二面角求法及经典题型归纳

二面角求法及经典题型归纳
二面角求法及经典题型归纳

二面角求法归纳

18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。

以下是求二面角的五种方法总结,及题形归纳。 定义法:

从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面

ABCD

,AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°

(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略

解(II ):利用二面角的定义。在等边三角形ABM 中过点B

作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,

连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,

∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角. ∵2=

SM ,则2

2

=

GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,0

60=∠ABM ∴△ABM 是等边三角形,∴3=

BF

在△GAB 中,26=

AG ,2=AB ,0

90=∠GAB ,∴2

11423=+=BG 366

23

2

22211

32

12cos 222-=-=??-

+=?-+=∠FB GF BG FB GF BFG F

G

F

G

∴二面角S AM B --的大小为)3

6arccos(-

例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,

AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .

(Ⅰ)证明:SE=2EB ;

(Ⅱ)求二面角A-DE-C 的大小 .

(Ⅱ) 由1,2,,

SA AB SE EB AB SA ====⊥知

1,AD=1AE ==又.

故ADE ?为等腰三角形.

取ED 中点

F,连

AF

,则

,

AF DE AF ⊥==

. 连接FG ,则//,FG EC FG DE ⊥.

所以,AFG ∠是二面角A DE C --的平面角.

连接AG,A G=,3

FG =

=

, 2221

cos 22

AF FG AG AFG AF FG +-∠==-,

所以,二面角A DE C --的大小为120°.

例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,2

43

AE EB AF FD ===

=.沿直线EF 将 AEF V 翻折成'A EF V ,使平面'A EF BEF ⊥平面.

(Ⅰ)求二面角'

A FD C --的余弦值;

(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与

'A 重合,求线段FM 的长.

练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,

ABC

60

(Ⅰ)证明:AE⊥PD;

(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角

的正切值为

E—AF—C的余弦值.

2

分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平

面APD,使命题获证,而第2题,则首先必须在找到最大

角正切值有关的线段计算出各线段的长度之后,考虑到运

用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二

面角的余弦值。(答案:二面角的余弦值为

5

15

) 二、三垂线法

三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.通常当点P 在一个半平面上则通常用三垂线定理法求二面角的大小。

本定理亦提供了另一种添辅助线的一般规律。如(例2)过二面角B-FC 1-C 中半平面BFC 上的一已知点B 作另一半平面FC 1C 的垂线,得垂足O ;再过该垂足O 作棱FC 1的垂线,得垂足P ,连结起点与终点得斜线段PB ,便形成了三垂线定理的基本构图(斜线PB 、垂线BO 、射影OP )。再解直角三角形求二面角的度数。

例1.(2009山东卷理) 如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,

AB//CD ,AB=4, BC=CD=2, AA 1=2, E 、E 1、F 分别是棱AD 、AA 1、AB 的中点。 (1) 证明:直线EE 1//平面FCC 1; (2) 求二面角B-FC 1-C 的余弦值。

证(1)略

解(2)因为AB=4, BC=CD=2, 、F 是棱AB 的中点,所以BF=BC=CF,△BCF 为正三角形,取CF 的中点O,则OB ⊥CF,又因为直四棱柱ABCD-A 1B 1C 1D 1中,CC 1⊥平面ABCD,所以CC 1⊥BO,所以OB ⊥平面CC 1F,过O 在平面CC 1F 内作OP ⊥C 1F,垂足为P,连接BP,则∠OPB 为二面角B-FC 1-C 的一个平面角, 在△BCF 为正三角形中

,OB =在Rt △CC 1F 中, △OPF ∽△CC 1F,∵

11OP OF CC C F =

∴22OP ==

, 在Rt △OPF 中

,2BP ===

,cos 2

OP OPB BP ∠===,所以二面角B-FC 1-C

的余弦值为

7

. 例2(2010安徽卷理18题)(本小题满分13分)

E

A

B

C

F

E 1

A 1

B 1

C 1

D 1

D

F 1

O

P

E

A

B C

F

E 1

A 1

B 1

C 1

D 1

D

如图,在多面体ABCDEF 中,四边形ABCD 是正方形,

EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC =90°,BF =FC ,H

为BC 的中点.

(Ⅰ)求证:FH ∥平面EDB ; (Ⅱ)求证:AC ⊥平面EDB ;

(Ⅲ)求二面角B —DE —C 的大小.(1、过F 作DE的

垂线,交DE的延长线于K,则∠BKF即为所求。2、射影面积法。3、向量法。)

例3(2010全国II 理,,19题,12分)如图,直三棱柱111ABC A B C -中,AC BC =,

1AA AB =,

D 为1BB 的中点,

E 为1AB 上的一点,13AE EB =.

(Ⅰ)证明:DE 为异面直线1AB 与CD 的公垂线; (Ⅱ)设异面直线1AB 与CD 的夹角为45°,求二面角

111A AC B --的大小.(因为1//DG AB ,故C D G ∠为异面

直线1AB 与CD 的夹角,45CDG ∠=.设2AB =,则

1,,,3AB DG CG AC =作111B H AC ⊥,

H 为垂足.因为底面111A B C ⊥面11AAC C ,故1B H ⊥面11AAC C ,又作1HK AC ⊥,K 为垂足,连接1B K ,由三垂线定理,得11B K AC ⊥,因此1B KH ∠为二面角111A AC B --的平面角.) 例4(2010湖北理18题,12分)如图, 在四面体ABOC 中,O C ⊥OA, OC ⊥OB, ∠AOB=120°,且OA=OB=OC=1.

(Ⅰ) 设P 为AC 的中点.证明:在AB 上存在一点Q,使PQ ⊥OA,并计算=AB

AQ

的值; (Ⅱ) 求二面角O-AC-B 的平面角的余弦值.

(II )解连结PN ,PO.

