信息融合技术在图像融合中的应用

信息融合技术在图像融合中的应用
信息融合技术在图像融合中的应用

信息融合技术在图像融合中的应用

摘要:图像信息融合能够以软件手段把对同一目标或场景的不同图像,综合成对同一目标或场景的全面、准确的描述,它在医学、遥感、军事等领域有着较为广泛的应用。良好的图像融合方法能够为后续的计算机自动化处理奠定坚实的基础。本文介绍了图像融合的概念和层次划分,并重点分析了图像融合中所用到的信息融合方法。

关键词:信息融合,图像融合

1.引言

军事、医学、自然资源勘探、海洋资源管理、环境和土地利用管理、地形地貌分析、生物学等的应用需求有力地刺激了图像处理和图像融合技术的发展。医学上,图像融合技术被用来诊疗和制定手术方案。商业和情报部门用图像融合技术来对旧照片、录像带进行恢复、转换等处理。随着遥感技术的发展,获取遥感数据的手段越来越丰富,各种传感器获得的影像数据在同一地区形成影像金字塔,图像融合技术实现多源数据的优势互补,为提高这些数据的利用效益提供了有效的途径。星载遥感用于地图绘制、多光谱、高光谱分析、数据的可视化处理、数字地球建设等,图像融合是必不可少的技术手段。

2.图像融合的概念

图像融合技术是一种先进的综合多个源图像信息的图像处理技术。所谓多源图像融合是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。图像是二维信号,图像融合技术是

多源信息融合技术的一个重要分支,因此,图像融合与多传感器信息融合具有共同的优点。通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模糊性、改善分类性能等。

目前,将图像融合技术应用于数字图像处理的主要目的有以下几种:

(1)增加图像中有用信息的含量,改善图像的清晰度,增强在单一传感器图像中无法看见/看清的某些特性;

(2)改善图像的空间分辨率,增加光谱信息的含量,为改善检测/分类/理解/识别性能获取补充的图像信息;

(3)通过不同时刻的图像序列融合来检测场景/目标的变化情况;

(4)通过融合多个二维图像产生具有立体视觉的三维图像,可用于三维重建或立体摄影、测量等;

(5)利用来自其它传感器的图像来替代/弥补某一传感器图像中的丢失/故障信息。

3.图像融合层次划分

作为信息融合的一种,图像融合是对多个场景信息的综合,其目的就是通过对各个场景信息的提取,从而获得对同一场景更为准确、更为全面、更为可靠的图像描述。一般来说,图像融合可以在以下3个层次上进行[3]:

像素级——像素级融合是在获取的图像信息上进行融合,它能够

保留较多信息,提高融合精度,然而由于处理的信息量大,融合效率较低,实时性较差,同时像素级融合要求待融合图像经过精确配准,否则融合结果容易出现较大误差;

特征级——特征级融合的过程中,首先需要对图像数据进行特征提取,然后依据提取的特征信息对数据采用特征级融合算法进行综合分析和处理;这一过程中,信息量能够极大地得以压缩,因此有利于实时处理,同时融合结果最大限度地给出决策分析所需的信息;

决策级——决策级融合作为最高水平的融合,融合的结果为指挥、控制、决策提供依据,因此融合结果直接影响着决策水平,决策级融合能够在某些数据源丢失的情况给出决策,所以具有容错性,此外,与前两个层次相比,决策级融合实时性好、数据要求低、分析能力强,然而对预处理及特征提取有较高要求,所以决策级融合的代价较高。

通常,3级融合可以搭配使用以达到较好的融合效果。图像融合过程如图1所示。

图1.图像融合过程

4.图像融合方法分类

自1979年Daily 将简单的图像融合方法用于对遥感图像的地质解释[4]以来,融合技术发展迅速,方法日渐丰富。这些方法针对的融合图像包括多聚焦图像、多层次曝光图像、多谱段图像、多光谱图像与全色图像等。针对不同的图像,可以采用特殊的方法进行融合,而有些应用面较广的方法则能够同时用于几类图像的融合,下文将介绍图像融合领域所常用的一些技术方法。

4.1代数方法

代数方法是常见的一类最容易让人理解的图像融合方法,它对参与融合的图像不做任何变换,只进行一些选择和加权处理,其中最具代表性的有均值融合和基于Brovey 变换[5]方法。

均值融合简单地将待融合图像进行代数相加,而后获取的均值图像就是对应的融合结果。它能够提升图像中原本模糊区域的图像质量,但是相应地原本的清晰区域也会变得相对模糊。这种方法常用于多尺度分解后近似图像的融合策略。

Brovey 变换则是针对多光谱图像和全色图像的一种融合方法,它保留光谱图像数据信息并将信息向高分辨率图像对应的灰度信息靠拢。Brovey 变换的表达式为:

其中,old R ,old G ,old B 表示拉伸后多光谱图像各通道内像素,P 表示

全色图像中像素, new R ,new G ,new B 表示融合后图像各通道内像素。

简单、实时性强是这些代数融合方法的共同优点,甚至在某些特定场合它们会取得较好的融合效果,但是它们很容易使得融合图像的信噪比降低,不利于后续的计算机处理过程,对于机器视觉等需要自动识别的场合并不合适。

4.2成分替代方法

成分替代法,顾名思义是用某一成分替代原数据中的成分,这类方法常用于多光谱与全色图像的融合,获取具有高光谱分辨率和高空间分辨率的图像。其融合过程为:首先以某种变换提取出多光谱图像中与空间分辨率相关的成分,然后以高分辨率全色图像替代该成分,再经过反变换得到融合后的图像。在替代的过程中,必须尽可能保证全色图像与提取出的成分相似,否则在变换后极易造成光谱信息的丢失,常常采用直方图匹配调节图像的均值与方差从而避免这一问题。这类变换中常见的是IHS变换[7]、PCA变换[6、8]、GS变换[9]。

IHS是Intensity-Hue-Saturation的简称,它所代表的色彩空间由空间信息(灰度Intensity)和光谱信息(色度Hue和饱和度Saturation)构成[1]。在成分替代法中使用IHS变换时,首先将RGB 图像做IHS变换,将图像的光谱信息与灰度信息进行剥离,然后用高分辨率图像替代灰度成分,最后逆变换得到融合后的图像[5]。如今,IHS变换成为了图像分析中用于实现高相关数据色彩增强,特征增强[4],提高空间分辨率[7,9]的有效手段。

