固体力学作业薄板的振动的固有频率与振型

固体力学作业薄板的振动的固有频率与振型
固体力学作业薄板的振动的固有频率与振型

固体力学作业

薄板的振动的固有频率与振型

1、 问题

矩形薄板的参数如下

33150,100,5,210,0.3,7.9310/a mm b mm h mm E GPa v kg m ρ======?

求矩形薄板在

(1) 四边简支(2)四边固支 条件下的固有频率和振型

2、薄板振动微分方程

薄板是满足一定假设的理想力学模型,一般根据实际的尺寸和受力特点来将某个实际问题简化为薄板模型,如厚度要比长、宽的尺寸小得的结构就可以采用薄板模型。薄板在上下表面之间存在一个对称平面,此平面称为中面,且假定:

(1)板的材料由各向同性弹性材料组成; (2)振动时薄板的挠度要比它的厚度要小; (3)自由面上的应力为零;

(4)原来与中面正交的横截面在变形后始终保持正交,即薄板在变形前中面的法线在变形后仍为中面的法线。

为了建立应力、应变和位移之间的关系,取空间直角坐标Oxyz ,且坐标原点及xOy 坐标面皆放在板变形前的中面位置上,如图 1所示。设板上任意一点a 的位置,将由变形前的坐标x 、y 、z 来确定。

图 1 薄板模型

根据假定(2),板的横向变形和面内变形u 、v 是相互独立的。为此,其弯曲变形可由中面上各点的横向位移(,,)w x y t 所决定。根据假定(4),剪切应变分量为零。由薄板经典理论,可以求得板上任意一点(,,)a x y z 沿,,x y z 三个方向的位移分量,,a a a u v w 的表达式分别为

()

a a a w u z

x w

v z

y w w ?=-??=-?=+

高阶小量 (1.1)

根据应变与位移的几何关系可以求出各点的三个主要是应变分量为

22

22

22a x a y a a xy

u w z x x v w z y y

u v w z y x x y

εεγ??==-????==-?????=+=-???? (1.2)

胡克定律,从而获得相对应的三个主要应力分量为:

2222

222222222()()11()()111x x y y y x xy xy

E Ez w w

x y

E Ez w w y x

Ez w

G x y

σεμεμμμσεμεμμμτγμ??=+=-+--????=+=-+--???==-

+?? (1.3)

现画薄板微元的受力图如图 2所示。

图 2所示中x xy x y yx y M M Q M M Q 、和、、和分别为OB 面、OC 面上所受到的单位长度的弯矩、扭矩和横切剪力。弯矩和扭矩都用沿其轴的双剪头表示。M x 、M y 是由正应力σx 、 σx 引起的合力矩。扭矩是由剪切力τxy 引起的合力矩。

图 2 薄板应力示意图

p (x ,y ,t )=P (x ,y )f (t )为具有变量分离形式的外载荷集度,沿z 轴方向。应用动静法计算时,

沿z 轴负方向有一虚加惯性力22w

h dxdy t

ρ??,根据0z F =∑,0y M =∑,0y M =∑则

220(,)()0

z

y x

x x y y F

Q Q Q dy dydx Q dy Q dx dydx Q dx x

y

w

P x y f t dydx h dydx t

ρ=??+

-++

-???+-=?∑ (1.4)

整理后,可得

22(,)()y x Q Q w

P x t f t h x y t

ρ???++=???

(1.5)

1

()()

2()0

0()()11

()0

22

x

y

y y y y y xy

xy xy y yx x x yx yx x x x M

M Q M dx M dx dydx Q dx dy Q dx dydx y y M M dy M dy dydx x M M Mx

M dy dxdy M dy M dx dxdy M dx x y Q Q dy dxdy dx Q dy dx x =??-++?+???-+=?=??+

-++-???-+?-?=?∑∑ (1.6)

整理得到

xy

x

y

y yx

x M M Q x y M M Q x y

??+

=????+=?? (1.7)

由弯矩的计算公式

22

22

22

h

h x x h h y y h h xy yx xy M zdz

M zdz M M zdz

σστ---====??? (1.8)

将式(1.2)代入式(1.8),积分后得

222222222()

()(1)

x y xy w w

M D x y

w w

M D y x w

M D x y

μμμ??=-+????=-+???=--??

(1.9)

再将式(1.9)代入式(1.5),即可得到薄板微元的运动微分方程为

4442422422(,)()w w w w

D h P x y f t x

x y y t ρ??????+++=?????????

(1.10)

这是一个四阶的线性非齐次的偏微分方程。其中3

212(1)Et D v =- 为薄板的抗弯刚度。

3、 矩形板横向振动微分方程的解

矩形板的横向自由振动的微分方程为

44424224220w w w w

D h x

x y y t ρ??????+++=?????????

(1.11)

或写成

24

20w

D w m t

??+=?

(1.12)

其中m h ρ=

设解的形式是时间变量和坐标变量可以分离的形式: (,,)(,)cos w x y t W x y t ω=

(1.13)

将式(1.13)代入式(1.12))可得 440W k W ?-=

(1.14)

42

h k D

ρω=

(1.15)

再根据板的边界条件来求解固有频率,式(1.14)可用分离变量法来求解。假定解具有如下形式:(,)()()W x y X x Y y =

将上式代入式(1.14)中,可得

422444224

()()()()()2()()()0X x X x Y y Y y Y y X x k X x Y y x x y y

????++-=???? (1.16)

上式可改写为

422444

224()()20X x X Y Y k X Y X x x y y ????-++=???? (1.17)

422444224()()20Y x X Y X k Y X Y y x y x

????-++=???? (1.18)

现讨论式(1.17)中,首先要满足边界条件,设

444

22

2

()

()X x X x X x X x

αβ?=??=-? (1.19)

根据上两式,有

4244

()

X x X X x

ββ?''=-=? (1.20)

则44αβ=,故有

444

2

2

2

()

()X x X x

X x X x

ββ?=??=-? (1.21)

将上两式(1.21)代入式(1.19)第一式中,可写为 244

4

2

24()20Y Y

k XY X X x y

ββ??--?+=??

(1.22)

即有

42

244422()0Y Y k Y y x

ββ??-?+-=?? (1.23)

于是变量得到了分离,要满足式(1.14)的三角函数为

sin ()cos x

X x x ββ?=?

? (1.24)

类似地也可得出另一个平行的能使分离变量的条件为 sin ()cos y

Y y y αα?=?

?