由OC ⊥OA ,OC ⊥OB 知,OC ⊥平面OAB , 又?ON 平面OAB ,∴OC ⊥ON , 又由ON ⊥OA 知:ON ⊥平面AOC , ∴OP 是NP 在平面AOC 内的射影, 在等腰COA Rt ?中,P 为AC 的中点, .OP AC ⊥∴

根据三垂线定理,知:AC ⊥NP.

OPN ∠∴为二面角O —AC —B 的平面角,

在等腰COA Rt ?中,OC=OA=1,2

2=

∴OP , 在,3

330tan ,=

?=?OA ON AON Rt 中 .

5156

3022

cos ,6

30,22===

∠∴=

+=?∴PN

PO

OPN ON OP PN PON Rt 中在

例4(2010重庆市理,19题12分)如题(19)图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥底面ABCD ,

,点E 是棱PB 的中点。 (I ) 求直线AD 与平面PBC 的距离;

(II )

,求二面角A-EC-D 的平面角的余弦值。

解(Ⅰ)在矩形ABCD 中,//AD BC ,从而//PBC AD 平面,故直线AD 与平面PBC 的距离为点A 到平面PBC 的距离.

因ABCD,PA AB.PA ⊥⊥底面得由PA AB =,故PAB ?为等腰直角三角形,而点E 是棱PB 的中点,所以AE PB ⊥.

又在矩形ABCD 中,BC AB ⊥,而AB 是PB 在底面ABCD 内的射影,由三垂线定理得

BC PB ⊥,从而B C P ⊥平面,

因1

PBC,AE CE,FG CE,FG//AE 2

AE ⊥⊥⊥平面故又知

,FG=2从而,且C 点为AC 的中点.

连接,DG

则在13

.22

Rt ADC ?中,DG=

所以222cos 2DF FG DG DFG DF FG +-=

= 练习(2008天津)如图,在四棱锥ABCD P -中,底面ABCD 是矩形.

已知

60,22,2,2,3=∠====PAB PD PA AD AB .

(Ⅰ)证明⊥AD 平面PAB ;

(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.

分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD ⊥平面PAB 后,容易发现平面PAB ⊥平面ABCD ,点P 就是二面角P-BD-A 的半平面上的一个点,于是可过点P

作棱BD 的垂线,再作平面ABCD 的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角A BD P --的大小为4

39

arctan

) 三.补棱法

本法是针对在解构成二面角的两个半平面没有明确交线的求二面角题目时,要将两平面的图形补充完整,使之有明确的交线(称为补棱),然后借助前述的定义法与三垂线法解题。即当二平面没有明确的交线时,一般用补棱法解决

例1(2008湖南)如图所示,四棱锥P -ABCD 的底面ABCD 是边长为

1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.

(Ⅰ)证明:平面PBE ⊥平面P AB ;

(Ⅱ)求平面P AD 和平面PBE 所成二面角(锐角)的大小.

分析:本题的平面P AD 和平面PBE 没有明确的交线,依本法显然要补充完整(延长AD 、BE 相交于点F ,连结PF .)再在完整图形中的PF .上找一个适合的点形成二面角的平面角解之。(Ⅰ)证略 解: (Ⅱ)延长AD 、BE 相交于点F ,连结PF .

过点A 作AH ⊥PB 于H ,由(Ⅰ)知

平面PBE ⊥平面P AB ,所以AH ⊥平面PBE . 在Rt △ABF 中,因为∠BAF =60°, 所以,AF =2AB =2=AP .

在等腰Rt △P AF 中,取PF 的中点G ,连接AG . 则AG ⊥PF .连结HG ,由三垂线定理的逆定理得,

PF ⊥HG .所以∠AGH 是平面P AD 和平面PBE 所成二面角的平面角(锐角).

A

B

C

E

D P F

G

H

A

B

C

E

D

P

在等腰Rt△P AF中,

2

AG PA

==

在Rt△P AB中,

5

AP AB

AH

PB

====

所以,在Rt△AHG中,

sin

AH

AGH

AG

∠===

故平面P AD和平面PBE

所成二面角(锐角)的大小是arcsin

例2. (2010广东省卷理18题,14分)如图5,AEC是半径为a的半圆,AC为直径,点E为AC的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC=D

F=,

(1)证明:EB FD

⊥;

(2)已知点,Q R为线段,

FE EB上的点,

2

3

FQ FE

=,

2

3

FR FB

=,求平面BED与平面RQD所成的两面角的正弦值.

(2)解:过D作HD QR

∥.

22

FQ=FE,FR=FB

33

QR EB

∴∥.

HD EB

∴∥.

又D BED

RQD

∈平面平面,

例3(2010江西省理,20题,12分)如图,BCD ?与MCD ?都是边长为2的正三角形,

平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =

(1)求点A 到平面MBC 的距离;

(2)求平面ACM 与平面BCD 所成二面角的正弦值.

解(2)延长AM 、BO 相交于E ,连CE 、DE ,CE 是平面ACM 与平面BCD 的交线.

由(1)知,O 是BE 的中点,则四边形BCED 是棱形.

作BF EC ⊥于F ,连AF ,则,AF EC AFB ⊥∠就是二面角A EC B --的平面角,设为θ.

因为120BCE ∠=,所以60BCF ∠=.

2sin 603

BF ==,

tan 2,sin 5

AB BF θθ=

==.