PCA方法具有广泛的应用范围,如人脸识别、数据压缩、图像去噪等,在图像融合中的应用则使用了其提取主成分的能力。在替代的

过程中,将全色图像替代由多光谱图像中提取的第一主成分,同样直方图匹配也是其中的一个必要过程。研究表明,PCA融合图像通常面临的光谱失真要低于IHS变换;然而,如果多光谱图像的光谱响应中没有一部分能够与全色图像光谱响应相同,PCA变换和IHS变换的融合结果都将出现较大的光谱失真[19]。

GS变换是由Laben和Brover于1998年所提出,并已成为ENVI (The Environment for Visualizing Images )软件内图像融合的一种方法。GS变换类似于PCA变换,但是得到的是一组正交基,且相互之间信息量差异没有PCA变换那么明显,因此可以改进PCA变换后信息量过于集中的问题。其基本过程略有不同首先要获得与原全色图像大小相同的低空间分辨率全色图,而后在低分辨率的全色图像和多光谱图像上执行GS变换,最后用原全色图像替代GS变换的第一成分。同样地,替代之前也必须对图像直方图加以调整。

4.3变分方法

传统的成分替代法等基于高空间分辨率图像和多光谱图像的融合,往往遵循了一个假设,即所需的融合结果是待融合图像的线性组合。而变分融合方法是不需要基于这一线性假设的方法。最初变分方法多用于具有相同分辨率图像的融合。2006年,Ballester建立了多光谱图像与高光谱图像融合的第一个变分模型。该模型基于假设“在大部分情况下,多谱段图像中的几何信息都包含于全色图像对应的地形图内”而建立。这一假设、全色图像与多光谱图像之间的关系以及高分辨率图像的下采样卷积过程共同构建了用于演化的能量函数,能

量函数的最小值对应了待求的高分辨率多光谱图像。

4.4多尺度分解方法

多尺度分解方法是将图像分解为不同尺度的经典方法。基于多尺度分解的图像融合方法主要分为3个连续的步骤:首先将图像分解为近似图像和细节图像两部分;其次,对上述两种图像进行融合;最后重建图像。在众多的分解方法中,塔式分解方法和基于小波变换的分解受到了广泛的关注。

其中塔式分解常有拉普拉斯金字塔、比率低通金字塔、梯度金字塔、形态学金字塔等,在这些方法中,对不同尺度下图像均是以尺度2进行下采样以获取不同尺度的近似图像。金字塔的不同构造意味着其细节图像具有不同的侧重点,如比率低通金字塔注重对比度,梯度金字塔关注图像中边缘细节,形态学金字塔则以图像中结构信息为重。

由于大多数金字塔方法各分解层之间具有较大的相关性,这样就会导致融合结果不理想。小波分解时不仅能够获取不同尺度下图像,并且能够得到具有不同方向的子图,这样就能够充分反映图像的各项特征与变化;同时,小波分解过程中得到的数据无冗余性和相关性,这使得各分解层融合可以同时进行,因此其计算速度和所需存储量相对优于塔式分解,同时基于小波理论的分解方法则能够使融合效果有一定改善。

4.5统计学方法

由于高分辨率图像与多光谱图像的融合过程中,不仅需要关注空间细节信息,更需要解决光谱信息保持的问题,传统的多尺度分解方

法往往会丢失高频信息中的光谱信息,因此,统计方法常用于此类图像的融合。基于统计学理论的图像融合方法中最常用的是基于马尔可夫随机场和基于最大贝叶斯后验概率(Maximum a posteriori,MAP)的方法。

基于马尔可夫随机场的图像融合方法将图像看成二维随机场,所有源图像看成是二维随机场集,图像融合则表示成与模型参数相关的一个代价函数。然后用模拟退火法、期望值最大法等进行全局寻优,找到对应目标函数最大的模型参数,并以此参数对应的模型融合源图像,得到最终融合结果。

贝叶斯方法具有坚实的数学理论,在贝叶斯理论框架下,图像融合问题被表示为自然信号的病态反问题,同时先验知识对融合的贝叶斯估计过程进行约束,得到最优的融合结果。

基于统计学理论的图像融合中由于加入了与图像融合结果最优的期望约束和样本训练学习,这类方法一般都具有较强的适应性和可靠性,能取得较好的融合效果。然而基于统计分析图像融合方法算法往往比较复杂,不易用硬件实现。

4.6基于学习的方法

基于学习的融合方法,目前常见的是结合神经网络的各类方法。神经网络可以灵活地模拟各种非线性特征,因而也是图像融合领域的一类重要方法。人工神经网络仿效了生物神经系统处理信息的过程,它利用多层处理单元或节点组成各种互联网络结构,从而可以实现从输入数据到输出数据非线性的复杂映射关系。人工神经网络的特点使

得它很容易实现多个输入到一个输出的数据处理任务,从而使神经网络也能很好地处理图像融合问题。另外神经网络通过样本学习的方式提供一种更加智能化的数据融合方法。

Fechner等提出了一种基于神经网络的红外与可见光图像融合方法,该方法结合红外与可见光图像的特点,通过样本训练的神经网络来识别红外图像中的目标区域,并将其合并到可见光图像中去,从而可以同时保留可见光源图像的场景信息和红外源图像中的目标特征。Broussard 等人借助于PCNN实现图像融合来提高目标的识别率, 并论证了PCNN神经元的点火频率与图像灰度的关系,证实了PCNN 用于图像融合的可行性。之后许多改进的基于PCNN的图像融合算法先后被提出。

5 结论

图像融合是当前图像分析领域的一个重要课题,它有着较为广泛的应用方向,如医学研究、地图绘制、隐匿武器查验等。好的融合图像能为后续的目标识别、分类等计算机自动化处理奠定良好的基础。

作为信息融合的一个重要分支,本文分析了图像融合中所用到的信息融合方法,这些方法可分为以下6大类别,分别为基于代数方法、成分替代方法、多尺度分解方法、统计学方法、变分方法和基于学习的方法。并对这些方法的优缺点进行了分析总结。

参考文献:

[1]Pohl C, Van Genderen J L. Review article multisensor image

fusion in remote sensing:concepts, methods and applications.

International Journal of Remote Sensing,1998,19: 5, 823-854 [2]敬忠良,肖刚,李振华.图像融合——理论与应用.北京:高等教育

出版社,2007.

[3]罗晓清.多传感器图像融合理论及其应用研究.江南大学博士论

文,2010.

[4]Daily M. Hue-saturation-intensity split-spectrum

processing of SEASAT radar imagery.Photogrammetric Engineering and Remote Sensing, 1983, 49: 349-355.

[5]Chavez P S,Sides S C,Anderson J A. Comparison of three

different methods to merge multi-resolution and multi-spectral data: Landsat TM and SPOT panchromatic.Photogrammetric Engineering and Remote Sensing, 1991, 57(3): 295-303.