(1.25)

现设x 方向板的长度为a ,y 方向板的长度为b ,且当x =0和x=a 边为简支,则满足此边界的条件/m a βπ=,故式(1.24)可写为

()sin

,0<<,m=1,2m x

X x x a a

π

= (1.26)

令 (,)(y)sin

m m m x

W x y Y a

π=

(1.27)

代入式(1.14)有

424(

)sin -2()sin +sin -k sin 0m m m m m m x m m x m x m x

Y Y Y Y a a a a a a

ππππππ'''''= (1.28)

即为

24

2 -2() -k -()0m

m m m m Y Y Y a a ππ??'''''=????

(1.29)

上式的解为 11213242(y)=C ch(y)+C sh(y)+C cos(y)+C sin(y)m m m m m m m m m Y λλλλ

(1.30)

式中

222

1222

2(),()

m m

m k a m k a πλπλ=+=-

再由y =0及y =b 的边界条件,由式(1.30)可求得im C (i =1,2,34)的齐次方程组,再令其系数行列式为零,可得到固有频率方程式,从而求出固有频率。

四边简支矩形薄板的自由振动边界条件为

22002222

00220,()()0

0,()()0

x x a x x a x x a x x a W W

W W x x

W W

W W x x

========??====????====?? (1.31) 设()11

,sin sin mn m n m x n y

W x y A a b ππ∞∞

===∑∑则满足边界条件。将上式代入方程(1.14),得 222411sin sin 0mn m n m n m x n x A k a b a b ππππ∞

==??????????+-=???? ? ?

????????????∑∑

将上式两边乘以 sin sin i x j y

dxdy a b

ππ并对整个面积进行积分得到: 2

224

m n k a b ππ??????+=?? ? ?????????

则得固有频率为

222mn m n a b ππω?????=

=+? ? ???????

(1.32)

因此可得,四边简支矩形薄板在自由振动时的挠度函数为

11

(,,)sin

sin cos mn mn m n m x n x w x y t A t a b

ππω∞

===∑∑ (1.33)

将上述结果用MATLAB 求出:

表格 1 简支的固有频率计算结果

图 3 简支的模态

Abaqus 的计算结果:

表格 2 简支薄板各阶振型

abaqus实体单元有限元仿真结果

实体有限元模态频率D11 13951

23135. D12

D21 33610.

D13

39451

D22

45169.

D14

59868.

4、固支边界条件振动微分方程的解 四边固支矩形薄板的自由振动边界条件为

00000,

(

)()00,

()()0x x a x x a y y a y y a W W

W W x x

W W W W y y

========??====????====??

(1.34)

4.1 正弦函数平方的逼近

根据简支的启发,正弦函数的平方满足边界条件。所以设其(,)W x y 是如下形式:

()2

211

,sin sin mn m n m x n y

W x y A a b

ππ∞∞

===∑∑ (1.35)

将上式带入方程(1.14),整理可得

()42

44442222444221142222cos cos cos cos sin sin 0

mn m n n y m x n y m x a n b m b m a n a b b a b a n y m x k b A a πππππππ∞

==???-+-++ ?

????

?

????- ? ???????

=∑∑

(1.36)

根据伽辽金法 两边乘以 sin

sin i x j y

dxdy a b

ππ并在整个区域内积分可得到 ()442222444

444

1632309b m a b m n a n k a b

π++-=

2

ω=

(1.37)

频率计算结果如表格 3,振型计算结果如图 4

表格 3频率计算结果

图 4 用sin 2

x 作为试函数求解的模态

用abaqus 有限元模拟上述结果对比,采用四边固支,固支单条边,网格为5层。结果如下图 5。

然而上述的结果的差别很大,在第一阶很接近,但高阶就不在相近。计算值的振型和仿真值的模态一阶的图像是相同的,而用平方的三角函数的振型只有正值,与模拟的相差大。所以型函数的选取可能是上述计算值差别的原因。

为解决平方的三角函数得到的模态和频率与有限元模拟的相差较大的缺陷,根据伽辽金法求解的特点,采取不同的试函数来求解方程。首先将试函数分成x 的函数与y 的函数乘积的形式。即

(,)()()W x y F x G y (1.38)

先单独分析()F x 的特点,并类推()G y 。试函数()F x 的特点是

(1)满足边界条件;

(2)一组函数序列之和,函数序列在函数空间中线性无关,且应收完备的函数族; (3)函数族尽可以用通式表达,以便于运算与求解,而且函数族中的每个函数都满足边界条件;

(4)为了更方便的利用伽辽金法,函数应该是正交的,这样积分可以解决无穷项的难题。

然而这样的函数族很难找到,下面分别从幂函数、三角函数等初等函数构造满足上述条件的函数来逼近振型。它们都有一定缺陷,其中幂函数的结果较好。

4.2、用幂函数的逼近

边界条件:

22002222

00220,()()00,

()()0x x a x x a x x a x x a W W

W W x x

W W

W W x x

========??====????====?? 满足上面边界条件的幂函数的常数项和一次项都为零,一般的可设

220122

2

1

01212()(+)

()2(+)()

n n n n

n n n n F x x a a x a x a x F x x a a x a x a x x a a x a x -=+++'=++++++

+ (1.39)

将第二个边界条件代入,为了一般性和便于区别,边长用l 表示:

220122

2

1

01212(+)0

2(+)()0

n n n

n n n l a a l a l a l x a a l a l a l l a a l a l

-+++=++

++++

+= (1.40)

整理写成矩阵形式02

1110012n n n a a l l l l

nl a -?? ??? ?

=

? ???

???

求解得到 320211212132(1)l 23100010001n n n n a l n l a l l nl a k k k a a --????-????

? ? ? ?--- ? ? ? ?

? ? ? ?

=+++ ? ?

? ? ? ? ? ?

? ? ? ?

? ? ? ? ? ? ? ?

???????? 根据线性方程解的线性无关性()l a = ,可以得到

()

()

()222123232211()2()23()1n n n

n f x x a ax x f x x a a x x f x x n a na x x --=-+=-+??=--+?

?

(1.41)

上述的幂函数都是满足边界条件,而且组成了n-1维函数空间的基底,即它们是线性无关的,且可以线性表示满足边界条件的所有幂函数。

(1.42)

由于上面的函数族满足边界条件,但并不正交,积分的时候很难分离。定义两个函数的内积为0

,()()l

n m n m f f f x f x d x <>=

?