练习:已知斜三棱柱ABC —A 1B 1C 1的棱长都是a ,侧棱与底面成600的角,侧面BCC 1B 1⊥底面ABC 。

(1)求证:AC 1⊥BC ;

(2)求平面AB 1C 1与平面 ABC 所成的二面角(锐角)的大小。

提示:本题需要补棱,可过A 点作CB 的平行线L (答案:所成的二面角为45O

) 四、射影面积法(cos s S

q =

射影)

凡二面角的图形中含有可求原图形面积和该图形在另一个半平面上的射影图形面积的都可利用射影面积公式(cos 斜

射S S =

θ)求出二面角的大小。

例1(2008北京理)如图,在三棱锥P ABC -中,

2AC BC ==,90ACB ∠=,

AP BP AB ==,PC AC ⊥. (Ⅰ)求证:PC AB ⊥;

(Ⅱ)求二面角B AP C --的大小;

分析:本题要求二面角B —AP —C 的大小,如果利用射影面积法解题,不难想到在平面ABP 与平面ACP 中建立一对原图形与射影图形并分别求出S 原与S 射 于是得到下面解法。 解:(Ⅰ)证略

(Ⅱ)AC BC =,AP BP =,APC BPC ∴△≌△.

又PC AC ⊥,PC BC ∴⊥. 又90ACB ∠=,即AC BC ⊥,且AC

PC C =,

BC ∴⊥平面PAC .

取AP 中点E .连结BE CE ,. AB BP =,BE AP ∴⊥.

EC 是BE 在平面PAC 内的射影, CE AP ∴⊥.

∴△ACE 是△ABE 在平面ACP 内的射影, 于是可求得:

2222=+===CB AC AP BP AB ,622=-=AE AB BE ,

2

==EC AE 则

12221

21=?=?==?CE AE S S ACE 射,

3622

1

21=?=?==?EB AE S S ABE 原

设二面角B AP C --的大小为?

,则

A

C

B

E

P A

C

B

P

A 1

D 1

B 1

C 1 E

D B

C

A

图5 A

C

B

B 1

C 1

A 1 L

3

33

1cos =

=

=

射S S ? ∴二面角B AP C --的大小为3

3arccos

=? 练习: 如图5,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求平面AB 1E 和底面A 1B 1C 1D 1所成锐角的余弦值.

分析 平面AB 1E 与底面A 1B 1C 1D 1交线即二面角的棱没有给出,要找到二面角的平面角,则必须先作两个平面的交线,这给解题带来一定的难度。考虑到三角形AB 1E 在平面A 1B 1C 1D 1上的射影是三角形A 1B 1C 1,从而求得两个三角形的面积即可求得二面角的大小。

(答案:所求二面角的余弦值为cos θ=

3

2). 五、向量法

向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进行向量计算解题。 例1(2009天津卷理)如图,在五面体ABCDEF 中,FA ⊥平面ABCD, AD//BC//FE ,AB ⊥AD ,M 为EC 的中点,AF=AB=BC=FE=

1

2

AD (I) 求异面直线BF 与DE 所成的角的大小; (II) 证明平面AMD ⊥平面CDE ; 求二面角A-CD-E 的余弦值。

现在我们用向量法解答:如图所示,建立空间直角坐标系,

以点A 为坐标原点。设,1=AB 依题意得(),,,001B (),,,011C (),,,020D (),,,110E (),,,100F .21121M ???

?

?,,

(I )(),,,解:101B -= (),

,,110-=

.2

1

221

00=?++=

=

于是

所以异面直线B F 与DE 所成的角的大小为0

60.

(II )证明:,,,由??

? ??=21121AM (),,,101CE -= ()0AM CE 020AD =?=,可得,,, .AMD CE A AD AM .AD CE AM CE .0平面,故又,因此,⊥=⊥⊥=?

.CDE AMD CDE CE 平面,所以平面平面而⊥?

(III )?????=?=?=.

0D 0)(CDE u CE u z y x u ,

,则,,的法向量为解:设平面

.111(1.00),,,可得令,

于是==?

??=+-=+-u x z y z x

又由题设,平面ACD 的一个法向量为).100(,,=v

例2(2010北京卷理,16题14分) 如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,CE ⊥AC,EF ∥

,CE=EF=1. (Ⅰ)求证:AF ∥平面BDE ; (Ⅱ)求证:CF ⊥平面BDE ;

(Ⅲ)求二面角A-BE-D 的大小。

例3(2010福建卷理,18题,13分)

如图,圆柱1OO 内有一个三棱柱111ABC-A B C ,三棱柱的底面为圆柱底面的内接三角形,且AB 是圆O 直径. (Ⅰ)证明:平面11A ACC ⊥平面11B BCC ;

(Ⅱ)设AB=1AA ,在圆柱1OO 内随机选取一点,记该点取自于三棱柱111ABC-A B C 内的概率为p .

(i )当点C 在圆周上运动时,求p 的最大值;

(ii )记平面11A ACC 与平面1B OC 所成的角为θ(0<90)θ≤,当p 取最大值时,求cos θ的值.

解(Ⅰ)

1A A ⊥平面ABC ,BC ABC ?平面,1A A BC ∴⊥.

AB 是圆O 的直径,BC AC ∴⊥. 又111,AC

A A A BC A ACC =∴⊥平面.

而11BC B BCC ?平面,所以平面1111A ACC B BCC ⊥平面.

(Ⅱ)(i )设圆柱的底面半径为r ,则12,AB AA r ==故三棱柱

111ABC A B C -的体积11

22

V AC BC r AC BC r =

??=??.

2

2

2

2

4,AC BC AB r +==22

222

AC BC AC BC r +∴?≤=,当且仅当

AC BC ==时等号成立.

从而,3

12V r ≤.而圆柱的体积23

22V r r r ππ=?=,故313212V r p V r ππ

=≤=,当且仅

当AC BC ==,即OC AB ⊥时等号成立.所以,p 的最大值等于

. (ii )由(i )可知,p 取最大值时,OC AB ⊥.于是,以O 为坐标原点,建立空间直角坐标系O xyz -(如图),则1(,0,0),(0,,0),(0,,2)C r B r B r r .

11BC A ACC ⊥平面,

(,,0)BC r r ∴=-是平面11A ACC 的一个法向量.

