.2的规定。

表3.2.2 城镇同一时间内的火灾起数和一起火灾灭火设计流量

3.2.3 工业园区、商务区、居住区等市政消防给水设计流量,宜根据其规划区域的规模和同一时间的火灾起数,以及规划中的各类建筑室内外同时作用的水灭火系统设计流量之和经计算分析确定。

条文说明

3.2 市政消防给水设计流量

3.2.2 本条给出城镇的市政消防给水设计流量,以及同时火灾起数,以确定市政消防给水设计流量。本条是在现行国家标准《建筑防火设计规范》GB 50016-2006的基础上制订。

1 同一时间内的火灾起数同国家标准《建筑防火设计规范》GB50016-2006;

2 一起火灾灭火消防给水设计流量。

城镇的一起火灾灭火消防给水设计流量,按同时使用的水枪数量与每支水枪平均用水量的乘积计算。

我国大多数城市消防队第一出动力量到达火场时,常出2支口径19mm的水枪扑救建筑火灾,每支水枪的平均出水量为7.5L/s。因此,室外消防用水量的基础设计流量以15L/s 为基准进行调整。

美国、日本和前苏联均按城市人口数的增加而相应增加消防用水量。例如,在美国,人口不超过20万的城市消防用水量为44L/s~63L/s,人口超过30万的城市消防用水量为170.3L/s~568L/s;日本也基本如此。本规范根据火场用水量是以水枪数量递增的规律,以2支水枪的消防用水量(即15L/s)作为下限值,以100L/s作为消防用水量的上限值,确定了城镇消防用水量。本规范与美国、日本和前苏联的城镇消防用水量比较,见表1。

表1 本规范与美国、日本和前苏联的城市消防给水设计流量

根据我国统计数据,城市灭火的平均灭火用水量为89L/s。近10年特大型火灾消防流量150L/s~450L/s,大型石油化工厂、液化石油气储罐区等的消防用水量则更大。若采用管网来保证这些建、构筑物的消防用水量有困难时,可采用蓄水池补充或市政给水管网协调供水保证。

3.3 建筑物室外消火栓设计流量

3.3.1 建筑物室外消火栓设计流量,应根据建筑物的用途功能、体积、耐火等级、火灾危险性等因素综合分析确定。

3.3.2 建筑物室外消火栓设计流量不应小于表3.3.2的规定。

表3.3.2 建筑物室外消火栓设计流量(L/s)

注:1 成组布置的建筑物应按消火栓设计流量较大的相邻两座建筑物的体积之和确定;

2 火车站、码头和机场的中转库房,其室外消火栓设计流量应按相应耐火等级的丙类物品库房确定;

3 国家级文物保护单位的重点砖木、木结构的建筑物室外消火栓设计流量,按三级耐火等级民用建筑物消火栓设计流量确定;

4 当单座建筑的总建筑面积大于500000m2时,建筑物室外消火栓设计流量应按本表规定的最大值增加一倍。

3.3.3 宿舍、公寓等非住宅类居住建筑的室外消火栓设计流量,应按本规范表3.3.2中的公共建筑确定。

条文说明

3.3 建筑物室外消火栓设计流量

3.3.2 本条规定了工厂、仓库和民用建筑的室外消火栓设计流量。

该条依据国家标准《建筑防火设计规范》GB 50016-2006和《高层民用建筑防火设计规范》GB 50045-95(2005年版)等规范的室外消防用水量,根据常用的建筑物室外消防用水量主要依据建筑物的体积、危险类别和耐火等级计算确定,并统一修正。当单座建筑面积大于500000m2时,根据火灾实战数据和供水可靠性,室外消火栓设计流量增加1倍。

3.4 构筑物消防给水设计流量

3.4.1 以煤、天然气、石油及其产品等为原料的工艺生产装置的消防给水设计流量,应根据其规模、火灾危险性等因素综合确定,且应为室外消火栓设计流量、泡沫灭火系统和固定冷却水系统等水灭火系统的设计流量之和,并应符合下列规定:

1 石油化工厂工艺生产装置的消防给水设计流量,应符合现行国家标准《石油化工企业设计防火规范》GB 50160的有关规定;

2 石油天然气工程工艺生产装置的消防给水设计流量,应符合现行国家标准《石油天然气工程设计防火规范》GB 50183的有关规定。

3.4.2 甲、乙、丙类可燃液体储罐的消防给水设计流量应按最大罐组确定,并应按泡沫灭火系统设计流量、固定冷却水系统设计流量与室外消火栓设计流量之和确定,同时应符合下列规定:

1 泡沫灭火系统设计流量应按系统扑救储罐区一起火灾的固定式、半固定式或移动式泡沫混合液量及泡沫液混合比经计算确定,并应符合现行国家标准《泡沫灭火系统设计规范》GB 50151的有关规定;

2 固定冷却水系统设计流量应按着火罐与邻近罐最大设计流量经计算确定,固定式冷却水系统设计流量应按表3.4.2-1或表3.4.2-2规定的设计参数经计算确定。

表3.4.2-1 地上立式储罐冷却水系统的保护范围和喷水强度

注:1 当浮顶、内浮顶罐的浮盘采用易熔材料制作时,内浮顶罐的喷水强度应按固定顶罐计算;

2 当浮顶、内浮顶罐的浮盘为浅盘式时,内浮顶罐的喷水强度应按固定顶罐计算;

3 固定冷却水系统邻近罐应按实际冷却面积计算,但不应小于罐壁表面积的1/2;

4 距着火固定罐罐壁1.5倍着火罐直径范围内的邻近罐应设置冷却水系统,当邻近罐超过3个时,冷却水系统可按3个罐的设计流量计算;

5 除浮盘采用易熔材料制作的储罐外,当着火罐为浮顶、内浮顶罐时,距着火罐壁的净距离大于或等于0.4D的邻近罐可不设冷却水系统,D为着火油罐与相邻油罐两者中较大油罐的直径;距着火罐壁的净距离小于0.4D范围内的相邻油罐受火焰辐射热影响比较大的局部应设置冷却水系统,且所有相邻油罐的冷却水系统设计流量之和不应小于45L/s;

6 移动式冷却宜为室外消火栓或消防炮。

表3.4.2-2 卧式储罐、无覆土地下及半地下立式储罐冷却水系统的保护范围和喷水强度

注:1 当计算出的着火罐冷却水系统设计流量小于15L/s时,应采用15L/s;

2 着火罐直径与长度之和的一半范围内的邻近卧式罐应进行冷却;着火罐直径1.5倍范围内的邻近地下、半地下立式罐应冷却;

3 当邻近储罐超过4个时,冷却水系统可按4个罐的设计流量计算;

4 当邻近罐采用不燃材料作绝热层时,其冷却水系统喷水强度可按本表减少50%,但设计流量不应小于7.5L/s;

5 无覆土半地下、地下卧式罐冷却水系统的保护范围和喷水强度应按本表地上卧式罐确定。

3 当储罐采用固定式冷却水系统时室外消火栓设计流量不应小于表3.4.2-3的规定,当采用移动式冷却水系统时室外消火栓设计流量应按表3.4.2-1或表3.4.2-2规定的设计参数经计算确定,且不应小于15L/s。