[6]ShettigaraVK. A generalized component substitution

technique for spatial enhancement of multispectral images using a higher resolution data set. Photogrammetric Engineering and Remote Sensing, 1992, 58(5): 561- 567.

[7]郭雷,李阵阵,鲍永生.图像融合.北京:电子工业出版社,2008.

[8]李玲玲,周成平,丁明跃等.一种基于多尺度分解的多传感器图像

融合方法.华中科技大学学报(自然科学版),2003,31(4):82-84.

[9]赵鹏,浦昭邦.基于形态学4子带分解金字塔的图像融合.光学学

报,2007,27(1):40-44.

[10]Harris J R,Murray R,Hirose T. IHS transform for the

integration of radar imagery with other remotely sensed data. Photogrammetric Engineering and Remote Sensing, 1990,56(12); 1631-1641

[11]Singh A, Harrison A. Standardized principal components.

International Journal ofRemote Sensing, 1985,6: 883-396. 注:作业见下页附录

附录:

作业:软测量与信息融合的区别与联系?

信息融合的定义:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。

信息融合的原理:就像人脑综合处理信息的过程一样,它充分地利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则组合起来,产生对观测环境的一致性解释和描述。

信息融合的目标:是基于各传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。

软测量的定义:采用间接测量的思路,利用易测过程变量(辅助变量或二次变量),依据这些易测过程变量与难以直接测量的待测过程变量(主导变量)之间的数学关系(软测量模型),通过各种数学计算和估计方法,从而实现对待测过程变量的测量。

软测量技术的原理:主要由辅助变量的选择、数据采集和处理、软测量模型及在线校正四个部分组成,理论根源是基于软仪表的推断控制。推断控制的基本思想是采集过程中比较容易测量的辅助变量,通过构造推断估计器来估计并克服扰动和测量噪声对主导变量的影响。

软测量的目标:把自动控制理论与生产过程知识有机的结合起来,应用计算机技术对难以测量或者暂时不能测量的重要变量,选择另外一些容易测量的变量,通过构成某种数学关系来推断或者估计,以软件来替代硬件的功能。

数据融合和软测量的关系:它们在本质上不相同,信息融合是对多个传感器数据资源进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息,它是一种数据处理技术。而软测量是指对那些不方便测量的数据采用间接测量的思路来测量目标数据的技术,其中可能采用到数据融合技术或者数据处理技术。所以,他们是两种不同的技术,无论从目标、实现方法、应用领域、理论和定义上都有区别。

多聚焦图像融合方法综述

多聚焦图像融合方法综述 摘要:本文概括了多聚焦图像融合的一些基本概念和相关知识。然后从空域和频域两方面将多聚焦图像融合方法分为两大块,并对这两块所包含的方法进行了简单介绍并对其中小波变换化法进行了详细地阐述。最后提出了一些图像融合方法的评价方法。 关键词:多聚焦图像融合;空域;频域;小波变换法;评价方法 1、引言 按数据融合的处理体系,数据融合可分为:信号级融合、像素级融合、特征级融合和符号级融合。图像融合是数据融合的一个重要分支,是20世纪70年代后期提出的概念。该技术综合了传感器、图像处理、信号处理、计算机和人工智能等现代高新技术。它在遥感图像处理、目标识别、医学、现代航天航空、机器人视觉等方面具有广阔的应用前景。 Pohl和Genderen将图像融合定义为:“图像融合是通过一种特定的方法将两幅或多幅图像合成一幅新图像”,其主要思想是采用一定的方法,把工作于不同波长范围、具有不同成像机理的各种成像传感器对同一场景成像的多幅图像信息合成一幅新的图像。 作为图像融合研究重要内容之一的多聚焦图像融合,是指把用同一个成像设备对某一场景通过改变焦距而得到的两幅或多幅图像中清晰的部分组合成一幅新的图像,便于人们观察或计算机处理。图像融合的方法大体可以分为像素级、特征级、决策级3中,其中,像素级的图像融合精度较高,能够提供其他融合方法所不具备的细节信息,多聚焦融合采用了像素级融合方法,它主要分为空域和频域两大块,即: (1)在空域中,主要是基于图像清晰部分的提取,有梯度差分法,分块法等,其优点是速度快、方法简单,不过融合精确度相对较低,边缘吃力粗糙; (2)在频域中,具有代表性的是分辨方法,其中有拉普拉斯金字塔算法、小波变换法等,多分辨率融合精度比较高,对位置信息的把握较好,不过算法比较复杂,处理速度比较慢。 2、空域中的图像融合 把图像f(x,y)看成一个二维函数,对其进行处理,它包含的算法有逻辑滤波器法、加权平均法、数学形态法、图像代数法、模拟退火法等。 2.1 逻辑滤波器法 最直观的融合方法是两个像素的值进行逻辑运算,如:两个像素的值均大于特定的门限值,

像素级图像融合讲解

山东大学(威海)毕业论文 毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号:201100800668 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

数字图像处理课程题目和要求教材

数字图像处理课程内容、要求 题目一:图像处理软件 1、设计内容及要求: (1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。 (2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明): (1)实现图像处理的基本操作 学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如 image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。 (2)图像处理算法的实现与显示 针对课程中学习的图像处理内容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。改变图像处理的参数,查看处理结果的变化。自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。 (3)参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

题目二:数字水印 1、设计内容及要求: 为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品版权发生争执时,通过提取水印信息确认作品版权。通常情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。根据这一要求,设计水印算法。 (1)、查阅文献、了解数字水印的基本概念。 (2)、深入理解一种简单的数字水印嵌入与提取方法。 (3)、能够显示水印嵌入前后的载体图像。 (4)、能够显示嵌入与提取的水印。 (5)、选择一种以上的攻击方法,测试水印算法的鲁棒性等性能。 (6)、设计软件界面 2、参考方案 (1)对水印图像进行编码置乱(可采用伪随机码,提高水印图像的隐蔽性); (2) 对图像进行子图像分解(如8*8),对子块分别进行DCT变换; (3) 对DCT系数按照zig-zag排序进行排列,选择一种频系数,对该种频系数相邻 的系数进行水印嵌入 (4) 低通滤波检验水印算法的抗攻击性。 (5) 设计数字水印的软件界面。