例4(2010海南理,18题,12分)如图,己知四棱锥P-ABCD 的底面为等腰梯形,AB ∥CD,AC ⊥BD 垂足为H,PH 是四棱锥的高,E 为AD 中点. (Ⅰ)证明:PE ⊥BC

(Ⅱ)若APB ∠=ADB ∠=60°,求直线PA 与平面PEH 所成角的正弦值.

解:以H 为原点,HA ,HB ,HP 分别为,,x y z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则(1,0,0),(0,1,0)A B .

(Ⅰ)设(,0,0),(0,0,)(0,0)C m P n m n <>,

则1(0,,0),(,,0)22m

D m

E . 可得1(,,),(,1,0)22

m

PE n BC m =-=-.

因为0022

m m

PE BC ?=-+=,

所以PE BC ⊥.

(Ⅱ)由已知条件可得1m n ==,故(C ,(0,D ,

1(,,0),(0,0,1)26

E P -

.

例5(2010辽宁省理,19题,12分)已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA=AC=1

2

AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点.

(Ⅰ)证明:CM ⊥SN ;

(Ⅱ)求SN 与平面CMN 所成角的大小.

证明:设PA=1,以A 为原点,射线AB ,AC ,AP 分别为z y x ,,轴正向建立空间直角坐标

系如图,则)0,2

1,1(),0,0,21(),21,0,1(),0,0,2(),0,1,0(),1,0,0(S N M B C P (Ⅰ))0,2

1

,21(),21,1,1(--=-=. 因为002

1

21=++-=?,

所以CM SN ⊥.

(Ⅱ))0,1,2

1

(-=,

设),,(z y x a =为平面CMN 的一个法向量,

则???????

=+-=+-.02

1,021y x z y x 令2=x ,

得)2,1,2(-=a .

因为1|cos ,|2a SN -=

=,

所以SN 与平面CMN 所成角为45°.

练习(2008湖北)如图,在直三棱柱111ABC A B C -中,平面ABC ⊥侧面11A ABB . (Ⅰ)求证:AB BC ⊥;

(Ⅱ)若直线AC 与平面1A BC 所成的角为θ,二面角

1A BC A --的大小为?,试判断θ与?的大小关系,并

予以证明.

分析:由已知条件可知:平面ABB 1 A 1⊥平面BC C 1 B 1⊥平面ABC 于是很容易想到以B 点为空间坐标原点建立坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。

(答案:2

2

arcsin

c

a a +=φ)

总之,上述五种二面角求法中,前三种方法可以说是三种增添辅助线的一般规律,后两种是两种不同的解题技巧,考生可选择使用。

高中数学二面角求法及经典题型归纳

αβa O A B 立体几何二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这 两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直, 这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A --的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

整理运筹学02375计算题经典题型全攻略

课程名称运筹学 整理表 姓名: 职业工种: 申请级别: 受理机构: 填报日期: A4打印/ 修订/ 内容可编辑

课程名称:运筹学 科目代码:410 适用专业:交通运输规划与管理 参考书目:《管理运筹学》大连理工大学出版社2006.6 《运筹学》(修订版)清华大学出版社 2003.6考试时间:3小时 考试方式:笔试 总分:150 考试对象:硕士研究生入学考试 题目类型及所占比例:计算题 60%左右,应用题 40%左右 考试范围: 1、线线规划与单纯形法 1)线性规划问题和数学模型 2)线性规划图解法 3)线性规划解的概念 4)单纯形法及人工变量单纯形法 2、对偶理论与灵敏度分析 1)线性规划问题的对偶及其变换 2)线性规划的对偶定理

3)对偶单纯形法 4)线性规划的灵敏度分析 3、运输问题 1)运输问题的数学模型的特点及其求解 2)不平衡的运输问题的求解 3)运输问题的应用 4、整数规划 1)整数规划问题数学模型的特点及其求解思路 2)整数规划问题的求解方法 3)指派问题及其求解方法 5、动态规划 1)动态规划模型的最优性原理及其算法基本思路 2)离散型动态规划模型特点及其求解 3)连续型动态规划模型特点及其求解 6、图与网络分析 1)图和网络的基本概念 2)树图和最小生成树 3)最短路径问题的求解 4)网络最大流、最小截集的求解 7、随机服务理论概述 1)随机服务系统的基本组成 2)指数分布定义和特点

3)泊松输入定义和特点 4)生灭过程的概念及其稳态解 5)泊松输入--指数服务排队系统特点及其计算 6)排队系统的优化设计 整理丨尼克 本文档信息来自于网络,如您发现内容不准确或不完善,欢迎您联系我修正;如您发现内容涉嫌侵权,请与我们联系,我们将按照相关法律规定及时处理。

(完整版)二面角求解方法

二面角的作与求 求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。下面就对求二面角的方法总结如下: 1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。 2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。 3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。 4、投影法:利用s 投影面 =s 被投影面 θcos 这个公式对于斜面三角形,任意多边形都成立, 是求二面角的好方法。尤其对无棱问题 5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos 例1:若p 是ABC ?所在平面外一点,而PBC ?和ABC ?都是边长为2的正三角形, PA=6,求二面角P-BC-A 的大小。 分析:由于这两个三角形是全等的三角形, 故采用定义法 解:取BC 的中点E ,连接AE 、PE Θ AC=AB ,PB=PC ∴ AE ⊥ BC ,PE ⊥BC ∴PEA ∠为二面角 P-BC-A 的平面角 在PAE ?中AE=PE=3,PA=6 P C B A E