表3.4.2-3 甲、乙、丙类可燃液体地上立式储罐区的室外消火栓设计流量

3.4.3 甲、乙、丙类可燃液体地上立式储罐冷却水系统保护范围和喷水强度不应小于本规范表3.4.2-1的规定;卧式储罐、无覆土地下及半地下立式储罐冷却水系统保护范围和喷水强

度不应小于本规范表3.4.2-2的规定;室外消火栓设计流量应按本规范第3.4.2条第3款的规定确定。

3.4.4 覆土油罐的室外消火栓设计流量应按最大单罐周长和喷水强度计算确定,喷水强度不应小于0.30L/(s·m);当计算设计流量小于15L/s时,应采用15L/s。

3.4.5 液化烃罐区的消防给水设计流量应按最大罐组确定,并应按固定冷却水系统设计流量与室外消火栓设计流量之和确定,同时应符合下列规定:

1 固定冷却水系统设计流量应按表3.4.5-1规定的设计参数经计算确定;室外消火栓设计流量不应小于表3.4.5-2的规定值;

2 当企业设有独立消防站,且单罐容积小于或等于100m3时,可采用室外消火栓等移动式冷却水系统,其罐区消防给水设计流量应按表3.4.5-1的规定经计算确定,但不应低于100L/s。

表3.4.5-1 液化烃储罐固定冷却水系统设计流量

注:1 固定冷却水系统当采用水喷雾系统冷却时喷水强度应符合本规范要求,且系统设置应符合现行国家标准《水喷雾灭火系统设计规范》GB 50219的有关规定;

2 全冷冻式液化烃储罐,当双防罐、全防罐外壁为钢筋混凝土结构时,罐顶和罐壁的冷

却水量可不计;但管道进出口等局部危险处应设置水喷雾系统冷却,供水强度不应小于20.0L/(min·m2);

3 距着火罐罐壁1.5倍着火罐直径范围内的邻近罐应计算冷却水系统,当邻近罐超过3个时,冷却水系统可按3个罐的设计流量计算;

4 当储罐采用固定消防水炮作为固定冷却设施时,其设计流量不宜小于水喷雾系统计算流量的1.3倍。

表3.4.5-2 液化烃罐区的室外消火栓设计流量

注:1 罐区的室外消火栓设计流量应按罐组内最大单罐计;

2 当储罐区四周设固定消防水炮作为辅助冷却设施时,辅助冷却水设计流量不应小于室外消火栓设计流量。

3.4.6 沸点低于45℃甲类液体压力球罐的消防给水设计流量,应按本规范第3.4.5条中全压力式储罐的要求经计算确定。

3.4.7 全压力式、半冷冻式和全冷冻式液氨储罐的消防给水设计流量,应按本规范第3.4.5条中全压力式及半冷冻式储罐的要求经计算确定,但喷水强度应按不小于6.0L/(min·m2)计算,全冷冻式液氨储罐的冷却水系统设计流量应按全冷冻式液化烃储罐外壁为钢制单防罐的要求计算。

3.4.8 空分站,可燃液体、液化烃的火车和汽车装卸栈台,变电站等室外消火栓设计流量不应小于表3.4.8的规定。当室外变压器采用水喷雾灭火系统全保护时,其室外消火栓给水设计流量可按表3.4.8规定值的50%计算,但不应小于15L/s。

表3.4.8 空分站,可燃液体、液化烃的火车和汽车装卸栈台,变电站室外消火栓设计流量

建筑给排水系统设计方法和步骤

建筑给排水系统设计方法和步骤 1.根据建筑物的性质及给定的设计依据。确定室内与室外的给排水方案。 2.在建筑图上布置给排水立管位置。(原则:沿柱、墙角、墙面布置)布置给水干管位置。 3.在建筑图中从给水立管引水到各用水点。从各用水点将排水引入排水立管。 4.在建筑图上布置消火栓箱、消防立管、水平干管及连接消防栓管道和连接消防水泵接合器;消防水箱;消防水泵出水管。 5.绘制给水、消防管网的总系统图和排水、雨水系统图;绘制给排水详图。 6.确定最不利点的配水点及最不利点消火栓。 7.绘制计算简图——总系统图,删去部分连接管。(使得环状管网变成枝状管网计算) 8.确定计算管路,进行管段编号和确定管段流量。 9.列表进行水力计算: 10.确定系统的总水压:H=△Z+∑h+hч 11.排水(雨水)管径按最小管径法和负荷流量法(负荷面积法)查表确定。最后将计算结果标注于图纸上。並按规定布置灭火器。 12.选择生活及消防水泵,满足:Qp>Qx;Hp>H 并使工作点落在高效区内。 13.确定生活及消防水箱容积Vx=10min的室内消防水量(住宅≥6立方米;一般高层≥12立方米;大于50米的高层≥18立方米)並绘制水箱配管图。 14.确定消防水箱的高度(可提供给土建参考)若水箱出口到最不利点消火栓出口高差(高层<7m;超高层<15m)需要增设加压稳压设备(泵)。 消火栓系统Q≤5L/S,H——满足最不利点消火栓的灭火要求; 自喷系统Q≤1L/S, H——满足最不利点喷头出水要求。

15.确定生活水池容积;消防水池容积V=(Q内+Q外) X T 並绘制水池配管图 注:Q内—室内消防水量 Q外—室外消防水量 T—火灾持续时间 16.作水泵房工艺设计:①作平面布置②绘制管路系统图③统计材料表④写设计说明 17.整理设计图纸,统计总材料表,编写给排水工程设计说明及图纸目录。 18.整理设计计算说明书。 相关规范:《建筑给排水设计规范》;《建筑设计防火规范》

消火栓系统设计及其验收标准规范

管道设计及选用 8.2.1 消防给水系统供水管道所采用的消防设施、管材和管件的工作压力不应小于消防给水系统的工作压力。 8.2.2 消防给水系统管网的工作压力应符合下列规定: 1.当水灭火系统直接由市政给水系统供水时,应根据市政给水管网的工作压力确定水灭火系统的工作压力,但当小于0.60MPa时,工作压力按0.60MPa计; 2.高位消防水池供水的常高压消防给水系统其工作压力为高位消防水池的供水压力;市政给水系统供水的常高压消防给水系统其工作压力为市政给水管网的供水压力; 3.屋顶消防水箱稳压的临时高压消防给水系统其工作压力为消防水泵的搅动压力+水泵吸水口净压;稳压泵稳压的稳高压消防给水系统其工作压力为消防水泵的搅动压力+水泵吸水口净压+0.07MPa。 8.2.3 消防给水系统埋地时应采用球墨铸铁管、钢丝网PE塑料管和加强防腐的钢管等管材;室内架空管道应采用热浸镀锌钢管,有特殊美观和腐蚀性要求时可采用铜管、不锈钢管等。 8.2.4消防给水系统工作压力不大于0.8MPa管道可采用球墨铸铁或钢丝网PE塑料管给水管道,但当系统工作压力大于0.8MPa,须采用镀锌钢管。公称直径DN≤250mm的沟槽式管接头的最大工作压力不应大于2.5MPa,公称直径DN≥300mm的沟槽式管接头的最大工作压力不应大于1.6MPa。 8.2.5 消防给水系统埋地管道的埋深应符合下列规定。