,于是可以构造一个函数内积空间,并根据

Gram-Schmit 正交化的方法,构造一系列的正交多项式,下面计算了前四项,

()()()()()2221121221

1131323312

112222223232

2241424

41112()()2,(),,,(),,5

2232

15222222

,,(),f x f x x a ax x f f f x f f f f f f f f f x f f f f f f f f f ax a a f f f x f f f x x x a a x x a x x a x f x f a ==-+<>

=-

<>

=<><>

=--<><>=

<

><>

=---++-+--+-<>

<()()()4323

2

2222233,,,125262652

f f f f f f f a x a x x a ax x -

<>-->>-+<-= (1.43)

同理,满足边界条件的()n G y 可以设成

22012()(+)n n n G x y a a y a y a y =++

+

(1.44)

按照上面同样的方法可有求得满足边界条件的函数族

()

()

()222123232211()2()23()1m m m

n g y y l ay y g y y a a y y g y y m a na y y --=-+=-+??=--+??

并构造正交多项式1234(),(),(),()g x g x g x g x

于是设

11

(,)nm m n m n W x y A f g ∞∞

===∑∑

(1.45)

将(1.45)代入方程(1.14)中,并用卡辽金法,式子两边同时乘以m n f g ,并在整个薄板面上积分,

()

4

411

000a b nm

m n m n m n m n A f g k f g f g dxdy ∞

==

?

-=∑∑??

利用mathematica 计算出k 和圆频率ω计算频率如表格 4 各种频率比较 表格 4 各种频率比较

4.3、用正交三角函数和三角-双曲函数的逼近 按照上面的方法,选用2

sin m x

a

π作为逼近函数,并将这些函数正交处理,计算方法同上。计算结果见表格 4

方法同上,列出结果:为了便于计算,采用21cos x a π??-

???

代替2sin m x a π 123421cos 22411cos cos 3122246cos co (s cos 555122)(24268cos cos cos )()()cos 7777x a x x a a x x x a a a x x f x f x f x x a x a x a f a ππππππππππ??

- ?

????????

--- ? ?

?????????????++- ? ? ???????

????????+++- ? ? ?= ???????===

??

振型见表格 5。其振型的形状和频率和有限元仿真误差较大,第一阶频率和振型较好,但第二阶振型D12和有限元的第三阶振型D13相似,说明用这种方法求得频率可能缺阶,即其阶数是1、3、5……的形式,着与采用的函数是正弦函数的平方有关,即振型函数是cos 的偶数阶。

同样可以找到满足条件的三角-双曲函数以解决上面的问题。

()()()()()()()()()()()()

0.50.5f (x)cos cosh 0.50.5sin 0.5sinh 0.5sin sinh cos 0.5cosh 0.5n m x m x a a m x

m x m m a a m m ππππππππ++????

=- ? ?

????

??

++??????+++- ? ? ??? ???????+

+-+

图 6 三角双曲函数的图像

该函数本身满足正交,固不需要正交化。它的图像见图 6。计算结果见表格。

表格 5 固支边界条件下的振型

包括用正交的幂函数和正交的三角函数逼近

幂函数振型正交三角函数振型三角-双曲

D11

5、讨论

将上述的结果整理,可以发现,幂函数、三角-双曲函数的计算结果非常接近,它们可以相互映证。而正弦函数的平方和由此正交的到的振型函数逼近的结果与之相比相差较大。正选函数的平方形成的振型与其他四个的结果都不一样,这是因为它形成的振型都是正的,它与实际的相差较大。而实际的情况的振型是由正有负的,一般薄板的正负是相对的。正交的幂函数与三角-双曲函数以及仿真结果非常接近,它们是可以相互映证的。

幂函数可以拟合相当于把振型展开成幂级数,但开始的阶数很小,所以有截断误差,这也是它们计算结果有误差的原因。三角双曲函数并不严格的满足边界条件,它只是近似的满足,所以在第一阶与其他的误差较大。相关计算程序见附件。

图7不同函数逼近下的频率

《振动力学》习题集(含答案)【精选】精心总结

《振动力学》习题集(含答案) 1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。求系统的固有频率。 图E1.1 解: 系统的动能为: ()2 22 121x I l x m T += 其中I 为杆关于铰点的转动惯量: 2102120131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2212212236 16121x l m m x l m x ml T +=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω= 和U T =可得: ()()l m m g m m n 113223++= ω

1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。求系统的固有频率。 图E1.2 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 22222243212121θθθ mR mR mR I T B =??? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθn = 和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。 求系统的固有频率。 图E1.3 解: 系统的动能为: 2 2 1θ J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()2 32323212332222121212121θθθθ?? ????+++=++= k k k k k k k k k k U 利用θωθn = 和U T =可得: ()() 3232132k k J k k k k k n +++= ω

简支梁固有频率及振型函数

简支梁横向振动的固有频率及振型函数的推导 一.等截面细直梁的横向振动 取梁未变形是的轴线方向为X 轴(向右为正),取对称面内与x 轴垂直的方向为y 轴(向上为正)。梁在横向振动时,其挠曲线随时间而变化,可表示为 y=y(x,t) (1) 除了理想弹性体与微幅振动的假设外,我们还假设梁的长度与截面高度之比是相当大的(大于10)。故可以采用材料力学中的梁弯曲的简化理论。根据这一理论,在我们采用的坐标系中,梁挠曲线的微分方程可以表示为: 22y EI M x ?=? (2) 其中,E 是弹性模量,I 是截面惯性矩,EI 为梁的弯曲刚度,M 代表x 截面处的弯矩。挂怒弯矩的正负,规定为左截面上顺时针方向为正,右截面逆时针方向为正。关于剪力Q 的正负,规定为左截面向上为正,右截面向下为正。至于分布载荷集度q 的正向则规定与y 轴相同。在这些规定下,有: M Q Q q x x ??==??, (3) 于是,对方程(2)求偏导,可得: 222222(EI )(EI )y M y Q Q q x x x x x x ??????====??????, (4) 考虑到等截面细直梁的EI 是常量,就有:

3434y y EI Q EI q x x ??==??, (5) 方程(5)就是在等截面梁在集度为q 的分部李作用下的挠曲微分方程。 应用达朗贝尔原理,在梁上加以分布得惯性力,其集度为 22 y q t ρ?=-? (6) 其中ρ代表梁单位长度的质量。假设阻尼的影响可以忽略不计,那么梁在自由振动中的载荷就仅仅是分布的惯性力。将式(6)代入(5),即得到等截面梁自由弯曲振动微分方程: 4242y y EI x t ρ??=--?? (7) 其中2 /a EI ρ=。 为求解上述偏微分方程(7),采用分离变量法。假设方程的解为: y(x,t)=X(x)Y(t) (8) 将式(8)代入(7),得: 22424 1Y a d X Y t X dx ?=-? (9)