∴PEA ∠=900 ∴二面角P-BC-A 的平面角为900。 例2:已知ABC ?是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。 [思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。 解1:(三垂线定理法) 取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF Θ⊥PA 平面ABC ,PA ?平面PAC ∴平面 PAC ⊥平面ABC, 平面PAC I 平面ABC=AC ∴BE ⊥平面 PAC 由三垂线定理知BF ⊥PC ∴BFE ∠为二面角A-PC-B 的平面角 设PA=1,E 为AC 的中点,BE= 23,EF=4 2 ∴tan BFE ∠= 6=EF BE ∴BFE ∠=arctan 6 解2:(三垂线定理法) 取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FM ΘAB=AC,PB=PC ∴ AE ⊥BC,PE ⊥BC ∴ BC ⊥平面PAE,BC ?平面PBC ∴ 平面PAE ⊥平面PBC, 平面PAE I 平面PBC=PE 由三垂线定理知AM ⊥PC P C B A E F M E P C B A F 图1 图2

(完整版)数学归纳法经典例题详解

例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ. 请读者分析下面的证法: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 那么当n =k +1时,有: ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ????????? ??+-++??? ??+--++??? ??-+??? ??-+??? ? ?-=3211211211217151513131121k k k k Λ 322221321121++?=??? ??+-= k k k ()1 121321+++=++=k k k k 这就是说,当n =k +1时,等式亦成立. 由①、②可知,对一切自然数n 等式成立. 评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n =k 这一步,当n =k +1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求. 正确方法是:当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k

()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 例2.是否存在一个等差数列{a n },使得对任何自然数n ,等式: a 1+2a 2+3a 3+…+na n =n (n +1)(n +2) 都成立,并证明你的结论. 分析:采用由特殊到一般的思维方法,先令n =1,2,3时找出来{a n },然后再证明一般性. 解:将n =1,2,3分别代入等式得方程组. ?????=++=+=603224 26321 211a a a a a a , 解得a 1=6,a 2=9,a 3=12,则d =3. 故存在一个等差数列a n =3n +3,当n =1,2,3时,已知等式成立. 下面用数学归纳法证明存在一个等差数列a n =3n +3,对大于3的自然数,等式 a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 因为起始值已证,可证第二步骤. 假设n =k 时,等式成立,即 a 1+2a 2+3a 3+…+ka k =k (k +1)(k +2) 那么当n =k +1时, a 1+2a 2+3a 3+…+ka k +(k +1)a k +1 = k (k +1)(k +2)+ (k +1)[3(k +1)+3] =(k +1)(k 2+2k +3k +6) =(k +1)(k +2)(k +3) =(k +1)[(k +1)+1][(k +1)+2] 这就是说,当n =k +1时,也存在一个等差数列a n =3n +3使a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)成立. 综合上述,可知存在一个等差数列a n =3n +3,对任何自然数n ,等式a 1+2a 2+3a 3+…+na n =n (n +1)(n +2)都成立. 例3.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2.

二面角求法及经典题型归纳

- 1 - αβa O A B 二面角求法 一:知识准备 1、二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面. 2、二面角的平面角的概念:平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。 3、二面角的大小范围:[0°,180°] 4、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直 5、平面的法向量:直线L 垂直平面α,取直线L 的方向向量,则这个方向向量叫做平面α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量) 6、二面角做法:做二面角的平面角主要有3种方法: (1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2 条射线,这2条所夹 的角; (2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角; (3)、三垂线法:过一个半平面内一点(记为A )做另一个半平面的一条垂线,过这个垂足(记为B )再做棱的垂线,记垂足为C ,连接AC ,则∠ACB 即为该二面角的平面角。 7、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系? 二:二面角的基本求法及练习 1、定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F ); 在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1.在正方体ABCD —A 1B 1C 1D 1中,求 (1)二面角11A B C A 的大小; (2)平面11A DC 与平面11ADD A 所成角的正切值。 C1

《运筹学》复习题

运筹学-学习指南 一、名词解释 1松弛变量 为将线性规划问题的数学模型化为标准型而加入的变量。 2可行域 满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域。 3人工变量 亦称人造变量.求解线性规划问题时人为加入的变量。用单纯形法求解线性规划问题,都是在具有初始可行基的条件下进行的,但约束方程组的系数矩阵A中所含的单位向量常常不足m个,此时可加入若干(至多m)个新变量,称这些新变量为人工变量。 4对偶理论 每一个线性规划问题都存在一个与其对偶的问题,在求出一个问题解的同时,也给出了另一个问题的解。研究线性规划中原始问题与对偶问题之间关系的理论 5灵敏度分析 研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法。在最优化方法中经常利用灵敏度分析来研究原始数据不准确或发生变化时最优解的稳定性。通过灵敏度分析还可以决定哪些参数对系统或模型有较大的影响。 6影子价格 反映资源配置状况的价格。影子价格是指在其他资源投入不变的情况下,每增加一单位的某种资源的投入所带来的追加收益。即影子价格等于资源投入的边际收益。只有在资源短缺的情况下,每增加一单位的投入才能带来收益的增加 7产销平衡运输 一种特殊的线性规划问题。产品的销售过程中,产销平衡是指工厂产品的产量等于市场上的销售量。 8西北角法 是运筹学中制定运输问题的初始调运方案(即初始基可行解)的基本方法之一。也就是从运价表的西北角位置开始,依次安排m个产地和n个销地之间的运输业务,从而得到一个初始调运方案的方法。 9最优性检验 检验当前调运方案是不是最优方案的过程。 10动态规划 解决多阶段决策过程优化问题的方法:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解 11状态转移方程 从阶段K到K+1的状态转移规律的表达式