1.管道的埋深应考虑地面、埋深荷载和冰冻线对消防给水管道的影响; 2.管道最小埋深不应小于0.8m; 3.在机动车道下时最小埋深不应小于0.9m; 4.在寒冷地区管道的埋深最小应在冰冻线以下0.3m; 5.寒冷地区室外阀门井应设置防冻措施。 8.2.6 钢丝网PE塑料管作为埋地消防给水管道时,应符合下列规定: 1.消防给水管道用钢丝网PE聚乙烯管道的PE原材料应是不低于PE80; 2.钢丝网PE塑料管道的最小强度不应低于8MPa; 3.连接管件与管材生产厂家应配套,连接方式可靠; 4.钢丝网PE塑料管不宜穿越建筑物、构筑物基础; 7.钢丝网PE塑料管道管顶最小覆土深度,在人行道下不宜小于0.80m,在轻型车行道下不应小于1.0m;在重型汽车道路或铁路、高速公路下应设置保护套管,套管与钢丝网PE塑料管的净距不应小于100mm; 8.钢丝网PE塑料管道与热力管道间的距离,应在保证聚乙烯管道表面温度不超过40℃的条件下计算确定,但最小净距不得小于1.5m; 9.管道的合拢时间应选择在温度合适的时间,一般宜经过1个夜晚后的第二天早上10点以前; 10.钢丝网PE塑料管道的结构计算和水锤复核计算应满足标准《》

消防给水及消火栓系统技术规范

《消防给水及消火栓系统技术规范》规定差异点总结: 1、室内、外消火栓规范要求的用水量(L/s)增加,宿舍、公寓等非住宅类居住建筑按公共 建筑执行。(详见3.3.2、3.3.3、3.5.2、3.5.4) 2、建筑内用于防火分隔的防火分隔水幕和防护冷却水幕的火灾延续时间,不应小于防火分 隔水幕或防火冷却水幕设置部位墙体的耐火极限。(详见3.6.4) 3、当采用一路消防供水或只有一条引入管,且室外消火栓设计流量大于20L/s或建筑高度 大于50m,应设置消防水池。(详见4.3.1)(《建规》为室内外消防用水量之和大于25L/s) 4、消防水池进水管管径不应小于DN100。(详见4.3.3) 5、消防水池有2根补水管,且发生火灾时能连续补水的,消防水池可根据补水量做小点, 但不能小于100立方,如果只有消火栓系统的不能小于50立方。(详见4.3.4) 6、消防水池大于500立方的,宜分成两格;大于1000立方的,应分成两座。(详见4.3.6) 7、增加消防水池的出水、排水、水位、通气管和呼吸管的规定。(水泵房内应能显示消防 水池水位,消控室内应能显示消防水池、消防水箱正常水位,以及高水位、低水位报警功能。)(详见4.3.9、4.3.10) 8、消控室内应能显示稳压泵的运行状态。(详见11.0.7) 9、消防水池最低水位低于离心泵出水管中心线或水位不能保证离心泵吸水时,可采用轴流 深井泵。(详见5.1.9) 10、<54m的住宅和室外消防用水量≤25L/s或室内消防用水量≤10L/s的建筑可不设 置备用消防水泵。(增加了住宅)(详见5.1.10) 11、消防水泵组应设置流量和压力检测装置。(详见5.1.11) 12、消防水泵吸水方式(自灌式或直接从市政管网抽水)。(详见5.1.12) 13、消防水泵能有效可靠工作而对吸水管、出水管和阀门等做出规定。(一组消防水泵 的吸水管和出水管应有100%备用,吸水管上应设置偏心大小头,以避免形成气囊。)(详见5.1.13) 14、增加消防水泵吸水管和出水管上过滤器、压力表的规定。(压力表应设关断阀门) (详见5.1.16、5.1.17)

高层民用建筑消防给水的设计

安全管理编号:LX-FS-A84214 高层民用建筑消防给水的设计 In the daily work environment, plan the important work to be done in the future, and require the personnel to jointly abide by the corresponding procedures and code of conduct, so that the overall behavior or activity reaches the specified standard 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

高层民用建筑消防给水的设计 使用说明:本安全管理资料适用于日常工作环境中对安全相关工作进行具有统筹性,导向性的规划,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、室外消火栓数量的确定 《高规》第7.3.6规定:“室外消火栓的数量应按本规范第7.2.2条规定的室外消火栓用水量经计算确定,每个消火栓的用水量应为10-15l/s”,但是《高规》的《条文说明》是这样解释:“室外消火栓的数量应保证供应建筑物需要的灭火用水量,其中包括室内、室外两部分”,笔者认为《条文说明》的解释超越了《高规》的规定。室外消火栓是室外消防用水取水口,理应按室外管网来考虑。可以想象得到,室外管网供水流量一旦确定,即使设置再多的室外消火栓,其室外消火栓所能取到的水量的总和也就是室

消防给水及消火栓系统技术规范word版

1 总则 1.0.1 为了合理设计消防给水及消火栓系统,保障施工质量,规范验收和维护管理,减少火灾危害,保护人身和财产安全,制定本规范。 1.0.2 本规范适用于新建、扩建、改建的工业、民用、市政等建设工程的消防给水及消火栓系统的设计、施工、验收和维护管理。 1.0.3 消防给水及消火栓系统的设计、施工、验收和维护管理应遵循国家的有关方针政策,结合工程特点,采取有效的技术措施,做到安全可靠、技术先进、经济适用、保护环境。 1.0.4 工程中采用的消防给水及消火栓系统的组件和设备等应为符合国家现行有关标准和准入制度要求的产品。 1.0.5 消防给水及消火栓系统的设计、施工、验收和维护管理,除应符合本规范外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 消防水源fire water 向水灭火设施、车载或手抬等移动消防水泵、固定消防水泵等提供消防用水的水源,包括市政给水、消防水池、高位消防水池和天然水源等。 2.1.2 高压消防给水系统constant high pressure fire protection water supply system 能始终保持满足水灭火设施所需的工作压力和流量,火灾时无须消防水泵直接加压的供水系统。

2.1.3 临时高压消防给水系统temporary high pressure fire protection water supply system 平时不能满足水灭火设施所需的工作压力和流量,火灾时能自动启动消防水泵以满足水灭火设施所需的工作压力和流量的供水系统。 2.1.4 低压消防给水系统low pressure fire protection water supply system 能满足车载或手抬移动消防水泵等取水所需的工作压力和流量的供水系统。 2.1.5 消防水池fire reservoir 人工建造的供固定或移动消防水泵吸水的储水设施。 2.1.6 高位消防水池gravity fire reservoir 设置在高处直接向水灭火设施重力供水的储水设施。 2.1.7 高位消防水箱elevated/gravity fire tank 设置在高处直接向水灭火设施重力供应初期火灾消防用水量的储水设施。 2.1.8 消火栓系统hydrant systems/standpipe and hose systems 由供水设施、消火栓、配水管网和阀门等组成的系统。 2.1.9 湿式消火栓系统wet hydrant system/wet standpipe system 平时配水管网内充满水的消火栓系统。 2.1.10 干式消火栓系统dry hydrant system/dry standpipe system