文献综述振动力学汇总

振动力学 1前言部分 振动力学在其发展过程中逐渐由基础科学转化为基础科学与技术科学的结合.工程问题的需要使振动力学的发展成为必需,而测试和计算技术的进步又为振动力学的发展和应用提供了可能性.除与技术问题的结合以外,学科的交叉不断为振动力学的发展注入新的活力.在数百年发展过程中,振动力学已形成为以物理概念为基础,以数学理论、计算方法和测试技术为工具,以解决工程中振动问题为主要目标的力学分支。 人类对振动现象的认识有悠久的历史。战国时期的古人已定量地总结出弦线发音与长度的关系。在振动力学研究兴起之前,有两个典型的振动问题引起注意,即弦线振动和单摆振动。对单摆摆动的研究起源于Galileo,他在1581年发现摆的等时性。1727年JohnBernoulli研究无重量弹性弦上等距分布等质量质点时,建立无阻尼自由振动系统模型并解出解析解。1728年Euler考察了摆在有阻尼介质中的运动建立并求解了相应的二阶常微分方程。1739年他研究了无阻尼简谐受迫振动,从理论上解释了共振现象。1834年Duhamel将任意外激励视为一系列冲量激励的叠加,从而建立了分析强迫振动的普遍公式.1849年Stokes发现了初位移激励与初速度激励两者响应的联系,并且由此对外激励得到与Duhamel相同的结果. 非线性振动的研究使得人们对振动机制有了新的认识.除自由振动、受迫振动和参数振动以外,还有一类广泛存在的振动,即自激振动.1925年Cartan父子研究了无线电技术中出现的一类二阶非线性微分方程的周期解.1926年vanderPol建立一类描述三极电子管振荡的方称为vanderPol方程,他用图解法证明孤立闭轨线的存在,又用慢变系数法得到闭轨线的近似方程.1928年Lienard证明以 Cartan 方程和vanderPol方程为特例的一类方程存在闭轨线,1929年Андронов阐明了vanderPol的自激振动对应于Poincaré研究过的极限环。 2主题部分

振动力学

有限元方法在振动力学上的应用分析 Xxxxx xxxxxxxxx

有限元方法在振动力学上的应用分析 摘要:有限元法是一种可用于精确地(但近似)解决许多复杂的振动问题的数值方法。对于基本的一维元素进行有限元分析,能得到质量矩阵与刚度矩阵和所需的力矢量,对于二维三维,元素矩阵会转换成相关的更高维的空间。使用一致的和集中质量矩阵的有限元方程并结合边界条件能为复杂系统提供解释。最后,使用MA TLAB程序得到在轴向载荷下的指定节点位移,固有振动频率和特征值分析。[1] 关键词:有限元振动力学固有频率特征值 目录 1发展背景 (3) 1.1有限元的发展背景 (3) 1.2有限元法应用于工程计算的发展背景 (3) 2基础理论推导 (4) 2.1有限元理论 (4) 2.2理论推导 (4) 3参数影响 (8) 3.1边界条件的影响 (8) 3.2网格划分对有限元模态分析的影响 (8) 3.3单元类型的影响 (8) 4实例分析 (9) 4.1杆件分析 (9) 4.2梁的自然频率 (10) 5结论 (11)

1,发展背景 1.1有限元的发展背景 有限元法是R.Courant于1943年首先提出的。自从提出有限元概念以来,有限元理论及其应用得到了迅速发展。过去不能解决或能解决但求解精度不高的问题,都得到了新的解决方案。传统的FEM假设:分析域是无限的;材料是同质的,甚至在大部分的分析中认为材料是各向同性的;对边界条件简化处理。但实际问题往往是分析域有限、材料各向异性或边界条件难以确定等。为解决这类问题,美国学者提出用GFEM (Gener-alized Finite Element Method)解决分析域内含有大量孔洞特征的问题。[2] 比利时学者提出用HSM (the Hybrid metis Singular element of Membrane plate)解决实际开裂问题。 在FEM应用领域不断扩展、求解精度不断提高的同时,FEM也从分析比较向优化设计方向发展。印度Mahanty博士用ANSYS对拖拉机前桥进行优化设计,结果不但降低了约40%的前桥自重,还避免了在制造过程中的大量焊接工艺,降低了生产成本。[3] 目前在进行大型复杂工程结构中的物理场分析时,为了估计并控制误差,常用基于后验误差估计的自适应有限元法。基于后处理法计算误差,与传统算法不同,将网格自适应过程分成均匀化和变密度化2个迭代过程。在均匀化迭代过程中,采用均匀网格尺寸对整体区域进行网格划分,以便得到一个合适的起始均匀网格;[4]在变密度化迭代过程中只进行网格的细化操作,并充分利用上一次迭代的结果,在单元所在的曲边三角形区域内部进行局部网格细化,保证了全局网格尺寸分布的合理性,使得不同尺寸的网格能光滑衔接,从而提高网格质量。整个方案简单易行,稳定可靠,数次迭代即可快速收敛,生成的网格布局合理,质量高。 1.2 有限元法应用于工程计算的发展背景 FEM作为求解数学物理问题的一种数值方法,已经历了50余年的发展。20世纪50年代,它作为处理固体力学问题的方法出现。1943年,Courant第一次提出单元概念。1945~1955年,Argyris等人在结构矩阵分析方面取得了很大进展。1956年,Turner、Clough等人把刚架位移法的思路推广应用于弹性力学平面问题。1960年,Clough首先把解决弹性力学平面问题的方法称为“有限元法”,并描绘为“有限元法 = Rayleigh Ritz法 + 分片函数”。几乎与此同时,我国数学家冯康也独立提出了类似方法。FEM理论研究的重大进展,引起了数学界的高度重视。自20世纪60年代以来,人们加强了对FEM数学基础的研究。如大型线性方程组和特征值问题的数值方法、离散误差分析、解的收敛性和稳定性等。FEM理论研究成果为其应用奠定了基础,计算机技术的发展为其提供了条件。20世纪70年代以来,相继出现了一些通用的有限元分析(FEA: Finite Element Analysis)系统,如SAP、ASKA、NASTRAN等,这些FEA系统可进行航空航天领域的结构强度、刚度分析,从而推动了FEM在工程中的实际应用。20世纪80年代以来,随着工程工作站的出现和广泛应用,原来运行于大中型机上的FEA系统得以在其上运行,同时也出现了一批通用的FEA系统,如ANSYS-PC、NISA,SUPERSAP 等。20世纪90年代以来,随着微机性能的显著提高,大批FEA系统纷纷向微机移植,出现了基于Windows的微机版FEA系统。经过半个多世纪的发展,FEM已从弹性力学平面问题扩展到空间问题、板壳问题;从静力问题扩展到动力问题、稳定问题和波动问题;从线性问题扩展到非线性问题;从固体力学领域扩展到流体力学、传热学、电磁学等其他连续介质领域;从单一物理场计算扩展到多物理场的耦合计算。它经历了从低级到高级、从简单到复杂的发展过程,目前已成为工程计算最有效的办法之一。[5]