推荐-二面角求法大全 精品 精品

二面角求法之面面观 求解二面角是立体几何中最基本、最重要的题型,也是各地高考中的“热点”问题,虽然对此可说是“千锤百炼”,但我们必须面对新的情境、新的变化,如何以基本方法的“不变”去应对题目中的“万变”就是我们研究的中心话题. 总的来说,求解二面角的大体步骤为:“作、证、求”.其中“作、证”是关键也是难点,“求”依靠的计算,也决不能忽视,否则因小失大,功亏一篑,也是十分遗憾之事. 1 定义法 即在二面角的棱上找一点,在二面角的两个面内分别作棱的射线即得二面角的平面角.定义法是“众法之源”,万变不离其宗,“树高千尺,叶落归根”,求二面角的一切方法盖源出定义这个“根”!. 例1 正方体ABCD-A 1B 1C 1D 1中,求二面角A-BD-C 1的正切值为 . 分析与略解:“小题”不必“大做”,由图1知所求二面角为 二面角C-BD-C 1的“补角”.教材中根本就没有“二面角的补角” 这个概念,但通过几何直观又很容易理解其意义,这就叫做直觉 思维,在立体几何中必须发展这种重要的思维能力.易知∠COC 1 是二面角C-BD-C 1的平面角,且tan ∠COC 1=2。 将题目略作变化,二面角A 1-BD-C 1的余弦值为 . 在图1中,∠A 1OC 1是二面角A 1-BD-C 1的平面角,设出正方体的棱长,用余弦定理易求得 cos ∠A 1OC 1= 3 1 例2(20XX 年江苏试题)如图2(1),在正三角形ABC 中,E 、F 、P 分别是AB 、AC 、BC 上的点,满足AE : EB=CF :FA=CP :BP=1:2.如图2(2),将△AEF 折起 到△A 1EF 的位置,使二面角A 1-EF-B 成直二面角,连 接A 1B 、A 1P. (Ⅰ)与(Ⅱ)略;(Ⅲ)求二面角B-A 1P-F 的余弦值。 分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.若取BP 的中点Q ,连接EQ ,则在正三角形ABC 中,很容易证得△BEQ ≌△ PEQ ≌△PEF ≌△AEF ,那么在图2(2)中,有A 1Q=A 1F.作FM ⊥A 1P 于M ,连接QH 、QF ,则易得△A 1QP ≌△A 1FP ,△QMP ≌△FMP ,所以∠PMQ=∠PMF=90o ,∠QMF 为二面角B-A 1P-F 的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A 1P=5,QM=FM=5 5 2,在△QMF 中,由余弦定理得cos ∠QMF=8 7- 。 练习:20XX 广东高考理18.(本小题满分13分) 如图5.在锥体P-ABCD 中,ABCD 是边长为1的菱形, 且∠DAB=60?,2PA PD == ,PB=2, E,F 分别是BC,PC 的中点. D B 1 图1 A O A 1 C B D 1 C 1 O 1 M A F A 1 Q P B C E C B P E F 图2(2) 图2(1) Q

二面角的求法(教师版)

五法求二面角 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,0 60=∠ABM ∴△ABM 是等边三角形,∴3= BF 在△GAB 中,2 6= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG ∴二面角S AM B --的大小为)3 6arccos(- F G

(完整版)数学归纳法经典例题及答案(2)

数学归纳法(2016.4.21) 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n Λ 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k Λ. 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k Λ ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++Λ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ Λ. 那么当n =k +1时, 11 1 31 21 1++++++k k Λ 1 1 1211 2+++=++

二面角的几种求法

二 面 角 的 几 种 求 法 河北省武安市第一中学 李春杰056300 摘要:在立体几何学习中,求二面角的大小是一个重点,更是一个难点。在每年的高考中,求二面角的大小,几乎成了必考的知识点,但学生却对这个知识点不太熟练,不知从何入手,更不能站在一个高度去求二面角。因而我们将一些求角的方法加以归纳、总结,从而更好更准确地解决问题。 关键词:二面角 平面角 三垂线定理 空间向量 在高考中,立体几何占的分值比较大,学生觉得在学习的过程中有一定的难度,他们觉得,立几中要记的定义,定理,方法和基本图形比较多,再加上还要运用空间想象和空间思维能力,因此,空间立体几何对他们来说,真的有一定的难度。我们将有关二面角大小的方法加以归纳,为的是在以往有关解答此类问题时能有一定的解题技巧、方法,以便得心应手地面对各种有关的题型。 一:二面角定义的回顾: 从一条直线出发的两个半平面所组成的图形就叫做二面角。二面角的大小是用二面角的平面角来衡量的。而二面角的平面角是指在二面角βα--l 的棱上任取一点O ,分别在两个半平面内作射线l BO l AO ⊥⊥, 1.利用定义作出二面角的平面角,并设法求出其大小。 例1、 如图,空间四边形ABCD 中,AB=BC=CD=DA=a ,对角线AC=a ,BD=.求二面角 A-BD-C 的大小。 解: 取BD 的中点为O ,分别连接AO 、CO

2220 0,,,,2 ,,, 9090AB AD BC CD AO BD CO BD AOC A BD C AB AD a BD AO BC CD a BD OC OA AC a OA OC AC AOC A BD C ==∴⊥⊥∴∠--===∴====∴===+=∴∠=-- 为二面角的平面角在AOC 中,即二面角为的二面角 2.三垂线定理(逆定理)法 由二面角的一个面上的斜线(或它的射影)与二面角的棱垂直,推得它位于二面角的另一的面上的射影(或斜线)也与二面角的棱垂直,从而确定二面角的平面角。 例2.如图,在底面为直角梯形的四棱锥P ABCD -中//AD BC ,,90?=∠ABC 平面⊥PA ABC , 32,2,4===AB AD PA ,BC =6。 (Ⅰ)求证:BD PAC ⊥平面;(Ⅱ)求二面角D BD P --的大小; 解:(Ⅰ)PA ⊥平面A B C D ,BD ?平面A B C D .BD PA ∴⊥. 又tan AD ABD AB = = tan BC BAC AB == 30ABD ∴= ∠,60BAC = ∠,90AEB ∴= ∠,即BD AC ⊥. 又PA AC A = .BD ∴⊥平面PAC . (Ⅱ)过E 作EF PC ⊥,垂足为F ,连接DF . DE ⊥平面PAC ,EF 是DF 在平面PAC 上的射影,由三垂线定理知PC DF ⊥, EFD ∴∠为二面角A PC D --的平面角. 又9030DAC BAC =-= ∠∠, sin 1DE AD DAC ∴==, sin AE AB ABE == 又AC = EC ∴=8PC =. A E D P C B F