GB50974-2014《消防给水及消火栓系统技术规范》实施指南-武汉地区

《消防给水及消火栓系统技术规范》 GB50974-2014 实施指南

前言 国家标准《消防给水及消火栓系统技术规范》GB50974-2014已于2014年10月1日正式颁布实施。该规范作为今后工程建设领域消防给水设计的主要规范,包含了许多新理念、新技术、新的设计要求等,在当前的工程项目消防设计工作中,面临着如何更好地理解规范、把握标准的问题。 为深刻领会该规范的内涵,指导武汉地区的消防给水设计,武汉土木建筑学会联合中南建筑设计院股份有限公司组织武汉地区相关单位的技术人员,结合规范编制组专家进行宣贯的精神,对该规范进行了深入细致的解读,汇编成《<消防给水及消火栓系统技术规范>实施指南》。 本《实施指南》针对该规范中容易引起不同理解的内容,结合工程设计的实践经验,进行解读并提出解决方案,旨在使武汉地区消防给水的设计、审查、管理达成共识,避免出现不同部门对某一条规范条文理解不同,引起混乱的局面,使设计人员更好地贯彻执行该规范。 主编单位:中南建筑设计院股份有限公司武汉土木建筑学会 参编单位:中信建筑设计研究总院有限公司 武汉理工大设计研究院有限公司 武汉勘察设计协会技术咨询服务部 湖北华建建设工程设计审查事务有限公司 武汉精诚土木建筑工程设计审查有限公司 主要起草人:涂正纯栗心国邓斌李传志 洪瑛杜金娣秦晓梅骆芳 袁志宇吴平岳重云梁瑞霞 龙建平赵华胡鸣镝李凡 莫孝翠危忠刘亚琴相凤奎 主要审查人:孙昌益施妮唐楚丁 范彦王琪

目次 3 基本参数 (1) 4 消防水源 (5) 5 供水设施 (11) 6 给水形式 (25) 7 消火栓系统 (32) 8 管网 (36) 9 消防排水 (39) 10水力计算 (45) 11控制与操作 (46) 12 施工 (48) 13系统调试与验收 (49) 其他 (50)

消防给水系统设计

一、建筑物消防给水系统设计的主要任务 确定建筑的消防用水量、合理布局系统管网和消火栓、确定消火栓配水管最低压力和最小管径以及消火栓的最低给水流量、选择消防泵、配置建筑物消防水箱和消防水池等。 二、建筑的消防给水和灭火设施设计 (一)、建筑的消防给水和灭火设施设计的原则 在设计建筑的消防给水和灭火设施时,应充分考虑各种因素,特别是建筑物的火灾危险性、建筑高度和使用人员的数量与特性,使之既保证建筑消防安全,快速控火灭火,又节约投资,合理设置。 (二)、消防给水系统和灭火设施设计 消防给水系统完善与否,直接影响火灾扑救的效果。设计消防给水系统,应确保消防给水条件较好,水量、水压有保障。 1、室外消防给水系统分类 室外消防给水系统按管网内的水压一般可分为高压、临时高压、低压消防给水系统三种。 高压:高压消防给水系统是指管网内经常保持足够的压力和消防用水量,火场上不需要使用消防车或其他移动式水泵等消防设备加压,直接由消火栓接出水带就可满足水枪出水灭火要求的给水系统。当建筑高度大于24m时,则立足于室内消防设备扑救火灾。水枪在任何建筑物的最高处时,水枪的充实水柱仍不小于10m; 临时高压:给水管道内平时水压不高,在水泵站(房)内设有消防水泵,当接到火警时,启动消防水泵使管网内的压力达到高压给水系统水压要求的给水系统。采用屋顶消防水池、消防水泵和稳压设施等组成的给水系统以及气压给水装置,采用变频调速水泵恒压供水的生活(生产)和消防合用给水系统均为临时高压消防给水系统。水枪在任何建筑物的最高处时,水枪的充实水柱仍不小于10m; 低压:灭火时所需水压和流量要由消防车或其他移动式消防泵加压提供的给水系统。一般建筑内的生产、生活和消防合用给水系统多采用这种系统。最不利点消火栓的压力不应小于0.1MPa。(通常,火场上一辆消防车占用一个消火栓,按一辆消防车出2支水枪,每支水枪的平均流量为5L/s计算,2支水枪的出水量约为10L/s。当流量为10L/s、直径65mm的麻质水带长度为20m时,其水头损失为8.6m水柱。消火栓与消防车水罐人口的标高差约为1.5m。两者合计约为10m水柱。因此,最不利点消火栓的压力不应小于0.1MPa。) 2、管道流速 为防止消防用水时形成的水锤损坏管网或其他用水设备,对消火栓给水管道内的水流速度作了一定限制,消火栓给水系统流速不宜大于2.5m/s;自动喷水灭火系统的管道流速,不宜超过5.0m/s(应保证任意作用面积内的平均喷水强度),特殊情况下可控制在10m/s以下。但不应大于10m/s。

消防给水及消火栓系统技术规范 GB50974-201X

1 总则 1.0.2 本规范适用于新建、扩建、改建的工业、民用、市政等建设工程的消防给水及消火栓系统的设计、施工、验收和维护管理。 1.0.3 消防给水及消火栓系统的设计、施工、验收和维护管理应遵循国家的有关方针政策,结合工程特点,采取有效的技术措施,做到安全可靠、技术先进、经济适用、保护环境。 1.0.4 工程中采用的消防给水及消火栓系统的组件和设备等应为符合国家现行有关标准和准入制度要求的产品。 1.0.5 消防给水及消火栓系统的设计、施工、验收和维护管理,除应符合本规范外,尚应符合国家现行有关标准的规定。 条文说明 1 总则 1.0.1 本条规定了本规范的编制目的。 建国60年来我国消防给水及消火栓系统设计、施工及验收规范从无到有,至今已建立了完整的体系。特别是改革开放30年来,快速的工业化和城市化使我国工程建设有了巨大地发展,消防给水及消火栓系统伴随着工程建设的大规模开展也快速发展,与此同时与国际交流更加频繁,使我们更加认识消防给水及消火栓系统在工程建设中的重要性,以及安全可靠性与经济性的关系,首先是安全可靠性,其次是经济合理性。 水作为火灾扑救过程中的主要灭火剂,其供应量的多少直接影响着灭火的成效。根据统计,成功扑救火灾的案例中,有93%的火场消防给水条件较好;而扑救火灾不利的案例中,有81.5%的火场缺乏消防用水。例如,1998年5月5日,发生在北京市丰台区玉泉营环岛家具城的火灾,就是因为家具城及其周边地区消防水源严重缺乏,市政消防给水严重不足,消防人员不得不从离火场550m、600m的地方接力供水,从距离火场1400m的地方运水灭火,延误了战机,以至于两万平方米的家具城及其展销家具均被化为一片灰烬,直接经济损失达2087余万元。又如2000年1月11日晨,安徽省合肥市城隍庙市场庐阳宫发生特大火灾,火灾过火面积10523m2,庐阳宫及四周126间门面房内的服装、布料、五金和塑料制品等烧损殆尽,1人被烧死,619家经营户受灾,烧毁各类商品损失折款1763万元,庐阳宫主体建筑火烧损失416万元,两项合计,庐阳宫火灾直接经济损失2179万元,这场火灾的主要原因是没有设置室内消防给水设施,以致火灾发生后蔓延迅速,直至造成重大损失。火灾控制和扑救所需的消防用水主要由消防给水系统供应,因此消防给水的供水能力和安全可靠性决定