图像融合的研究背景和研究意义

图像融合的研究背景和研究意义 1概述 2 图像融合的研究背景和研究意义 3图像融合的层次 像素级图像融合 特征级图像融合 决策级图像融合 4 彩色图像融合的意义 1概述 随着现代信息技术的发展,图像的获取己从最初单一可见光传感器发展到现在的雷达、高光谱、多光谱红外等多种不同传感器,相应获取的图像数据量也急剧增加。由于成像原理不同和技术条件的限制,任何一个单一图像数据都不能全面反应目标对象的特性,具有一定的应用范围和局限性。而图像融合技术是将多种不同特性的图像数据结合起来,相互取长补短便可以发挥各自的优势,弥补各自的不足,有可能更全面的反映目标特性,提供更强的信息解译能力和可靠的分析结果。图像融合不仅扩大了各图像数据源的应用范围,而且提高了分析精度、应用效果和使用价值,成为信息领域的一个重要的方向。图像配准是图像融合的重要前提和基础,其误差的大小直接影响图像融合结果的有效性。 作为数据融合技术的一个重要分支,图像融合所具有的改善图像质量、提高几何配准精度、生成三维立体效果、实现实时或准实时动态监测、克服目标提取与识别中图像数据的不完整性等优点,使得图像融合在遥感观测、智能控制、无损检测、智能机器人、医学影像(2D和3D)、制造业等领域得到广泛的应用,成为当前重要的信息处理技术,迅速发展的军事、医学、自然资源勘探、环境和土地、海洋资源利用管理、地形地貌分析、生物学等领域的应用需求更有力地刺激了图像融合技术的发展。 2 图像融合的研究背景和研究意义 Pohl和Genderen对图像融合做了如下定义:图像融合就是通过一种特定算法将两幅或多幅图像合成为一幅新图像。它的主要思想是采用一定的算法,把

像素级图像融合及其关键技术研究

像素级图像融合及其关键技术研究 图像融合是将多个相同或不同类型的成像传感器获取的同一场景的多幅图像信息加以综合与提取,从而产生比任何单一图像信息对景物更加精确的描述。图像融合一般可分为像素级、特征级和决策级图像融合。 本文针对像素级图像融合技术中需要解决的关键问题,重点研究了其中的三项关键技术:像素级图像融合预处理中的图像降噪技术、多聚焦图像融合技术以及全色与多光谱遥感影像融合技术。主要内容为:1.提出了一种基于人类视觉系统的图像去噪方法。 该方法结合了像素分类与小波变换,在不同的图像区域采用不同的阈值进行去噪,可有效提高图像去噪的效果,同时较好的保持了图像细节。2.提出了一种有利于图像压缩的小波图像去噪方法以及一种小波系数校验方法。 该去噪方法利用图像小波系数的层内相关性进行图像去噪,并可与后续的图像压缩处理有效结合。3.提出了一种基于局部区域梯度信息的多分辨率图像融合算法及其改进算法。 改进算法对不同源图像的对应尺度系数进行自适应加权相加,以获得融合后的尺度系数。这两种方法的融合效果均优于常用融合方法。 4.提出了一种基于离散余弦变换以及一种结合小波变换与离散余弦变换的图像融合新方法。前者的计算量相对较少,适用于实时处理,而后者则能有效提高图像融合的质量。 5.提出了一种基于支持向量机与图像块分割的自适应图像融合策略。该方法依据多聚焦源图像块所在的位置,采用不同大小的图像块进行自适应融合处理,可有效提高图像的融合效果。

6.提出了一种结合块分割与多分辨率分析的多聚焦图像融合方法。该方法可与现有的基于多分辨率分析的多聚焦图像融合方法相结合,能有效提高这些方法的融合效果。 7.提出了一种基于离散余弦变换与IHS(Intensity-hue-saturation,IHS)变换的多光谱与全色遥感影像融合方法及其改进算法。这两种方法可直接在离散余弦变换域进行遥感影像融合,适合压缩格式的遥感影像快速融合。 利用这两种方法的思想在空域结合基于IHS变换的融合方法,仅需较小的计算量,在提高融合图像空间分辨率的同时,保持了绿色植被区域的光谱特性。8.提出了一种基于抽样小波变换与IHS变换的高空间分辨率遥感影像融合方法。 该方法的计算量接近于基于抽样小波变换的常用融合方法,并可获得近似甚至优于冗余小波变换的融合效果。上述各个技术研究点均进行了相应的计算机仿真与性能分析。 本论文的所有研究工作在图像去噪与图像融合处理领域具有重要的理论与应用价值。

数字图像技术在医学领域的应用

图像处理技术在医学领域的应用 摘要:介绍了图像处理技术在医学领域的发展,阐释了图像分割、图像融合和图像重建技术在医学领域的发展。提出了图像处理技术发展所面临的相关问题及其发展方向。 关键词:图像处理技术图像分割图像融合图像重建 图像处理技术是20世纪60年代发展起来的一门新兴学科。近几十年来,由于大规模集成电路和计算机科学技术的迅猛发展,离散数学理论的创立和完善,以及军事、医学和工业等方面需求的不断增长,图像处理的理论和方法的更加完善,已经在宇宙探测、遥感、生物医学、工农业生产、军事、公安、办公自动化、视频和多媒体系统等领域得到了广泛的应用,成为计算机科学、信息科学、生物学、医学等学科研究的热点。 图像处理在医学界的应用非常广泛,无论是病理研究还是临床诊断都大量采用图像处理技术。它因直观、无创伤、方便安全等优点而受到人们青睐。图像处理首先应用于细胞分类、染色体分类和放射图像分析等,20世纪70年代图像处理在医学上的应用有了重大突破,1972年X射线断层扫描CT得到实用:1977年白血球自动分类仪问世:1980实现了CT的立体重建。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理,医学图像在临床诊断、教学科研等方面有重要的作用。目前

的医学图像主要包括CT(计算机断层扫描)图像、MRI(核磁共振)图像、B超扫描图像、数字X光机图像、X射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。但由于医学成像设备的成像机理、获取条件和显示设备等因素的限制,使得人眼对某些图像很难直接做出准确的判断。计算机技术的应用可以改变这种状况,通过图像变换和增强技术来改善图像的清晰度,突出重点内容,抑制次要内容,来适应人眼的观察和机器的自动分析,这无疑大大提高了医生临床诊断的准确性和正确性。 什么是医学图像处理 医学图像处理就是利用计算机系统对生物学图像进行的具有临床医学意义的处理和分析。 医学图像处理是一个和复杂的过程。医学图像作为一种信息源,也和其他的有关病人的信息一样,是医生做出判断时的依据。医生在判断医学图像时,要把图像与其他解剖学、生物学和病理学等知识作对照,还要根据经验来捕捉图像中的有重要意义的细节和特征。所以要从一副或几副医学图像中判断出是否有异常,或是属于什么疾病,如果不是训练有素的医生,是难以发现图像上的异常的。所以对医学领域的图像处理显得尤为重要。 图像处理技术及其在医学领域的应用 (一)图像分割