数学归纳法典型例习题

欢迎阅读数学归纳法典型例题 一. 教学内容: 高三复习专题:数学归纳法 二. 教学目的 掌握数学归纳法的原理及应用 三. 教学重点、难点 四. ??? ??? (1 ??? (2()时命题成立,证明当时命题也成立。??? 开始的所有正整数 ??? 即只 称为数学归纳法,这两步各司其职,缺一不可,特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性,如果没有第一步,而仅有第二步成立,命题也可能是假命题。 【要点解析】 ? 1、用数学归纳法证明有关问题的关键在第二步,即n=k+1时为什么成立,n=k+1时成立是利用假设n=k时成立,根据有关的定理、定义、公式、性质等数学结论推证出n=k+1时成立,而不是直接代入,否则n=k+1时也成假设了,命题并没有得到证明。 ??? 用数学归纳法可证明有关的正整数问题,但并不是所有的正整数问题都是用数学归纳法证明的,学习时要具体问题具体分析。

? 2、运用数学归纳法时易犯的错误 ??? (1)对项数估算的错误,特别是寻找n=k与n=k+1的关系时,项数发生什么变化被弄错。 ??? (2)没有利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就通不过去了。 ??? (3)关键步骤含糊不清,“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”,是数学归纳法的关键一步,也是证明问题最重要的环节,对推导的过程要把步骤写完整,注意证明过程的严谨性、规范性。 ? 例1. 时,。 ,右边,左边 时等式成立,即有,则当时, 由①,②可知,对一切等式都成立。 的取值是否有关,由到时 (2 到 本题证明时若利用数列求和中的拆项相消法,即 ,则这不是归纳假设,这是套用数学归纳法的一种伪证。 (3)在步骤②的证明过程中,突出了两个凑字,一“凑”假设,二“凑”结论,关键是明确 时证明的目标,充分考虑由到时,命题形式之间的区别和联系。

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

运筹学 参考书

参考书 1.《运筹学》(科学版精品课程立体化教材·管理学系列)(第2版),张伯生等编著,科学出版社,2012年; 2.《数据、模型与决策》(第13版),戴维·R·安德森/丹尼斯·J·斯威尼编著,于淼译,机械出版社,2012年; 3、《运筹学》(新体系经济管理系列教材),李成标,刘新卫主编,清华大学出版社,2012年; 4.《运筹学——优化模型与算法》,(美)拉丁(Rardin,R.L.) 著,电子工业出版社,2007年 5.《Introduction to Operations Research》(第6 版)(外原版经典教材), F. S. Hillier and G. J. Lieberman 著,McGraw-Hill 出版社; 6. 《运筹学》,党耀国,李帮义等编著,科学出版社,2009年; 7. 《物流运筹学》,刘蓉主编,电子工业出版社,2012年; 8. 《运筹学导论》(第9版)(美国麦格劳-希尔教育出版公司工商管理最新教材(英文版)),(美)希利尔,(美)利伯曼著,清华大学出版社,2010年; 9. 《运筹学》(第4版)(面向21世纪课程教材(信息管理与信息系统专业教材系列),《运筹学》教材编写组编,清华大学出版社,2012年; 10.《运筹学:应用与解决方法》(第4版)(美国商学院原版教材精选系列),(美)温斯顿著,清华大学出版社,2011年; 11.《管理运筹学》(高等学校经济与工商管理系列教材),茹少峰,申卯兴编著,清华大学出版社,2008年; 12.《运筹学》(第3版),刁在筠等编,高等教育出版社,2007年;

13.《实用运筹学:模型、方法与计算》,韩中庚主编,清华大学出版社,2007年; 14.《运筹学》(现代信息管理与信息系统系列教材),李红艳,范君晖主编,清华大学出版社,2012 年; 15.《管理运筹学:管理科学方法》(21世纪管理科学与工程系列教材),谢家平著,中国人民大学出版社,2010年; 16.《运筹学与实验》,薛毅,耿美英编著,电子工业出版社,2008年; 17.《实用运筹学——上机实验指导及习题解答》,叶向编,中国人民大学出版社,2007年; 18.《应用运筹学》(第二版),曹勇,周晓光,李宗元编著,经济管理出版社,2008年; 19.《运筹学导论》(第8版),(美)希利尔(Hillier,F.S.),(美)利伯曼(Lieberman,G.J.)著,胡运权等译,清华大学出版社,2007年; 20.《经济管理运筹学习题集》,王玉梅,孙在东,张志耀编著,中国标准出版社,2012年; 21.《运筹学习题集》(第4版),胡运权主编,清华大学出版社,2010年; 22.《运筹学解题指导》,周华任主编,清华大学出版社,2006年; 23.《运筹学概率模型应用范例与解法》(第4版),(美)温斯顿(Winston,W.L.)著,李乃文等译,清华大学出版社,2006年; 24.《运筹学学习辅导与习题解析》(第3版),戎晓霞,宿洁,刘桂真编,高等教育出版社,2009年; 25.《管理运筹学习题集》(普通高等学校管理科学与工程类学科核心课程教材辅

实用文库汇编之数学归纳法经典例题及答案

*实用文库汇编之数学归纳法(2016.4.21)* 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: ()()12121217 51531311+=+-++?+?+?n n n n 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. ()()()()32121121217 51531311++++-++?+?+?k k k k ()() 3212112++++=k k k k ()()()()()() 321211232121322++++=++++=k k k k k k k k ()1 121321+++=++=k k k k 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立.