消火栓给水系统设计技术规范

消火栓给水系统设计技术规范 7.1.1消火栓的设置场所。 1室外消火栓的设置场所: 1)城镇、居住区及企事业单位; 2)厂房、库房及民用建筑; 3)汽车库、修车库和停车场; 4)易燃、可燃材料露天、半露天堆场,可燃气体储罐或 储罐区等室外场所; 5)耐火等级不低于二级,且体积不超过3000m3的戊类厂房或居住区人数不超过500人,且建筑物不超过二层的居 住小区,可不设消防给水。 2室内消火栓的设置场所。存有与水接触能引起剧烈燃 烧爆炸的物品除外的下列场所应设置消火栓。 1)多层民用和工业建筑: ①厂房、库房、高度不超过24m的科研楼;②超过800个座位 的剧院、电影院、俱乐部和超过1200 个座位的礼堂、体育馆; ③体积超过5000m’的车站、码头、机场建筑物以及展览馆、商店、病房楼、门诊楼、图书馆、书库等; ④超过7层的单元式住宅,超过6层的塔式住宅、通廊式 住宅、底层设有商业网点的单元式住宅,底层为商场或车库

且共用疏散楼梯的住宅; ⑤超过5层或体积超过10000m’的教学楼等其他民用建筑(如综合楼、办公楼等); ⑥国家级文物保护单位的重点砖木或木结构的古建筑; ⑦在一座一、二级耐火等级的厂房内,如有生产性质不同的部位时,可根据各部位的特点确定设置或不设置室内消防 给水; ⑧下列建筑物可不设室内消防给水: a.耐火等级为一、二级且可燃物较少的丁、戊类厂房和 库房(高层工业建筑除外);耐火等级为三、四级且建筑体积 不超过3000m2的丁类厂房和建筑体积不超过5000m2的戊类厂房; b.室内没有生产、生活给水管道,室外消防用水取自储 水池且建筑体积不超过5000m2的建筑物。 2)高层民用建筑及其裙房;高层工业建筑。 3)建筑面积大于300m2的人防工程或地下建筑。 4)汽车库、修车库和停车场。 耐火等级为一、二级且停车数超过5辆的汽车库;停车数超过5辆的停车场;超过2个车位的Ⅳ类修车库应设消防给 水系统。当汽车库设在其他建筑物内,其停车数小于上述规 定时,但建筑内有消防给水系统时,亦应设置消火栓。 5)建筑面积不小于300m2的歌舞娱乐放映游艺场所。

建筑消防给水设计

辽宁工程技术大学课程设计说明书 课程名称建筑给水排水工程 院(系)建筑工程学院建筑环境与设备工程系 专业建筑环境与设备工程 姓名郭书伯 学号1123020106 起讫日期2014年6月6日至2014年6月19日 指导教师王显军 2014 年 6月 18 日

吉林长春某高层商住楼消防给水设计 根据《高层民用建筑设计防火规范》和《自动喷水灭火系统设计规范》规定,本建筑为高层商住楼,其高度大于24m 的公共建筑,每层建筑面积超过1000m2的综合楼属于二类高层建筑。需要设置室内消火栓给水系统、室外消火栓给水系统及自动喷水灭火系统。其消防用水总量应按同时开启这三个系统所需用水量之和计算。 由资料得,本建筑半地下层的防火等级为一级,并分成五个防火分区,每个防火分区的面积不大于500m2;地上部分建筑的防火等级为二级,且每层为一个防火分区,每个防火分区的面积不大于2500m2。 1消火栓系统用水量 高层建筑的消防用水量标准与建筑的性质、高度、空间大小、可燃物数量、燃烧面积、火灾蔓延的速度、室内人员情况及经济损失等因素有关。 本建筑为商务综合楼,属于办公楼等公用建筑,其使用功能复杂,室内设备价值较高;尤其市场、商铺人流密集,火灾危险性大,消防用水量大些。所以按高层民用建筑消火栓给水系统的消防用水量计算,用水量应满足下表的要求: 表2-1 消防用水量 2室内消火栓系统 2.1消火栓系统给水方式及系统组成 根据《高层民用建筑设计防火规范》规定:当消火栓的栓口静水压力大于0.8MPa 时,应进行竖向分区;栓口出水压力大于0.5MPa 时,消火栓应设减压装置。本建筑高度为54.7m ,最低处消火栓栓口处的位置标高为-1.5m ,显然,该点的静水压力小于0.8MPa ,所以本建筑的室内消火栓给水系统不需要进行竖向分区。 本建筑设计为临时高于给水系统,需设水池、水泵、高位水箱。火灾时,前十分钟由高位水箱供水,十分钟后由高压消防泵向管网系统供水灭火。为了灭火 建筑类别 建筑高度 /m 消火栓用水量/L ·s-1 室外 室内 每根竖管最小流量/L ·s-1 每支水枪最小流量/L ·s-1 办公楼 ≤50m 20 30 15 5

消防给水及消火栓系统技术规范

2.1术语 比例式解压阀,水流从上往下,竖直安装 可调试解压阀,水流水平方向,水平安装 流程:设计施工调试验收维护管理 要求总则安全可靠经济适用 高压消防给水系统始终高压无须消防水泵直接加压 临时高压消防给水系统平时压力不高火灾时能自动启动消防水泵 低压消防给水系统能满足车载或手抬移动消防泵等取水的系统 消防水池水泵吸水的储水设施 高位水池设在高处重力供水 高位水箱设在高处初期供水 3基本参数 3.1消火栓系统组成供水设施消火栓配水管网阀门等组成 一起灭火所需消防用水的设计流量=室外栓+室内栓+自喷系统,泡沫系统,水喷雾系统中最大用水量+冷却系统用水;两座及以上按最大的一座计算确定;与生产生活用水合用时,系统给水流量应为消防给水设计流量+生产生活用水最大小时流量之和,淋浴用水宜按15%计。 3.3室外消火栓设计流量 ,体积,耐火等级,火灾危险性等因素确定 注1,成组布置建筑按较大的相邻两座建筑体积之和查表确定室外栓设计流量 3,木结构文物,按三级耐火等级查表确定室外栓设计流量 4,单座建筑总建面大于50万㎡,室外栓设计流量按表的最大值增加一倍 3.5室内消火栓设计流量 ,体积,高度,耐火等级,火灾危险性等因素确定 注1,丁戊类高层厂(仓)室内栓设计流量可按表减少10L/s(2水枪)。 2,消防软管卷盘,轻便消防水龙,干式消火栓竖管可不计消火栓设计流量。 3,多层建筑有多种使用功能时,室内消火栓设计流量应分别按表中不同功能计算,且取最大值。 ,高层建筑不超50m且室内栓设计流量 过20L/S时可按表减少5L/m;多层可减少50%,但不少于10L/S。 ,当为高层按表中公共建筑确定。 3.6消防用水量 当防护多个建筑分别计算后取最大用水量(不是最大室内外用水之和); 室内一个防护区(对象)用水量=栓+最大自灭系统(自喷、水雾、消防水炮、泡沫等灭火系统)+水幕系统(防火分隔、防护冷却);多个防护区(对象时),分别计算取最大防护区用水量为室内消防用水量。 栓:甲乙丙厂(仓)火灾延续时间3h 丁戊类厂(仓)火灾延续时间2h 高商、展、综,大50财、图、书、重(档)、科、高宾(或记忆:当兵图财) 人防<3000㎡1h,其他建筑2h。 自喷1h;当用于防火分隔或防护冷却水幕时,不小于设置部位墙耐火要求。 表