数字图像融合技术

数字图像融合技术 摘要:数字图像技术在遥感、医学、军事、刑事执法等多个领域已经广为普及,图像资料在作为信息情报载体的地位越来越重要。数字图像融合技术将多个传感器在同一时间或不同时间获取的对于某个对象的图像加以综合,产生新的有关该物体的图像信息。 关键词: 图像,图像融合 1、引言 数字图像处理技术起源于20世纪20年代,由于当时技术手段的限制,图像处理科学与技术的发展相当缓慢。直到第三代计算机问世后,借助于现代科技发展所带来的技术突破数字图像处理才开始迅速发展并得到普遍应用。同时,图像处理的许多技术也日趋成熟。数字图像融合技术正是图像处理技术发展的热点之一。对它的研究也呈上升之势而应用的领域遍及遥感、医学、军事、刑事执法等多个领域。然而由于图像融合技术本身的发展比较短,图像处理界对它的研究并未完全形成一个完整的体系,往往主要是针对单一融合方法的研究较多,相应的至今尚没有几部对图像融合技术系统论述的著作。 2、数字图像融合技术概述 数字图像融合是信息融合的一种。而信息融合的一般定义是:利用计算机技术对按时序获得的若干传感器的观测信息在一定准则下加以自动分析,优化综合以完成所需的决策和估计任务而进行的信息处理过程。按这个定义,各个传感器是信息融合的基础,多传感器网络是信息传输通道,多元信息是信息融合的加工对象,协调优化和综合处理是信息融合的核心。 多传感器信息融合实际上是对人脑综合处理复杂问题的一种功能模拟。在多传感器系统中各种传感器提供的信息可能是具有不同的特征:时变或非时变,实时或非实时的,快变的或缓变的,模糊的或确定的,精确的或不完整的,可靠的或非可靠的,相互支持或互补的,也可能是相互矛盾的或冲突的。信息融合的目标是基于各个传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的结果,它的最终目的是利用多个传感器共同或联合操作的优势,来提高整个传感器系统的有效性。 图像融合,主要是指将多个传感器在同一时间或不同时间获取的对于某个对象的图像加以综合,产生新的有关该物体的图像信息。也就是通过一定的算法将多个图像数据结合在一起生成一个新的影像。用形象的说法来做个比喻,对于人来说要充分了解外部某一对象的状况,通常是通过眼睛、耳朵、鼻子等多个感觉器官来获取对方信息,然后经过大脑的综合、分析得出相关结论,在完成这一过程

ENVI中的融合方法

ENVI下的图像融合方法 图像融合是将低空间分辨率的多光谱影像或高光谱数据与高空间分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。图像融合的关键是融合前两幅图像的精确配准以及处理过程中融合方法的选择。只有将两幅融合图像进行精确配准,才可能得到满意的结果。对于融合方法的选择,取决于被融合图像的特征以及融合目的。 ENVI中提供融合方法有: ?HSV变换 ?Brovey变换 这两种方法要求数据具有地理参考或者具有相同的尺寸大小。RGB输入波段必须为无符号8bit数据或者从打开的彩色Display中选择。 这两种操作方法基本类似,下面介绍Brovey变换操作过程。 (1)打开融合的两个文件,将低分辨率多光谱图像显示在Display中。 (2)选择主菜单-> Transform -> Image Sharpening->Color Normalized (Brovey),在Select Input RGB对话框中,有两种选择方式:从可用波段列表中和从Display窗口中,前者要求波段必须为无符号8bit。 (3)选择Display窗口中选择RGB,单击OK。 (4) Color Normalized (Brovey)输出面板中,选择重采样方式和输入文件路径及文件名,点击OK输出结果。 对于多光谱影像,ENVI利用以下融合技术: ?Gram-Schmidt ?主成分(PC)变换 ?color normalized (CN)变换 ?Pan sharpening 这四种方法中,Gram-Schmidt法能保持融合前后影像波谱信息的一致性,是一种高保真的遥感影像融合方法;color normalized (CN)变换要求数据具有中心波长和FWHM,;Pansharpening融合方法需要在ENVI Zoom中启动,比较适合高分辨率影像,如QuickBird、IKONOS等。 这四种方式操作基本类似,下面介绍参数相对较多的Gram-Schmidt操作过程。 (1)打开融合的两个文件。

偏振成像及偏振图像融合技术与方法模板

编号 偏振成像与偏振图像融合技术与方法 Technology and Method of Polarization Imaging and Polarization Image Fusion 学生姓名 专业 学号 学院 2014年06月

摘要:偏振成像技术能在杂乱背景下提高目标的识别率,对于人造假目标和伪装具有独特的辨别能力,同时能提高图像的对比度和清晰度。在过去的十几年中,成像偏振技术获得了迅速的发展,应用的范围也在不断地扩大,己经成为信息获取领域中的一个研究热点。本文主要论述了偏振成像技术的发展现状及应用前景,对偏振光的基本理论进行了研究。通过用数学表达式和矩阵对多源图像融合技术进行了详细的理论描述。 关键词:偏振成像图像融合斯托克斯参量琼斯矩阵

Abstract Polarization imaging has the ability to identify false targets and enhance images taken in poor visibility and even restore clear-day visibility of scene. In the past several years, polarization imaging has been developed rapidly, the scope of application in continually expanding, already became in the field of information for a research hotspot. This article mainly discusses the technology development status and the application prospect of polarized light and studies the basic theory of polarized light technology. By using mathematical expression and the matrix of the source image fusion technology detailed description of the theory. Keywords:Polarization Imaging; Polarization Image Fusion; Stokes parameter; Jones matrix

图像融合算法概述

图像融合算法概述 摘要:详细介绍了像素级图像融合的原理,着重分析总结了目前常用的像素级图像融合的方法和质量评价标准,指出了像素级图像融合技术的最新进展,探讨了像素级图像融合技术的发展趋势。 关键词:图像融合; 多尺度变换; 评价标准 Abstract:This paper introduced the principles based on image fusion at pixel level in detail, analysed synthetically and summed up the present routine algorithm of image fusion at pixel level and evaluation criteria of its quality. It pointed out the recent development of image fusion at pixel level, and discussed the development tendency of technique of image fusion at pixel level. Key words:image fusion; multi-scale transform; evaluation criteria 1.引言: 图像融合是通过一个数学模型把来自不同传感器的多幅图像综合成一幅满足特定应用需求的图像的过程, 从而可以有效地把不同图像传感器的优点结合起来, 提高对图像信息分析和提取的能力[ 1] 。近年来, 图像融合技术广泛地应用于自动目标识别、计算机视觉、遥感、机器人、医学图像处理以及军事应用等领域。图像融合的主要目的是通过对多幅图像间冗余数据的处理来提高图像的可靠性; 通过对多幅图像间互补信息的处理来提高图像的清晰度。根据融合处理所处的阶段不同,图像融合通常可以划分为像素级、特征级和决策级。融合的层次不同, 所采用的算法、适用的范围也不相同。在融合的三个级别中, 像素级作为各级图像融合的基础, 尽可能多地保留了场景的原始信息, 提供其他融合层次所不能提供的丰富、精确、可靠的信息, 有利于图像的进一步分析、处理与理解, 进而提供最优的决策和识别性能. 2.图像融合算法概述 2.1 图像融合算法基本理论