题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 11 1 31 21 1++++++k k 1 1 1211 2+++=++

高中数学必修2立体几何专题二面角典型例题解法总结

二面角的求法 一、 定义法: 从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。 本定义为解题提供了添辅助线的一种规律。如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。 例1 如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD = 2DC SD ==,点M 在侧棱SC 上,ABM ∠=60° (I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。 ? 证(I )略 解(II ):利用二面角的定义。在等边三角形ABM 中过点B 作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G , 连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, · ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点, ∴GF 是△AMS 的中位线,点G 是AS 的中点。 则GFB ∠即为所求二面角. ∵2= SM ,则2 2 = GF , 又∵6= =AC SA ,∴2=AM ,∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴ 3=BF 。在△GAB 中,26= AG ,2=AB ,0 90=∠GAB ,∴2 11423=+=BG 366 23 2 22211 32 12cos 2 2 2 -=-=??- +=?-+=∠FB GF BG FB GF BFG F G F G

单纯形法典型例题

科学出版社《运筹学》教材 第一章引言 第二章线性规划,姜林 第三章对偶规划,姜林 第四章运输问题,姜林 第五章整数规划,姜林 第六章非线性规划,姜林 第七章动态规划,姜林 第八章多目标规划,姜林 第九章图与网络分析,熊贵武 第十章排队论,熊贵武 第十一章库存论,王勇 第十二章完全信息博弈,王勇 第十三章不完全信息博弈,王勇 第十四章决策论与影响图 第十五章运筹学模型的计算机求解 成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。问 如何选择食品才能在满足营养的前提下使购买食品的费用最小? 食品名称热量(kcal) 蛋白质(g) 钙(mg)价格(元)猪肉1000 50 400 14 鸡蛋800 60 200 6

大米900 20 300 3 白菜200 10 500 2 营养需求量 2000 55 800 解:设需猪肉、鸡蛋、大米和白菜各需 x1,x2,x3,x4斤。则热量的需求量为: 2000 20090080010004 3 2 1 x x x x 蛋白质 某工厂要做100套钢架,每套有长 3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原 料长12.3米,问应如何下料使需用的原材料最省。 解:假设从每根 12.3米的原材料上截取 3.5米、2.8米和2根2.4 米,则每根原材料需浪费 1.2米,做100套需浪费材料 120米,现 采用套裁的方法。 方案一二三四五六3.5 2.8 2.4 0 0 5 0 4 0 1 2 1 1 3 0 2 0 2 2 1 1 合计剩余 12 0.3 11.2 1.1 11.5 0.8 11.9 0.4 11.8 0.5 12.2 0.1 现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200 ,,,800 50030020040055 102060503000 2009008001000. .23614min 4 3214 3 2 1 4 32 14 32 14321x x x x x x x x x x x x x x x x t s x x x x z

数学归纳法经典例题及答案精品

【关键字】认识、问题、要点 数学归纳法( 一、用数学归纳法证明与正整数有关命题的步骤是: (1)证明当n 取第一个值0n (如01n =或2等)时结论正确; (2)假设当0(N ,)n k k k n *=∈≥ 时结论正确,证明1n k =+时结论也正确. 综合(1)、(2),…… 注意:数学归纳法使用要点: 两步骤,一结论。 二、题型归纳: 题型1.证明代数恒等式 例1.用数学归纳法证明: 证明:①n =1时,左边31311=?=,右边3 1121=+=,左边=右边,等式成立. ②假设n =k 时,等式成立,即: ()()12121217 51531311+=+-++?+?+?k k k k . 当n =k +1时. 这就说明,当n =k +1时,等式亦成立, 由①、②可知,对一切自然数n 等式成立. 题型2.证明不等式 例2.证明不等式n n 21 31 21 1<++++ (n ∈N). 证明:①当n =1时,左边=1,右边=2. 左边<右边,不等式成立. ②假设n =k 时,不等式成立,即k k 2131211<++++ . 那么当n =k +1时, 这就是说,当n =k +1时,不等式成立. 由①、②可知,原不等式对任意自然数n 都成立. 说明:这里要注意,当n =k +1时,要证的目标是 1211 1 31 21 1+<++++++k k k ,当代入归纳假设后,就是要证明:

1211 2+<++k k k . 认识了这个目标,于是就可朝这个目标证下去,并进行有关的变形,达到这个目标. 题型3.证明数列问题 例3 (x +1)n =a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+…+a n (x -1)n (n ≥2,n ∈N *). (1)当n =5时,求a 0+a 1+a 2+a 3+a 4+a 5的值. (2)设b n = a 22n -3,T n = b 2+b 3+b 4+…+b n .试用数学归纳法证明:当n ≥2时,T n =n (n +1)(n -1)3 . 解: (1)当n =5时, 原等式变为(x +1)5=a 0+a 1(x -1)+a 2(x -1)2+a 3(x -1)3+a 4(x -1)4+a 5(x -1)5 令x =2得a 0+a 1+a 2+a 3+a 4+a 5=35=243. (2)因为(x +1)n =[2+(x -1)]n ,所以a 2=C n 2·2n -2 b n =a 22 n -3=2C n 2=n (n -1)(n ≥2) ①当n =2时.左边=T 2=b 2=2, 右边=2(2+1)(2-1)3 =2,左边=右边,等式成立. ②假设当n =k (k ≥2,k ∈N *)时,等式成立, 即T k =k (k +1)(k -1)3 成立 那么,当n =k +1时, 左边=T k +b k +1=k (k +1)(k -1)3+(k +1)[(k +1)-1]=k (k +1)(k -1)3 +k (k +1) =k (k +1)?? ??k -13+1=k (k +1)(k +2)3 =(k +1)[(k +1)+1][(k +1)-1]3 =右边. 故当n =k +1时,等式成立. 综上①②,当n ≥2时,T n =n (n +1)(n -1)3 .

相关文档
最新文档