模态振型固有频率基本理论

模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰……等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。 模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。感谢欧阳中华教授的指点,我现在觉得自己当初确实对模态振型概念不清楚。模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。振型是个很重要的固有特征,正如楼上所说用于验证固有频率。 我觉得振型在判别你计算固有频率正确性是非常有用的,比如,通过有限元计算得到了模型的前十阶固有频率,试验模态分析也得到了低阶的固有频率,假设计算的某阶固有频率与试验的某阶固有频率非常接近,但是并不能马上说明他们是同一阶的,需要通过振型来判断。 其他的不知道,但是之所以引入模态的概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来。从能量角度说,这样各个振型之间就没有能量的交换。 从数学上看,对响应函数级数展开后,其中的各项构成各阶模态,而级数展开形

振动力学》习题集(含答案)

《振动力学》习题集(含答案) 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图所示。求系统的固有频率。 图 解: 系统的动能为: ()22 2 121x I l x m T &&+= 其中I 为杆关于铰点的转动惯量: 2102120131l m dx x l m x dx l m I l l ??==?? ? ??= 则有: ()2 212212236 16121x l m m x l m x ml T &&&+=+= 系统的势能为: ()()()2 1212124 1 4121 cos 12 cos 1glx m m glx m mglx x l g m x mgl U +=+=-? +-= 利用x x n ω=&和U T =可得: ()()l m m g m m n 113223++= ω

质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图所示。求系统的固有频率。 图 解: 如图,令θ为柱体的转角,则系统的动能和势能分别为: 2222224321212 1θθθ&&&mR mR mR I T B =?? ? ??+== ()[]()22 22 12θθa R k a R k U +=+?= 利用θωθ n =&和U T =可得: ()m k R a R mR a R k n 34342 2 +=+=ω

转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图所示。求系统 的固有频率。 图 解: 系统的动能为: 22 1θ& J T = 2k 和3k 相当于串联,则有: 332232 , θθθθθk k =+= 以上两式联立可得: θθθθ3 22 33232 , k k k k k k +=+= 系统的势能为: ()232323212 332222*********θθθθ?? ????+++=++=k k k k k k k k k k U 利用θωθ n =&和U T =可得: ()() 3232132k k J k k k k k n +++= ω

二维梁的固有频率和振型

一、综合实验题目和要求 题目:求一二维梁的固有振型和频率。 要求:用有限元理论,求一二维梁的固有振型和频率: (1) 用二维梁有限元对梁进行分析数值计算求出其主振型向量和频率; (2) 求出其理论精确解,精确主振型向量和频率; (3) 将理论结果和计算结果进行比较。 二、程序流程图

三、实验结果 1.前六阶振型 同一有限元数不同阶数比较(以有限元20为例)如下图所示:

00.10.20.30.40.50.60.70.80.9 一阶 -0.8 -0.6-0.4-0.200.20.40.60.81 二阶 -0.8 -0.6-0.4-0.200.20.40.60.81 三阶

-0.8 -0.6-0.4-0.200.20.40.60.8 四阶 -0.8 -0.6-0.4-0.200.20.40.60.81 五阶 -0.8 -0.6-0.4-0.200.20.40.60.81 六阶 四、实验分析

对于二维梁有限元的划分(以下只对二维梁而言),要根据需求精度进行合理划分,既兼顾精度,同时也兼顾计算量(随着计算精度的提高,单元数量增加,相应计算量也会增加,计算时间也会增加),经过试验随着单元数量增加,其计算精度也不段提高,当将梁分到七单元时,通过计算得到的主振型和频率和理论值吻合的非常好。当梁取一单元时(elementno=1),由于梁总体只有两自由度,故只能得出前两阶主振型;当梁取二单元时(elementno=2),由于梁总体有四自由度,故只能得出前四阶主振型;对于梁取三单元(elementno=3)以及三单元以上(elementno>3)时,梁总体有六自由度以及更高自由度,这里只画出前六阶主振型图。下六图是在elementno=20的情况下,通过计算,画出前六阶的主振型图(其中红线部分为理论主振型图,绿色五角星是计算在梁各单元节点处的振型,数量取决于梁单元划分的数目)。 五、源程序清单 clear all close all %各参数的设置 rou=2.7e3; %密度 A=1e-3;%横截面积 E=72e9; %弹性模量 L=1; %梁长 I=8.3333e-009;%截面惯性矩 elementno=input('输入有限元的数量:'); %有限元的数量 rodno=elementno+1;%节点数 alldimension=rodno*2; l=L/elementno; %单元刚度矩阵 ke=E*I/l^3*[12 -6*l -12 -6*l; -6*l 4*l^2 6*l 2*l^2; -12 6*l 12 6*l; -6*l 2*l^2 6*l 4*l^2]; %单元质量矩阵

(整理)《振动力学》课程作业.