三种图像融合方法实际操作与分析

摘要:介绍了遥感影像三种常用的图像融合方式。进行实验,对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像,简要分析比较三种图像融合方式的各自特点,择出本次实验的最佳融合方式。 关键字:遥感影像;图像融合;主成分变换;乘积变换;比值变换;ERDAS IMAGINE 1. 引言 由于技术条件的限制和工作原理的不同,任何来自单一传感器的信息都只能反映目标的某一个或几个方面的特征,而不能反应出全部特征。因此,与单源遥感影像数据相比,多源遥感影像数据既具有重要的互补性,也存在冗余性。为了能更准确地识别目标,必须把各具特色的多源遥感数据相互结合起来,利用融合技术,针对性地去除无用信息,消除冗余,大幅度减少数据处理量,提高数据处理效率;同时,必须将海量多源数据中的有用信息集中起来,融合在一起,从多源数据中提取比单源数据更丰富、更可靠、更有用的信息,进行各种信息特征的互补,发挥各自的优势,充分发挥遥感技术的作用。[1] 在多源遥感图像融合中,针对同一对象不同的融合方法可以得到不同的融合结果,即可以得到不同的融合图像。高空间分辨率遥感影像和高光谱遥感影像的融合旨在生成具有高空间分辨率和高光谱分辨率特性的遥感影像,融合方法的选择取决于融合影像的应用,但迄今还没有普适的融合算法能够满足所有的应用目的,这也意味着融合影像质量评价应该与具体应用相联系。[2] 此次融合操作实验是用三种不同的融合方式(主成分变换融合,乘积变换融合,比值变换融合),对一幅具有高分辨率的SPOT全色黑白图像与一幅具有多

光谱信息的SPOT图像进行融合处理,生成一幅既有高分辨率又有多光谱信息的图像。 2. 源文件 1 、 imagerycolor.tif ,SPOT图像,分辨率10米,有红、绿、两个红外共四个波段。 2 、imagery-5m.tif ,SPOT图像,分辨率5米。 3. 软件选择 在常用的四种遥感图像处理软件中,PCI适合用于影像制图,ENVI在针对像元处理的信息提取中功能最强大,ER Mapper对于处理高分辨率影像效果较好,而ERDAS IMAGINE的数据融合效果最好。[3] ERDAS IMAGINE是美国Leica公司开发的遥感图像处理系统。它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具。 2012年5月1日,鹰图发布最新版本的ERDAS IMAGINE,所有ERDAS 2011软件用户都可以从官方网站上下载最新版本 ERDAS IMAGINE 11.0.5. 新版本包括之前2011服务包的一些改变。相比之前的版本,新版本增加了更多ERDAS IMAGINE和GeoMedia之间的在线联接、提供了更为丰富的图像和GIS产品。用户使用一个单一的产品,就可以轻易地把两个产品结合起来构建一个更大、更清

像素级图像融合技术在军事领域应用研究

像素级图像融合技术在军事领域应用研究 史玉龙、李林、侯海婷 摘要像素级图像融合是在基础层面上进行的图像融合,它能够提供其它层次上的融合处理所不具有的更丰富、更精确、更可靠的细节信息,有利于图像的进一步分析、处理与理解,它在整个图像融合技术中是最为复杂、实施难度最大的融合处理技术。本文分析了像素级多源图像融合技术的主要研究内容,阐述了像素级多源图像融合方法及其在军事领域的应用,进而对其未来发展方向进行了展望。 关键字像素级图像融合;图像处理;发展与军事应用 1 引言 在现代战争中,信息主导权是影响战略全局的关键因素,现代信息系统通向智能化的重要一环是其感知系统必须包括能够获取足够信息的多种类型的传感器。各种传感器的信息具有不同的特征,每种传感器仅能给出目标和环境的部分或某个侧面的信息。而多传感器数据融合的基本原理就是充分利用各个传感器资源,通过对这些传感器及其观测信息的合理支配和使用,把多个传感器在空间或时间上的冗余或互补信息依据某种准则进行组合,以获得被测对象的一致性解释或描述,使该信息系统由此而获得比它的各组成部分的子集所构成的系统更优越的性能。 图像融合就是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理,以获取对同一场景的更为准确、更为全面、更为可靠的图像描述。图像融合的目的是充分利用多个待融合源图像中包含的冗余信息和互补信息,融合后的图像应该更适合于人类视觉感知或计算机后续处理。 2 像素级图像融合技术概述 2.1 像素级图像融合概念 图像融合技术是一种先进的综合多个源图像信息的图像处理技术。所谓多源图像融合是对多个传感器采集到的关于同一场景或目标的多个源图像进行适当的融合处理。图像是二维信号,图像融合技术是多源信息融合技术的一个重要分支,因此,图像融合与多传感器信息融合具有共同的优点。通过图像融合可以强化图像中的有用信息、增加图像理解的可靠性、获得更为精确的结果,使系统变得更加实用。同时,使系统具有良好的鲁棒性,例如,可以增加置信度、减少模

图像融合开题报告2

齐鲁工业大学 毕业设计(论文)开题报告题目:图像拼接技术研究—图像融合 院(系)电气工程与自动化学院 专业电子信息工程 班级电子12-1 姓名泳麟 学号 201202031022 导师玉淑 2016年 4月 20 日