室外消火栓给水系统(水泵启动)

室外消火栓给水系统(水泵启动) 《建筑设计防火规范》GB50016-2006第8.1.3 室外消防给水当采 用“高压或临时高压给水系统”时,管道的供水压力应能保证用水总量达到最大且水枪在任何建筑物的最高处时,水枪的充实水柱仍不小于10.0m;当采用“低压给水系统”时,室外消火栓栓口处的水压从室外设计地面算起不应小于0.1MPa。 低压消防给水系统指管网内平时水压(一般为0.1~0.3MPa)较低,灭火时最 不利点水枪达到规范要求的水柱时所需要的压力不能满足,需由消防车或移动式消防泵加压后供给,但必须指出,0.1MPa为管道的末端压力。 室外消火栓系统采用消防水池--水泵加压供水,压力设计很低(为0.3MPA),能叫低压消防给水系统吗?(是的) 高压消防给水系统指管网内经常保持足够的压力,火场上不需使用消防车或 其它移动式水泵加压,而直接由消火栓接出水带、水枪灭火。当建筑高度小于24米时,室外高压给水管道的压力应保证生产、生活、消防用水量达到最大,且水枪布置在保护范围内任何建筑物的最高处时,水枪的充实水柱不应小于10米,当建筑高度大于24米时,应立足于室内消防设备扑救火灾。 临时高压消防给水系统指在平时水压不高,通过高压消防水泵加压,使管 网内的压力达到高压给水管道的压力要求。当城镇、居住区或企事业单位有高层建筑时,可以采用室外和室内均为高压或者临时高压的消防给水系统,也可以采用室内为高压或者临时高压,而室外为低压的消防给水系统。气压给水装置只能算临时高压消防给水系统。一般石化工厂或者甲乙丙类液体、可燃气体储罐区多采用这种管网。 有室内消火栓的片区:室内外消火栓系统合用,采用临时高压消防给水系统,设置消防水池->消防泵->消防环网,屋顶设置消防水箱满足火灾前10分钟消防用水量,根据8.4.3第8条“高层厂房(仓库)和高位消防水箱静压不能满足最不利点消火栓水压要求的其它建筑,应在每个室内消火栓处设置直接启动消防水泵的按钮,并应有保护设施;”发生火宅时由室内消火栓处启泵按钮启动消防泵以满足火灾延续时间内消防要求。 无室内消火栓的片区:室外消火栓环网采用临时高压给水系统,设置消防水池->消防泵->消防环网,并于值班室设置消防泵启泵按钮,火灾发生时由值班人员于火警后30秒内启动消防泵供水。

某建筑消防给水系统设计与计算

某建筑消防给水系统设计与计算 3.1、消火栓系统 3.1.1、设计参数:室内消火栓用水量10 l/s ,充实水柱12m ,每支水枪的流量5.2 l/s ,每根竖管流量为10.4 l/s ,消防立管管径DN100。最低层消火栓所承受的静水压不大于0.8Mpa ,可不分区,采用一次供水的临时高压室内消火栓给水系统。选用 3.1.2消火栓系统的设计计算 1)消火栓间距的确定 消火栓保护半径R=L d +L s 式中R ——消火栓保护半径(m ); L d ——水龙带敷设长度(m );乘以一个曲折系数0.8 Ld=0.8*25=20m L s ——水枪充实水柱在水平面上的投影(m );Ls=12*cos45=8.49m 0 消火栓的布置间距L=√(R 2-b 2) 式中L ——消火栓的布置间距(m ); b ——消火栓最大保护宽度(m )。 2)消防栓保护半径按下列公式计算: f R =Ld+Ls=16+8.49=24.49m 消火栓最大保护宽度:f b =9.3m 消火栓布置间距: L=65.223.949.242 222=-=-f f b R m 消火栓布置间距取23 m 。由于建筑物是塔式建筑,消防栓只能采用双出口消火栓,每层设置一个双出口消火栓。 3)消火栓管道系统计算 消火栓计算简图见图2-1。 水枪造式12m 充实水柱所需的水压Hq 按下式计算; Hq=m H H m f m f 90.1612 0097.021.1112 21.11=??-?=-φαα 4)水枪喷嘴射流量按下式计算: s L s L H B q q x xk /5/2.519.19577.1>=?==

消防给水和消火栓系统技术设计规范方案版

1总则 1 . 0 ? 1为了合理设计消防给水及消火栓系统,保障施工质量,规范验收和维护管 理,减少火灾危害,保护人身和财产安全,制定本规范。 1 ? 0 ? 2本规范适用于新建、扩建、改建的工业、民用、市政等建设工程的消防给水及消火栓系统的设计、施工、验收和维护管理。 1 ? 0 ? 3消防给水及消火栓系统的设计、施工、验收和维护管理应遵循国家的有关方针政策,结合工程特点,采取有效的技术措施,做到安全可靠、技术先进、经济适用、保护环境。 1 ? 0 ? 4工程中采用的消防给水及消火栓系统的组件和设备等应为符合国家现行有关标准和准入制度要求的产品。 1 ? 0 ? 5消防给水及消火栓系统的设计、施工、验收和维护管理,除应符合本规范 外,尚应符合国家现行有关标准的规定。 2术语和符号 2 ? 1术语 2 ? 1 ? 1 消防水源fire water 向水灭火设施、车载或手抬等移动消防水泵、固定消防水泵等提供消防用水的水 源,包括市政给水、消防水池、高位消防水池和天然水源等。

2 . 1 . 2 高压消防给水系统constant high pressure fire protection water supply system 能始终保持满足水灭火设施所需的工作压力和流量,火灾时无须消防水泵直接加压的供水系统。 2 . 1 . 3 临时高压消防给水系统temporary high pressure fire protection water supply system 平时不能满足水灭火设施所需的工作压力和流量,火灾时能自动启动消防水泵以满足水灭火设施所需的工作压力和流量的供水系统。 2 . 1 . 4 低压消防给水系统low pressure fire protect ion water supply system 能满足车载或手抬移动消防水泵等取水所需的工作压力和流量的供水系统。 2 . 1 . 5 消防水池fire reservoir 人工建造的供固定或移动消防水泵吸水的储水设施。 2 . 1 . 6 高位消防水池gravity fire reservoir 设置在高处直接向水灭火设施重力供水的储水设施。 2 . 1 . 7 高位消防水箱elevated/gravity fire tank 设置在高处直接向水灭火设施重力供应初期火灾消防用水量的储水设施。