《振动力学》2015春节学期作业 一、无阻尼自由振动 1、如图所示,T型结构可绕水平轴O作微小摆动,已知摆动部分的质量为w,机构绕O轴的 ?时(即机构处于平衡位置时),两弹簧无转动惯量为J,两弹簧的弹簧系数均为k,且当=0 伸缩,试求该机构的摆动频率。 (答案:ω) 2、如图所示,长度为L的刚性杆件,在O点铰支,自由端固定一质量为m的小球。在距离铰支端a处,由两个刚度系数为k/2的弹簧将刚性杆件支持在铅垂面内。求该系统的固有频率。(忽略刚性杆件和弹簧的质量) (答案:ω)

3、如图所示,悬臂梁长为L ,截面抗弯刚度为EI ,梁的自由端有质量为m 的质量块,弹簧刚度为k ,求系统的固有频率。 (答案:ω= ) 4、如图所示,半径为R 的均质半圆柱体,在水平面内只作滚动而不滑动的微摆动,求其固有角频率。 (答案:ω= ) 5、如图所示,抗弯刚度为623010(N m )EI =?? 的梁AB ,借弹簧支撑于A,B 两点处,弹簧系数均为300(/)k N m = 。忽略梁的质量,试求位于B 点左边3m 处,重量为1000()W N = 的物块自由振动的周期。 (答案:T=0.533s ) 6、一个重W 的水箱,借助四根端点嵌固的竖置管柱支撑着。每根柱子的长为L,抗弯刚度为EI 。试求该水箱顺水平方向自由振动的周期。(管柱的质量忽略不计) (答案:2T = )

7、《结构动力学基础》,第2章课后习题,第1题、第2题、第8题 二、有阻尼自由振动 1、如图所示,库伦曾用下述方法测定液体的粘性系数' c :在弹簧上悬挂一薄板A ,先测出薄板在空气中的振动周期1T ,然后测出在待测粘性系数的液体中的振动周期2T 。设液体对薄板的阻力等于2A 'c v ,其中2A 为薄板的表面面积,v 为薄板的速度。如薄板重W ,试有测得的数据1T 和2T ,求出粘性系数'c 。空气对薄板的阻力不计。 (答案:' c = ) 2、物体质量为2kg ,挂在弹簧下端。弹簧常数k=48.02N/cm,求临界阻尼系数。 (答案:196Ns/m ) 3、挂在弹簧下端的物体,质量为1.96kg ,弹簧常数k=0.49N/cm,阻尼系数c=0.196Ns/cm 。设在t=0时刻将物体从平衡位置向下拉5cm ,然后无初速度地释放,求此后的运动。

某机翼结构的固有频率和振型分析

Open Journal of Acoustics and Vibration 声学与振动, 2019, 7(1), 12-19 Published Online March 2019 in Hans. https://www.360docs.net/doc/758349418.html,/journal/ojav https://https://www.360docs.net/doc/758349418.html,/10.12677/ojav.2019.71002 Analysis for Natural Frequency and Mode Shape of Wing Structure Liang Chen, Jinwu Wu, Hanqing Li College of Aero Engineering, Nanchang Hangkong University, Nanchang Jiangxi Received: Feb. 10th, 2019; accepted: Feb. 22nd, 2019; published: Mar. 1st, 2019 Abstract In this electronic document, the FEM is used to simulate and analyze the natural frequency and vi-bration mode of a certain UAV composite wing. By using the non-contact laser vibrometer equip-ment, in order to eliminate the influence of boundary conditions on the vibration characteristics of the wing structure, the vibration characteristics of the wing are measured by free boundary conditions, and the first 4 natural frequencies and vibrations of the composite wing are obtained. At the same time, the finite element simulation results are compared. The calculation results show that the simulation results are basically consistent with the experimental results. Keywords Wing Structure, Experimental Analysis, Natural Frequency, Mode Shape 某机翼结构的固有频率和振型分析 陈亮,吴锦武,李汉青 南昌航空大学飞行器工程学院,江西南昌 收稿日期:2019年2月10日;录用日期:2019年2月22日;发布日期:2019年3月1日 摘要 本文采用有限元和试验对某一无人机复合材料机翼的固有频率和振型进行仿真和实验分析。通过利用非接触式激光测振仪设备,为了消除边界条件对机翼结构振动特性的影响,采用自由边界条件进行了机翼振动特性测量,获得了复合材料机翼的前4阶固有频率和振型。同时对比了有限元仿真结果。计算结果表明,仿真结果与试验测试结果基本一致。

振动力学作业

振动力学 ——高转速振动 电机起动过程研究 姓名:史龙繁 班级:机制091班 学号:2009200116 院系:新科学院机电系

前言(发展背景) 高转速振动电机是一种新型的工程建设中使用的特殊电机。这种电机采用频率为200Hz,电压为42V的电源供电,电机转速达11500r/mm,所以,这种电机是一种低压、中频、高转速的安全型电机。同时,这种电机作为振动器的动力源全封闭于振动体内,其噪声影响得到较好的控制,是符合环保要求的低噪声振动器的关键部件。 高转速振动电机结构类似于笼型感应电机,电机由定转子组成,但其定子不是固定的。定子上对称布置三相绕阻,绕阻多采用2A接法,转子采用铜条笼型转子,槽型为闭口槽。受工况限制,该种电机长径比大于2:1,电机铁耗大、定转子漏抗系数大,电机在启动之初,定转子铁心中交变磁通频率分别为200Hz或接近200Hz,电机温升变化很快,而且相对于380V、50Hz同功率的普通笼型电机而言,这种电机的起动电流大很多。在实际应用中,这种电机常常单电源供电多台并联运行,多台并联运行将加剧对电源的不利影响。因此,该种电机起动过程应尽可能短,从而达到控制电机温升,延长电机寿命,并减小电机起动对电源影响的目的。很明显,研究振动电机的起动过程有利于该种电机的优化设计和应用。 1.高转速振动电机起动过程的数学模型 为简化问题的研究,假设所建数学模型遵循下述原则:(1)高转速振动电机定转子侧均按电动机惯例分析;(2)定子三相绕阻对称;(3)气隙均匀;(4)基于上述假设,给出高转速振动电机的双轴系统(dq0系统)数学模型。 l-1 数学模型 高转速振动电机三相对称情况下运行时,可将定转子侧绕组用双轴系统下的定转子绕组代替,从而将三相坐标系统下的各相存在的自感、互感时变系数转换为常系数,使所建数学系模型得到简化。 在双轴系统下,定转子绕阻各参数矩阵形式如下:

模态振型固有频率基本理论

模态振型是一个相对量,通常是一个列向量,二维以上地系统其模态振型不是一个数.一个数对应单模态,其数值无意义.某模态频率下地模态振型反映了在该模态频率下各自由度地相对位移地比值.如果系统地初始位移恰好等于模态频率下地模态振型(或与之成比例),则此时系统地自由响应中只会出现该模态频率. 感谢欧阳中华教授地指点,我现在觉得自己当初确实对模态振型概念不清楚.模态振型是系统固有地振动形态,线性响应是振型线性叠加地结果,但振型之间是独立不耦合地.振型是个相对量,所以就有了多种振型归一划地方法.振型是个很重要地固有特征,正如楼上所说用于验证固有频率. 文档来自于网络搜索 我觉得振型在判别你计算固有频率正确性是非常有用地,比如,通过有限元计算得到了模型地前十阶固有频率,试验模态分析也得到了低阶地固有频率,假设计算地某阶固有频率与试验地某阶固有频率非常接近,但是并不能马上说明他们是同一阶地,需要通过振型来判断. 文档来自于网络搜索 其他地不知道,但是之所以引入模态地概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来. 从能量角度说,这样各个振型之间就没有能量地交换. 文档来自于网络搜索 从数学上看,对响应函数级数展开后,其中地各项构成各阶模态,而级数展开形式本身要求各个基函数是相互正交地,也就是说:其实是把响应函数放到了一个函数空间里,各个展开项系数相当于这个响应在此函数空间里地坐标.文档来自于网络搜索 因为个自由度以上地系统往往都有耦合现象,例如方程*^^*中地、不同时为对角阵.但是从求解地角度来说,我们又希望其中地每个方程都是独立地,那样我们就可以像求解单自由度系统一样求解.我们就想能否选到合适地坐标系,使得运动完全不耦合,即系统质量矩阵和刚度矩阵同时为对角矩阵,称这样地坐标系为主坐标系,而模态坐标正是我们要寻找地主坐标.固有振型地正交性是指(以自由度为例),第一阶固有振动引起地作用力在第二阶固有振动上所做地功为零,即两种固有振动间无弹性势能地交换.同时也可证明振型地各阶导数间也是正交地. 文档来自于网络搜索 就像不同地坐标系下,对同一运动系统地表述会很不一样,表述同一运动系统地振型模态也可以有很多物理量地坐标系,当然其中很多都是很复杂地,对解决实际问题是没有实际意义和帮助地,只有那个特殊地正交状态地模态坐标,才是最简单最有用地坐标,因为它能把系统解耦,,这个特殊地坐标称之为主坐标,对应主振型,这个状态可以把方程解开,把问题解决掉,,文档来自于网络搜索 各阶模态是互相正交是为了解耦,使问题最简化.类似向量地分解,比方说,一个平面内力向量地分解方式有很多种,但采用直角正交分解最方便. 文档来自于网络搜索 主要从以后地解方程组时候要解耦考虑吧 模态正交,具体表现在模态振型存在正交,请注意“存在”,而这种正交是线性系统模态地基本特性,准确地说是固有特性,正因为存在这种正交特性,带来了运算时地广义坐标下地耦合矩阵变为模态坐标中.文档来自于网络搜索 地解耦,计算变得简单. 注:(对上段话地个人理解:线性系统具有正交特性,人们利用线性系统地正交特性,对线性模态进行解耦,使问题简化.)文档来自于网络搜索 .任一阶主振型地惯性力在另一阶主振型作为虚位移上所做地虚功之和为零 .任一阶主振型地惯性力只在各自地振型上做功,在另外地主振型上不做功 这是正交相应地物理解释,是模态振型正交地物理形式,所以不能用物理含义去证明其相应地数学表达. 上面模态正交地数学和物理形式和概念有解释清楚了,那么,为什么会正交呢?

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

振动理论课后答案

1-1一个物体放在水平台面上,当台面沿铅垂方向作频率为5 Hz的简谐振动时,要使物体不跳离平台,对台面的振幅应有何限制? 解:物体与桌面保持相同的运动,知桌面的运动为 , x=A sin10πt; 由物体的受力分析,N = 0(极限状态) 物体不跳离平台的条件为:; 既有, , 由题意可知Hz,得到,mm。 1-2有一作简谐振动的物体,它通过距离平衡位置为cm及cm 时的速度分别为20 cm/s及cm/s,求其振动周期、振幅和最大速度。解: 设该简谐振动的方程为;二式平方和为 将数据代入上式: ; 联立求解得 A=10.69cm;1/s;T=s 当时,取最大,即: 得:

答:振动周期为2.964s;振幅为10.69cm;最大速度为22.63m/s。 1-3 一个机器内某零件的振动规律为 ,x的单位是cm,1/s 。这个振 动是否为简谐振动?试求它的振幅、最大速度及最大加速度,并用旋转矢量表示这三者之间的关系。 解: 振幅A=0.583 最大速度 最大加速度 1-4某仪器的振动规律为。此振动是否为简谐振动?试用x- t坐标画出运动图。 解:因为ω1=ωω2=3ω,ω1≠ω2.又因为T1=2π/ω T2=2π/3ω,所以,合成运动为周期为T=2π/3ω的非简谐运动。两个不同频率的简谐振动合成不是简谐振动,当频率比为有理数时,可合称为周期振动,合成振动的周期是两个简谐振动周期的最小公倍数。 1-5已知以复数表示的两个简谐振动分别为和,试求它们的合成的复数表示式,并写出其实部与虚部。 解:两简谐振动分别为,, 则:=3cos5t+3isin5t =5cos(5t+)+3isin(5t+) 或; 其合成振幅为:=

悬臂梁各阶固有频率及主振形的测定试验

实验五 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的各阶固有频率。 2、熟悉和了解悬臂梁振动的规律和特点。 3、观察和测试悬臂梁振动的各阶主振型。分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、基本原理 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有园频率为 A EI i i n 2 ρβω= (5-2) 对应i 阶固有频率的主振型函数为 ) ,3,2,1() sin (sin cos cos )( =-++- -=i x x sh L L sh L L ch x x ch x X i i i i i i i i i ββββββββ (5-3) 对于(5-1)式中的β,不能用解析法求解,用数值计算方法求得的一阶至四阶固有园频率和主振型的结果列于表5-1。 各阶固有园频率之比 1f ﹕1f ﹕1f ﹕1f ﹕… = 1﹕6.269﹕17.56﹕34.41﹕… (5-4) y A B x h L b 图5-1 悬臂梁振动模型 表(5-1)给出了悬臂梁自由振动时i =1~4阶固有园频率及其相应主振型函数。除了悬臂梁固定端点边界位移始终为零外,对于二阶以上主振型而言,梁上还存在一些点在振动过程中位移始终为零的振型节点。i 阶振型节点个数等于i -1,即振型节点个数比其振型的阶数小1。 实验测试对象为矩形截面悬臂梁(见图5-2所示)。在实验测试时,给梁体施加一个大小适当的激扰作用力,其频率正好等于梁体的某阶固有频率,则梁体便会产生共振,这时梁体变形即为该阶固有频率所对应的主振型,其它各阶振型的影响很小可忽略不计。用共振法确定悬臂梁的各阶固有频率及振型,我们只要连续调节激扰力,当悬臂梁出现某阶主振型且振动幅值最大即悬臂梁产生共振时,这时激扰力的频率就可以认为是悬臂梁的这一阶振动的固有频率。在工程实践中,最重要是确定振动系统最低的几阶固有频率及其主振型。本实验主要运用共振法测定悬臂梁一、二、三、四阶固有频率及其相应的主振型。