5.主要参考文献: [5] Blinn J F.Light reflection functions for simulation of clouds and dusty surfaces[C]//Proceedings of SIGGRAPH,1982:21-29. [6] Max N.Optical models for direct volume rendering[J].IEEE Transactions on Visualization and Computer Graphics,1995,1: 99-108. [7] Max N.Light diffusion through clouds and haze[C]//Computer Vision,Graphics,and Image Processing,1986:280-292. [8] 尤赛,福民.基于纹理映射与光照模型的体绘制加速算法[J]. 中国图象图形学报,2003,8(9). [3] Chao R,Zhang K,Li Y J.An image fusion algorithm using wavelet transform[J].Area Electronical Sinica,2004,32:750-753. [4] Hill P,Canagarajah N,Bull D.Image fusion using complex wavelets[C]//British Machine Vision Conference,Cardif,2002. [5] 梁栋,瑶,敏,等.一种基于小波-Contourlet 变换的多聚焦图像 融合算法[J].电子学报,2007,35(2):320-322. [6] 杰,龚声蓉,纯平.一种新的基于小波变换的多聚焦图像融合 算法[J].计算机工程与应用,2007,43(24):47-49. [7] 福生.小波变换的工程分析与应用[M].:科学,1999. [8] 敏,小英,毛捷.基于邻域方差加权平均的小波图像融合[J].国 外电子测量技术,2008,27(1):5-7. [9] 楚恒,杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J]. 光电工程,2005,32(8):59-63. [10] 王丽,卢迪,吕剑飞.一种基于小波方向对比度的多聚焦图像融合 方法[J].中国图象图形学报,2008,13(1):145-150. (上接196页) 康健超,康宝生,筠,等:一种改进的基于 GPU 编程的光线投射算法 201

多传感器图像融合技术综述

收稿日期:2002203217 作者简介:毛士艺(1935-),男,浙江黄岩人,教授,100083,北京. 多传感器图像融合技术综述 毛士艺 赵 巍 (北京航空航天大学电子工程系) 摘 要:对国内外多传感器图像融合技术的发展状况进行了介绍,描述了 图像融合的主要步骤,概括了目前主要图像融合方法的基本原理,并对各种方法的性能进行了定性分析.给出了评价图像融合效果的标准和方法,指出了图像融合技术的发展方向. 关 键 词:图像处理;图像合成;传感器;图像融合 中图分类号:T N 911.73文献标识码:A 文章编号:100125965(2002)0520512207 近20年,随着传感器技术和计算机计算能力的提高,多传感器图像融合技术的应用越来越广泛.在军事领域,以多传感器图像融合为核心内容的战场感知技术已成为现代战争中最具影响力的军事高科技.20世纪90年代,美国海军在SS N 2 691(孟菲斯)潜艇上安装了第1套图像融合样机,可使操纵手在最佳位置上直接观察到各传感器的全部图像[1],[2].1998年1月7日《防务系统月刊》电子版报道,美国国防部已授予BTG 公司2项合同,其中一项就是美国空军的图像融合设计合同,此系统能给司令部一级的指挥机构和网络提供比较稳定的战场图像.在遥感领域,大量遥感图像的融合为更方便、更全面地认识环境和自然资源提供了可能[3]~[5],其成果广泛应用于大地测绘、植被分类与农作物生长势态评估、天气预报、自然灾害检测等方面.1999年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CC D 相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围.在医学成像领域,CT 、MR 和PET 图像的融合提高了计算机辅助诊 断能力[6].2001年11月25日~30日在美国芝加哥召开了每年一度的RS NA 北美放射学会年会,在会议上GE 公司医疗系统部展销了其产品Dis 2covery LS.Discovery LS 是GE 公司于2001年6月 刚推出的最新PET/CT ,是世界上最好的PET 与最高档的多排螺旋CT 的一个完美结合,具有单体PET 不能比拟的优势.它可以完成能量衰减校正、 分子代谢影像(PET )与形态解剖影像(CT )的同机 图像融合,使检查时间成倍地降低.在网络安全领域,多尺度图像融合技术可将任意的图像水印添加到载体图像中,以确保信息安全[7]. 在各个应用领域的需求牵引下,各国学者对多传感器图像融合技术的研究也越来越重视.在多传感器信息融合领域中,图像融合是应用最为广泛,发表文献最多的一个方向.从文献[8]可看出,在参与统计的信息融合文章中,信号层的信息融合文章占53%.同时,我们做了这样一个调查,在Ei C om pendexWeb 数据库中用“image fusion ”作为关键词,检索从1980年到2001年摘要中出现这一词组的文章数目.1980年至1984年,这方面的文章只有4篇;1995年至1999年增加到603篇;2000年和2001年两年就有299篇.从中可以看出国际学术界对图像融合技术的重视程度与日俱增. 为了使国内同行对图像融合技术有一个较为全面的了解,本文在参考国内外文献的基础上,对目前常用的图像融合技术进行了概括和评述.文章首先介绍了图像融合研究的基本内容,将图像融合的概念界定到像素级;接着描述了各种图像融合技术的基本原理,对它们的优缺点进行了定性分析,给出了评价图像融合技术的方法. 1 多传感器图像融合技术研究内容 多传感器图像融合属于多传感器信息融合的范畴,是指将不同传感器获得的同一景物的图像   2002年10月第28卷第5期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics October 2002V ol.28 N o 15

像素级图像融合

毕业设计(论文)设计(论文)题目像素级图像融合方法 姓名:李桂楠 学号: 2 学院:机电与信息工程学院 专业:自动化 年级2011级 指导教师:孙甲冰

目录 摘要 (4) Abstract (5) 第一章绪论 (1) 1.1课题背景及来源 (1) 1.2图像融合的理论基础和研究现状 (1) 1.3图像融合的应用 (1) 1.4图像融合的分类 (1) 第二章像素级图像融合的预处理 (3) 2.1图像增强 (3) 2.2图像校正 (6) 2.3图像配准 (6) 第三章像素级图像融合的方法综述 (8) 3.1加权平均图像融合方法 (8) 3.2 HIS空间图像融合方法 (8) 3.3 主成分分析图像融合方法 (8) 3.4 伪彩色图像融合方法 (9) 第四章基于小波变换的像素级图像融合概述 (10) 4.1 小波变换的基本理论 (10) 4.2 基于小波变换的图像融合 (11) 4.3基于小波变换的图像融合性能分析 (12)

第五章像素级图像融合方法的研究总结与展望 (19) 参考文献 (20) 谢辞.................................. 错误!未定义书签。

摘要 近些年,随着科学技术的飞速发展,各种各样的图像传感器出现在人们的视野前,这种样式繁多的图像传感器在不同的成像原理和不同的工作环境下具有不同功能。而因为多传感器的不断涌现,图像融合技术也越来越多的被应用于医学、勘探、海洋资源开发、生物学科等领域。 图像融合主要有像素级、决策级和特征级三个层次,而像素级图像融合作为基础能为其他层次的融合提供更准确、全面、可依赖的图像信息。本文的主要工作是针对像素级的图像融合所展开的。 关键词 图像融合理论基础、加权平均、图像融合方法、小波变换、