《消防给水及消火栓系统技术示范》之强条篇

《消防给水及消火栓系统技术规范》之强条篇 4.1.5严寒、寒冷等冬季结冰地区的消防水池、水塔和高位消防水池等应采取防冻措施。 4.1.6雨水清水池、中水清水池、水景和游泳池必须作为消防水源时,应有保证在任何情况下均能满足消防给水系统所需的水量和水质的技术措施。 4.3.4当消防水池采用两路消防供水且在火灾情况下连续补水能满足消防要求时,消防水池的有效容积应根据计算确定,但不应小于100m3,当仅设有消火栓系统时不应小于50m3。 4.3.8消防用水与其他用水共用的水池,应采取确保消防用水量不作他用的技术措施。 4.3.9消防水池的出水、排水和水位应符合下列规定: 1消防水池的出水管应保证消防水池的有效容积能被全部利用; 2 消防水池应设置就地水位显示装置,并应在消防控制中心或值班室等地点设置显示消防水池水位的装置,同时应有最高和最低报警水位; 3消防水池应设置溢流水管和排水设施,并应采用间接排水。 4.3.11 1高位消防水池的有效容积、出水、排水和水位,应符合本规范第4.3.8条和第4.3.9条的规定; 4.4.4当室外消防水源采用天然水源时,应采取防止冰凌、漂浮物、

悬浮物等物质堵塞消防水泵的技术措施,并应采取确保安全取水的措施。 4.4.5当天然水源作为消防水源时,应符合下列规定: 1当地表水作为室外消防水源时,应采取确保消防车、固定和移动消防水泵在枯水位取水的技术措施;当消防车取水时,最大吸水高度不应超过6.0m; 2当井水作为消防水源时,还应设置探测水井水位的水位测试装置。 4.4.7设有消防车取水口的天然水源,应设置消防车到达取水口的消防车道和消防车回车场或回车道。 5.1.6消防水泵的选择和应用应符合下列规定: 1消防水泵的性能应满足消防给水系统所需流量和压力的要求; 2消防水泵所配驱动器的功率应满足所选水泵流量扬程性能曲线上任何一点运行所需功率的要求; 3当采用电动机驱动的消防水泵时,应选择电动机干式安装的消防水泵; 5.1.8当采用柴油机消防水泵时应符合下列规定: 1柴油机消防水泵应采用压缩式点火型柴油机; 2柴油机的额定功率应校核海拔高度和环境温度对柴油机功率的影响; 3柴油机消防水泵应具备连续工作的性能,试验运行时间不应小于24h;

常高压消防给水系统设计

常高压消防给水系统设计 摘要:本文以规范为依据讨论了常高压消防给水系统含义,通过计算明确了一至三层的建筑物属于常高压消防给水系统,并提出了建立区域集中高压水泵房的建议。 作者:党安田 关键词:常高压消防给水系统;集中高压水泵房;区域集中供水系统 随着科技的日新月异,我们在消防设计中可应用的技术越来越多,准确地理解消防给水系统含义,对于设计的合理性起着越来越重要的意义,“常高压消防给水系统”、“集中高压水泵房”等专业术语常令工程技术人员莫衷一是,无所适从。因此笔者认为,充分利用现有资料,探讨消防给水系统的含义,最终达成合理、优化、合法的共识乃当务之急。 《建筑设计防火规范》(以下简称“规范”)作为指导城镇规划,建筑设计的通用性防火要求,自发布以来,历经多次修

订。目前现行的规范为2006年12月1日开始实施。下面通过对规范的几个条文的对比及理解来阐述常高压消防给水系统。 一、规范对常高压消防给水系统的定义 “规范”第8.1.3条要求:“室外消防给水当采用高压或临时高压给水系统时,管道的供水压力应能保证用水总量达到最大且水枪在任何建筑物的最高处时,水枪的充实水柱仍不小于10.0m。” 8.1.3条条文说明:“室外消防给水系统按管网内的水压一般可分为高压、临时高压和低压消防给水系统三种。” 高压消防给水系统:“管网内经常保持足够的压力和消防用水量,火场上不需要使用消防车或其他移动式水泵等消防水泵加压,直接由消火栓接出水带就可满足水枪出水灭火要求的给水系统。” 临时高压消防给水系统:“在给水管道内平时水压不高,其水压和流量不能满足最不利点的灭火需要,在水泵站(房)内设有消防水泵,当接到火警时,启动消

消防给水及消火栓系统技术规范图示15S

编制说明 建筑标准设计编制工作计划》的通知”进行编制。 2 设计依据 《消防给水及消火栓系统技术规范》GB 50974-2014 当依据的标准规范进行修订或有新的标准规范出版实施时,本图集与现行工程建设标准不符的内容、限制或淘汰的技术或产品,视为无效。工程技术人员在参考使用时,应注意加以区分,并应对本图集相关内容进行复核后选用。 3 编制目的 消防给水及消火栓系统对于保障人民生命和国家财产安全具有重要作用。《消防给水及消火栓系统技术规范》GB 50974-2014是新编规范,专门针对消防给水和消火栓系统编制,涵盖了基本参数、消防水源、供水设施、给水形式、消火栓系统、管网、消防排水、水力计算、控制与操作、施工、系统调试与验收、维护管理等诸多方面内容,其中许多内容是以往的规范没有涉及到或没有规定的,还有些内容是对以往的规定做了更改。在规范执行过程中,也会像以往的规范一样,存在理解偏差、不能正确合理把握、具体措施不当等问题,广大的消防给水及消火栓系统设计者等相关技术人员,特别是工作经验不是很丰富的技术人员需要有一个过程来深刻理解和掌握规范的规定。本图集旨在系统地、直观地、权威地对规范予以解析,将会给技术人员带来极大的方便,不仅提高工作效率,也能保证工作质量。 4 适用范围 本图集供从事新建、改建、扩建的民用建筑工程消防给水及消火栓系统设计、施工等工作的技术人员使用。工业建筑、市政工程可参考使用。 5 编制原则 5.1 以规范的条文为依据,正确、形象地解释规范的条文。 5.2 尽量采用图示解释规范的条文,不便图示的辅以文字说明。 5.3 本图集选取需要进一步解释或说明的条文、执行中容易产生分歧的条文及关联到其他相关规范的条文。 5.4 图示中着重强调条文的含义、执行方法、适用条件以及设计中应该注意的问题等。5.5 图示只是对规范条文的解释与示意,不按工程设计中图纸绘制深度要求编制。本图集的图示不能代替施工图或初步设计图纸。 6 编制方式 6.1 图中蓝底部分为《消防给水及消火栓系统技术规范》GB 50974-2014的原文。黑体字为强制性条文;宋体字为普通条文。编号为规范的条、款、项的原有编号。 6.2 白底部分为与规范相对应的图示内容,是对规范条文的理解和解释。