学习模态分析要掌握的的知识

模态分析中的几个基本概念 一、模态定义:物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示。 模态分析一般是在振动领域应用,每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性: 一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型; 二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。 一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。 二、模态分析:模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。 有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。 实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。 一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。 三、振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 四、模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT及振型文件Jobnmae.MODE中,输出内容中也可以包含缩减

振动力学试验

Q SINOCERA? 振动力学实验系统 YE6251 实 验 指 导 书 (参考) 江苏联能电子技术有限公司

一、 软件安装 运行光盘中YE6251控制软件目录中的setup.exe即可完成控制软件的安装。 用USB接口线连接计算机的USB口与调理器的USB口,打开调理器电源,这时计算机会提示找到新设备,并需要安装驱动程序,这时请指定驱动程序的安装路径为上面安装程序的目录下 的AQU采集器驱动\Win98(或Win2k或WinXP) 二、软件操作 1、登录输入 2、试验项目选择 选择当前的试验项目,包括系统名称、试验项目名称。下面以“简支梁系统”,用“冲击激励法测量模态参数”以例说明具体使用过程。 殆普黑杓曲樹晰率是5抽左右"廉憫率辭2KX- G1阶超舷刮fi为 ^6. 3Hz, 1^7. F“4拋.孚襲査违擇” T .诜释谿也羹12力“简变棄"?如黑嗟 算孝心魏力沙? :■;单戸激唏,君也响脚方式」也可耒用君戌iSW0 .单点 嚥]J?的方 弍.刖壘5点可U垒舞在第疣郵肌氣 应翳唏亶塹氨艮胃朋分式耐*希朗I 棚的帧加1.响应为1 > 选择试验项目后,系统会自动显示本实验的实验向导,这样实验时可按照上面的实验向导的 步骤进行实验。 3、通道参数设置 当选择一个试验项目时,系统已经给出一个大致合理的通道设置,当然用户也可进行部分修 改。通道参数包括测点号设置,通道是否测量设置,工程单位设置,以及满量程设置(也即通 道增益选择),本试验实际是用第5通道测力锤信号,用第6通道测量加速度信号? 通道号砌点号|测星选择工程单询星程 mV5000. 00 2 2 | X mV EOOD.OD 3 3 X mV§000. 00 4 4 J X Ulh□000 00 S fl 丁/N5Q0. 00 6 1. 1450 0D 77[X-即/ M250D 00 “测点号”是描述测点位置的信息。 -般试验与通道号相对应,如通道号1,对应的测点号为1,通道号2对应的测点为2。 I为至弊苛困在iliS蜀语幷动前相 竝歪 2训星連曳扣速度旅芒 1冃盘度其-捕云世星匡商鉢 M^M 字生登瞌输 陕验數菇越径M钿 云

固体力学作业薄板的振动的固有频率与振型

固体力学作业 薄板的振动的固有频率与振型 1、 问题 矩形薄板的参数如下 33150,100,5,210,0.3,7.9310/a mm b mm h mm E GPa v kg m ρ======? 求矩形薄板在 (1) 四边简支(2)四边固支 条件下的固有频率和振型 2、薄板振动微分方程 薄板是满足一定假设的理想力学模型,一般根据实际的尺寸和受力特点来将某个实际问题简化为薄板模型,如厚度要比长、宽的尺寸小得的结构就可以采用薄板模型。薄板在上下表面之间存在一个对称平面,此平面称为中面,且假定: (1)板的材料由各向同性弹性材料组成; (2)振动时薄板的挠度要比它的厚度要小; (3)自由面上的应力为零; (4)原来与中面正交的横截面在变形后始终保持正交,即薄板在变形前中面的法线在变形后仍为中面的法线。 为了建立应力、应变和位移之间的关系,取空间直角坐标Oxyz ,且坐标原点及xOy 坐标面皆放在板变形前的中面位置上,如图 1所示。设板上任意一点a 的位置,将由变形前的坐标x 、y 、z 来确定。 图 1 薄板模型 根据假定(2),板的横向变形和面内变形u 、v 是相互独立的。为此,其弯曲变形可由中面上各点的横向位移(,,)w x y t 所决定。根据假定(4),剪切应变分量为零。由薄板经典理论,可以求得板上任意一点(,,)a x y z 沿,,x y z 三个方向的位移分量,,a a a u v w 的表达式分别为

() a a a w u z x w v z y w w ?=-??=-?=+ 高阶小量 (1.1) 根据应变与位移的几何关系可以求出各点的三个主要是应变分量为 22 22 22a x a y a a xy u w z x x v w z y y u v w z y x x y εεγ??==-????==-?????=+=-???? (1.2) 胡克定律,从而获得相对应的三个主要应力分量为: 2222 222222222()()11()()111x x y y y x xy xy E Ez w w x y E Ez w w y x Ez w G x y σεμεμμμσεμεμμμτγμ??=+=-+--????=+=-+--???==- +?? (1.3) 现画薄板微元的受力图如图 2所示。 图 2所示中x xy x y yx y M M Q M M Q 、和、、和分别为OB 面、OC 面上所受到的单位长度的弯矩、扭矩和横切剪力。弯矩和扭矩都用沿其轴的双剪头表示。M x 、M y 是由正应力σx 、 σx 引起的合力矩。扭矩是由剪切力τxy 引起的合力矩。 图 2 薄板应力示意图 p (x ,y ,t )=P (x ,y )f (t )为具有变量分离形式的外载荷集度,沿z 轴方向。应用动静法计算时, 沿z 轴负方向有一虚加惯性力22w h dxdy t ρ??,根据0z F =∑,0y M =∑,0y M =∑则 有

相关文档
最新文档