信息融合技术在数字图像处理中的应用

信息融合技术在数字图像处理中的应用 摘要:信息融合技术是近年来飞速发展的一门学科,其应用领域广泛,主要应用于目标识别,战场监视,自动飞行器导航与控制,机器人,复杂工业过程控制,遥感,医疗诊断,图像处理,模式识别等领域。本文通过实际编程实现信息融合在数字图像处理中的应用,而且改善了图像获取中由于图像传感器自身差异而带来的误差和噪声,实现了单一传感器采集到更理想的图像的目标。 关键词:信息融合技术 图像处理 图像融合 1 引言 随着社会的快速发展,图像处理已经随处可见,应用前景广阔。达到探索宇宙奥秘,小到家居实用。很多笔记本配备人脸识别,各种基于图像识别的安防系统,工业生产线等等。而信息融合技术也因其应用前景广阔,而备受青睐。信息融合技术在图像处理中的应用更是一大研究趋势。本文着重讨论信息融合技术在数字图像处理中的应用。 2 研究背景 本文使用图像传感器采集图像,但由于传感器自身精度以及环境光线的影响,因而获得的图像质量不是很理想,故而希望借助信息融合技术来实现对源图像较好的估计,以期获得较好更适于后续处理的图像。 3实现方法 3.1 平滑线性滤波器 信息融合技术使用的前提条件是传感器采集到的信息尽可能的接近真是值。否则进行信息融合没有意义。所以在使用采集的图像信息时先对采集的信息进行平滑滤波。 平滑线性空间滤波器的输出(响应)是包含在滤波掩膜邻域内像素的简单平均值,因此又叫均值滤波器,也属于低通滤波器。 平滑滤波器的概念非常直观。它用滤波掩膜邻域内像素的平均值来代替这一掩膜内图像的每一个像素值,这样处理减小了图像灰度的“尖锐”变化。由于典型的随机噪声由灰度级的尖锐变化组成,因此,常见的平滑处理应用就是减噪。 然而由于图像边缘(几乎总是一副图像希望有的特征)也是由图像尖锐变化带来的特性,所以均值滤波处理还是存在着不希望的边缘模糊的发面效应。 常用的平滑滤波掩膜有以下几种: (a) (b) 图1 两个33?平滑(均值)滤波器掩膜 1 1 1 1 1 1 1 1 1 1 2 1 2 4 2 1 2 1 ? 16 1?9 1

遥感图像融合技术的发展现状

遥感图像融合技术的发展现状及趋势 1 引言 多源图像融合属于多传感器信息融合的范畴, 是指将不同传感器获得的同一景物的图像或同一传感器在不同时刻获得的同一景物的图像, 经过相应处理后, 再运用某种融合技术得到一幅合成图像的过程。多幅图像融合可克服单一传感器图像在几何、光谱和空间分辨率等方面存在的局限性和差异性, 提高图像的质量, 从而有利于对物理现象和事件进行定位、识别和解释。与单源遥感图像相比, 多源遥感图像所提供的信息具有冗余性、互补性和合作性。因此,将多源遥感图像各自的优势结合应用, 获得对环境正确的解译是极为重要的。多源遥感图像融合则是富集这些多种传感器遥感信息的最有效途径之一,是现代多源数据处理和分析中非常重要的一步。本文基于遥感图像融合的研究现状、分析了图像融合研究的困境和不足, 最后提出了未来的发展趋势和热点, 以期达到抛砖引玉的作用。 2 遥感图像融合研究现状 随着信息科学技术的发展, 在20 世纪七八十年代诞生了一个称为数据融合的全新概念。这一概念不断扩展, 处理的对象由一般的数据发展到数字图像。1979 年, Daliy 等人首先将雷达图像和LandsatMSS 图像的复合图像应用于地质解译, 被认为是最早的图像

融合。20 世纪80 年代, 图像融合技术逐渐应用到遥感图像的分析和处理中。90年代以后, 图像融合技术成为研究的热点, 并成为很多遥感图像应用的一个重要预处理环节。目前, 遥感图像融合已经发展为像素级、特征级和决策级3个层次, 如表1。需要指出的是, 融合层次并没有划分融合算法严格的界限, 因为本质上各个融合层次都是信息融合的范畴。像素级图像融合技术已被广泛研究和应用, 并取得了一定的成果。特征级融合是一种中等层次的信息融合, 利用从各个传感器图像的原始信息中提取的特征信息,进行综合分析及融合处理, 不仅增加从图像中提取特征信息的可能性, 还可能获取一些有用的复合特征, 尤其是边缘、角、纹理、相似亮度区域、相似景深区等。在特征级融合中, 对图像配准的要求不如像素级图像融合对配准要求那么严格。决策级图像融合是一种更高层次的信息融合, 其结果将为各种控制或决策提供依据。在进行融合处理前, 先对图像进行预处理、特征提取、识别或判决, 建立对同一目标的初步判决和结论, 然后对各个图像的决策进行相关处理, 最后进行决策级的融合。从特点来看,不同层次的融合各有优缺点, 难以在信息量和算法效率方面都同时满足需求。 表一:遥感图像融合三个层次的对比 融合层次融合算法特点

数字图像处理(matlab版)第八章 图像融合算法

第八章图像融合算法 8.1 图像融合技术的发展过程 随着科学的发展和技术的进步,采集图像数据的手段不断完善,出现了各种新的图像获取技术。如今,图像融合方法已经运用于社会的很多领域,像遥感卫星图像,光图像,红外图像,医学图像,尤其是多传感器图像融合应用以来,它已成为计算机视觉,目标识别,机器人以及军事等方面研究的重要方面。

8.2基于小波变换图像融合的基本原理 如果一个图像进行L 层小波分解,我们将得到(3L +1)层子带,其中包括低频的基带和层的高频子带。用代表源图像,记为,设尺度系数和小波函数对应的滤波器系数矩阵分别为,则二维小波分解算法可描述为: j C 3L ,h v d D D D 和(,)f x y 0C ()x Φ()x ΨH G 与11 1 j h j j v j j d j j C HC H D GC H D HC G D GC G +++′ =??′=??′=??′=?j+1(0,1, (1) j J =?(8-1)

小波重构算法为: 基于二维DWT 的融合过程如图1.1所示,ImageA 和 ImageB 代表两幅源图像A 和B ,ImageF 代表融合后的图像,具体步骤如下:(1)图像的预处理: 1h v d j j j j j C H C H G D H H D G G D G ?′′′′=+++(,1, (1) j J J =?(8-2) 图8.1 基于DWT 图像融合过程

①图像滤波 ②图像配准 (2)对ImageA和ImageB进行二维DWT分解,得到图像的低频和高频分量。 (3)根据低频和高频分量的特点,按照各自的融合算法进行融合。 (4)对以上得到的高低频分量,经过小波逆变换重构得到融合图像ImageF。 8.3 融合效果性能评价指标 8.3.1均值和标准差

相关文档
最新文档