消防给水系统

消防给水系统 (Ⅰ)消防水源 第 7.3.1 条 在消防用水由工厂水源直接供给时,工厂给水管网的进水管不应少 于两条。当其中一条发生事故时,另一条应能通过 100%的消防用水和 70%的生 产、生活用水的总量。 在消防用水由消防水池供给时,工厂给水管网的进水管,应能通过消防水池的 补充水和 100%的生产、生活用水的总量。 第 7.3.2 条 石油化工企业宜建消防水池,并应符合下列规定: 一、水池的容量,应满足火灾延续时间内消防用水总量的要求。当发生火灾能 保证向水池连续补水时,其容量可减去火灾延续时间内的补充水量; 二、水池的容量小于或等于 1000m 时,可不分隔,大于 1000 m 时,应分隔成 两个,并设带阀门的连通管; 三、水池的补水时间,不宜超过 48h ; 四、当消防水池与全厂性生活或生产安全水池合建时,应有消防用水不作他用 的技术措施; 五、寒冷地区应设防冻措施。 (Ⅱ)消防用水量 第 7.3.3 条 厂区和居住区的消防用水量,应按同一时间内的火灾处数和相应处 的一次灭火用水量确定。 第 7.3.4 条 厂区和居住区同一时间内的火灾处数,应按表 7.3.4 确定。 第 7.3.5 条 联合企业内的各分厂、罐区、居住区等,如有各自独立的消防给水 系统,其消防用水量应分别进行计算。 3 3

第7.3.6条一次灭火的用水量,应符合下列规定: 一、居住区及建筑物的室外消防水量的计算,应按现行国家标准《建筑设计防火规范》的有关规定执行; 二、工艺装置的消防用水量,应根据其规模、火灾危险类别及固定消防设施的设置情况等综合考虑确定。当确定有困难时,可按表7.3.6选定。火灾延续供水时间不应小于3h。 三、辅助生产设施的消防用水量,可按30L/s计算。火灾延续供水时间,不宜小于2h。 注:化纤厂房的消防用水量,可按现行国家标准《建筑设计防火规范》的有关规定执行。 第7.3.7条可燃液体罐组的消防水量计算,应符合下列规定: 一、应按火灾时消防用水量最大的罐组计算,其水量应为配置泡沫用水及着火罐和邻近罐的冷却用水量之和; 一、当着火罐为立式罐时,距着火罐罐壁 1.5 倍着火罐直径范围内的相邻罐应进行冷却;当着火罐为卧式罐时,着火罐直径与长度之和的一半范围内的邻近地上罐应进行冷却; 二、当邻近立式罐超过 3 个时,冷却水量可按 3 个罐的用水量计算;当着火罐为浮顶或浮舱式内浮顶罐(浮盖用易熔材料制作的储罐除外)时,其邻近罐可不考虑冷却。 第7.3.8条可燃液体地上立式罐应设固定或移动式消防冷却水系统,其供水范围、供水强度和设置方式应满足下列要求: 一、供水范围、供水强度不应小于表 7.3.8 的规定;

高层建筑消防给水系统设计

– 44 – 现代物业?新建设 2012年第11卷第6期 现代建设 Modern Construction 随着社会和国民经济的不断发展,城市中的高层建筑也日趋发展。高层建筑的日益增长,带来的给水问题也越来越明显。在城市高层建筑的迅速发展时期,给排水设计中的一个重要方面,就是设计者能够保障建筑消防安全的建筑给水设计。给排水工程设计针对消防要求,也变得越来越严格,而这和高层建筑具有的复杂结构和楼层高是有一定关系的。在日常设计中,我们需要保障正常供给水的同时,也要保证建筑物的消防供水。在高层建筑给排水设计中,设计人员既要考虑到工程的投资成本,又要考虑到灭火和防火的可能性。然而给排水系统是一项比较复杂的工程,因此其设计过程也相应地比较复杂。本文在对高层建筑给水系统进行分析的基础上,为高层建筑工程施工提供一些参考。 1 几种常用的高层供水方式 1.1 无水箱供水方式 根据用户给水系统中的用水量,无水箱供水方式可以根据不同的情况,通过自动改变供水泵的实际转速,来保障供水泵总是处于高效率的工作状况,这种供水方式提高了供水泵的利用价值,没有高位水箱负荷、系统结构较为简单,供水可靠且稳定,管理维护较为便利等。但也存在着固有缺点:消耗大量能源、无调节水量,对动力系统难以进行有力保障。由于其消耗较多的能源,因而并不很受欢迎。 1.2 高位水箱供水方式 高层建筑给水设计的一个比较重要的方式是高位水箱供水方式,这种供水方式综合考虑了对水质的影响,根据供水用量就可以确定水箱容积,采用并联供水方式,水压供给得到了保证,各个区也有自己的供水泵。由于很多高层建筑将供水泵设置在地下室的供水泵房内,各区的联合供水由水箱和供水泵一起供给。这种供水方式方便了工作人员的管理和 浅谈高层建筑消防给水系统设计 杨林1 赵旭2 (1.江西省消防总队新余支队分宜县消防大队,江西 新余 338000; 2. 江西省消防总队新余支队,江西 新余 338000) 摘 要:对建筑消防给水系统的分析,要从经济、安全、合理的角度出发。本文论述了几种常用的高层供水方式,探讨消防给水系统的技术措施,对消防给水设计的问题进行了分析与探讨,以实现合理设计,从而保证系统安全、投资节约、维修方便。 关键词:高层建筑;消防;给水系统 中图分类号:TU35 文献标识码:A 文章编号:1671-8089(2012)06-0044-02 维护,让供水泵更集中地布置,各区的供水单位是独立的,每个供水泵都有自己的工作区,这样一来,就可以节约动力,节省水箱的空间,余留下的空间可以独立而不受影响。但这种方式的缺点是区分水箱需占建筑楼层一定的面积,对于房间布置比较困难。且这种布置方式,投资费用比较高,水泵台数较多,出水高压管线长。 1.3 气压水箱供水方式 通过供水泵增加压力,并使气压罐水量大小得以调节,控制供水泵工作是一种气压水箱供水方式。这种水泵供水方式的缺点较为突出,如水泵的工作效率比较低,气压罐水压波动比较大,提高了工作运行的成本,消耗了大量的钢材和能源。但也有其固有优点:有卫生保证,没有高位水箱的要求,供水可靠。由于管网所需的设计压力要比罐内的起始压力低了很多,因而这样很容易形成给水压过高的弊端,因而这种水箱供水方式不宜作为现代高层建筑首选的供水方式。 2 消防给水系统的技术措施 2.1 消防系统的减压措施 《高层民用建筑设计防火规范》规定:“消火栓栓口的静水压力不能大于0.8MPa,在消火栓栓口的静水压力大于0.8MPa时,应当采用分区给水系统。而当消火栓栓口的出水压力大于0.5MPa时,消火栓出口处应当设置减压装置”。通过将高层建筑的室外环状高压消防管网和室内消防系统的减压阀相连接,可以满足高层建筑消防系统的水压要求。这样可以提高整个系统的可靠性,减压阀应当采用并联阀组。 2.2 消防给水引入管道 为了安全起见,通常室内给水系统应用两条给水管路,这两条供水管路应都可以满足建筑消防用水的要求,在设置两条供水管路的前提下,如果一条供水管路发生了供水故

相关文档
最新文档