用于波动方程模拟的Chebshev谱元法

用于波动方程模拟的Chebshev谱元法
用于波动方程模拟的Chebshev谱元法

差分法求解偏微分方程MAAB

南京理工大学 课程考核论文 课程名称:高等数值分析 论文题目:有限差分法求解偏微分方程 姓名:罗晨 学号: 成绩: 有限差分法求解偏微分方程 一、主要内容 1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:具体求解的偏微分方程如下: 2.推导五种差分格式、截断误差并分析其稳定性; 3.编写MATLAB程序实现五种差分格式对偏微分方程的求解及误差分析;

4.结论及完成本次实验报告的感想。 二、推导几种差分格式的过程: 有限差分法(finite-differencemethods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。 推导差分方程的过程中需要用到的泰勒展开公式如下: ()2100000000()()()()()()()......()(()) 1!2!! n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+-(2-1) 求解区域的网格划分步长参数如下: 11k k k k t t x x h τ ++-=?? -=?(2-2) 2.1古典显格式 2.1.1古典显格式的推导 由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)( )()(())i i k i k k k u u x t u x t t t o t t t ?=+-+-?(2-3) 当1k t t +=时有 21,112,(,)(,)( )()(())(,)()() i k i k i k k k k k i k i k u u x t u x t t t o t t t u u x t o t ττ+++?=+-+-??=+?+?(2-4) 得到对时间的一阶偏导数 1,(,)(,)()=()i k i k i k u x t u x t u o t ττ+-?+?(2-5) 由泰勒展开公式将(,)u x t 对位置展开得 223,,21(,)(,)()()()()(())2!k i k i k i i k i i u u u x t u x t x x x x o x x x x ??=+-+-+-??(2-6) 当11i i x x x x +-==和时,代入式(2-6)得

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组 一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中, A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803?? ? ? ? ? ? ? ? ??? 0.230 -52.322 54.000 240.236 29.304 -117.818b ?? ? ? ?= ? ? ? ? ??? T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068) 二、原理及步骤分析 设 n n ij R a A ?∈=][)1(,n n R b b b b ∈=],,,[)1()2(2)1(1 。若约化主元素 ),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。 如果在消元过程中发现某个约化主元0) (=k kk a , 则第K 次消元就无法进行。此外,即 使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。 为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。相应过程为: (1)选主元:在子块的第一列中选择一个元) (k k i k a 使) (max k ik n i k k k i a a k ≤≤= 并将第k 行元与第k i 行元互换。 (2)消元计算:对k=1,2,……n-1依次计算 ()()()?? ?? ?????++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj ik k ij k ij k kk k ik k ik ,,2,1,,2,1,,,2,1) ()()1() ()()1()() ()( (3)回代求解

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告 一、实验题目 叠加地震记录的相移波动方程正演模拟

二、实验目的 1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论 2.实现方法与程序编制 3.由正演记录初步分析地震信号的分辨率。 三、实验原理 1、地震波传播的波动方程 设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为 2、傅里叶变换的微分性质 p(t)与其傅里叶变换的P(w)的关系: 3、地震波传播的相移外推公式 令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得: 4、初始条件和边界条件 按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为: 5、边界处理

(1)边界反射问题 把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。 (2)边界强反射的处理 镶边法、削波法、吸收边界都能有效消除边界强反射。 削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式: 四、实验内容

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当 0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又称 为调和方程 22 22 =??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ?? ?Ω ?=Γ=Ω∈=??+??Γ∈),(),(),(),(),(22 22y x y x u y x y x f y u x u y x ? 其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线, ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为

),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22 ? 初边值问题 2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

解一元二次方程(公式法)

应用拓展 某数学兴趣小组对关于x 的方程(m+1)22m x ++(m-2)x-1=0提出了下列问题. (1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元二次方程m 是否存在?若存在,请求出. 你能解决这个问题吗? 分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0. (2)要使它为一元一次方程,必须满足: ①211(1)(2)0m m m ?+=?++-≠?或②21020m m ?+=?-≠?或③1020 m m +=??-≠? 解:(1)存在.根据题意,得:m 2+1=2 m 2=1 m=±1 当m=1时,m+1=1+1=2≠0 当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x 2-1-x=0 a=2,b=-1,c=-1 b 2-4ac=(-1)2-4×2×(-1)=1+8=9 134 ±= x 1=,x 2=-12 因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=- 12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m 2+1=0,m 不存在. ③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意. 当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1 当m=-1时,一元一次方程是-3x-1=0 解得x=-13 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-?1时,其一元一次方程的根为x=- 13. 布置作业 1.教材P 45 复习巩固4. 2.选用作业设计:

波动方程正演模型的研究与应用

波动方程正演模型的研究与应用 郑鸿明* 娄 兵 蒋 立 (新疆油田公司勘探开发研究院地物所) 摘要野外采集的地震数据是经过大地滤波后的畸变信号,处理的地震剖面只是间接地反映了地下构造和地质体的特征,虽然目前有很多方法和手段可以分析并提取相关的地质信息,但由于处理对波场的改造和噪声的存在以及方法本身的多解性问题降低了识别地质信息的可靠性。处理中每一步对有效信息的影响有多大,对地震属性解释的影响有多大,没有一个定量的标准,只能凭经验和认识来定性地判断。正演模型在弹性波理论指导下,遵循严格的数学公式,可以最佳模拟地下各种情况。各种处理方法和不同的处理流程所得到的结果能否符合或最佳逼近波动方程建立的数学模型,正演模型是判断处理工作合理性的良好准则。 主题词地质模型波动方程正演模型地震响应模块测试 1 引 言 随着地震勘探的不断深入,地震勘探也由构造型油气藏勘探进入精细的岩性勘探阶段,要求地震勘探能够反映地下地质体岩性变化,以及识别含油、气、水的地震响应特征,分辨薄互层、低幅度构造的能力。地球物理学家们在长期的实践中已经研究开发了很多相关的技术,虽然理论上这些方法都能够成立,这些技术应用成功的实例也很多,但也不乏有失败的教训,往往产生多解性,或与钻探的结论不符。这里除了复杂地表和复杂地下构造形成的复杂地震波场而不满足建立在简单地质模型处理理论的因素外,与处理过程对地震波场的改造也有很大关系。从地震数据的采集到最终处理的地震剖面,整个过程是一个系统工程,地下地质结构、地质体的岩性变化以及含流体的性质,对处理人员来说是看不见、摸不着的“黑匣子”,我们所看到的只是经过大地滤波后产生畸变的地震波场,如何从这个畸变的地震波场中去伪存真、恢复真实的构造形态、提取储层的相关地震属性信息,这是岩性处理的最终目标。处理中的每一步环环相扣、相互影响、相互制约,而我们对处理中的每一步产生的中间结果所应达到的标准只是凭经验、感觉进行定性判定,加入了很多人为因素,这些因素或多或少影响着我们对解释成果的正确认识。另外,处理技术发展很快,相应的地震处理软件越来越多,应用这些模块之前对各模块所起的作用以及它们所产生的结果都需要有一个定量的认识,以及验证处理流程的合理性是当前迫切需要解决的问题。究竟什么样的结果满足岩性解释的要求、什么样的结果反映的是真正地下地质体的响应、什么样的处理方法满足保振幅处理和地震属性分析的应用等等一系列问题,这都是当前岩性处理中迫切需要解决的主要问题。它直接关联着处理成果的真伪及后续解释的可靠性,关联着勘探的投资风险。 随着计算机运算能力发展迅猛,特别是微机群的出现,为波动方程算法提供了硬件环境,开展此项技术的研究与应用已成为可能。此次模型的设计全面考虑了地表和地下的典型地质特征并将这些特征容入到模型中,真实模拟了实际地质结构。应用该地质模型正演叠前炮集的地震响应。 2 模型的建立 模型分物理模型和数学模型两种,目前的物理模型只能做非常简单的模拟,只有用数学模型才能模拟各种复杂的地质现象。20世纪70年代,美国哥伦比亚大学在郭宗汾

波动方程的变步长有限差分数值模拟

收稿日期:2007-03-23;修订日期:2007-04-27 作者简介:李胜军,男,在读硕士研究生,研究方向为地震波传播理论。联系电话:(0546)8392055,E-mail:hdpulis@126.com,通讯地址:(257061)中国石油大学(华东)地球资信与信息学院。 *中国石油大学(华东)研究生创新基金资助,编号:S2006—06。 油气地球物理 2007年7月 PETROLEUMGEOPHYSICS 第5卷第3期 在地震资料采集、处理和解释中通常需要进行地震波场数值模拟:假设已知地下的地质情况,应用地震波运动学和动力学的基本原理,计算给定地质模型的地震响应。这种做法对正确认识地震波的运动学和动力学特征,以及准确分析油气藏的反射波场特征有着重要的指导意义。声波在介质中的正演模拟研究为我们精确模拟地震波在复杂介质中的传播提供了理论基础[1]。 傅立叶变换法和高阶有限差分法(FD)已成为计算声波方程空间导数的标准技术[2,3]。虽然常网格步长差分算法比较容易实现,但是它们对大部分模型都增大了不必要的计算量。例如,对存在浅层低速带的沉积盆地模型地面地震记录进行模拟时,由于低速地层阻抗小,地震波传入其中会引起较大的振幅和较长的延续时间(这与深层的高速层完全不同)。由于这些浅层低速层中地震波的波长较短、地层厚度较小,模拟时需要用小网格进行。这样,常网格步长算法就必须用小网格离散整个模型,从而增加了不必要的代价,如内存、计算量的增大。 因而,采用变网格算法将能改进有上覆低速层情况模拟结果的有效性(对地层中间有超薄夹层的情形,必须用精细网格覆盖才能精确的对地层进行模拟)。应用这种变网格算法既能实现对夹层的模拟,又能保障计算量不增加。因此这种通过函数实现在任意深度上网格步长变化的有限差分方法被 推广[4]。为了计算空间导数,在X方向用傅立叶变换法或有限差分算法,在Z方向使用高阶有限差分方法。通过时间积分快速展开法(REM)来保障差分方法的计算精度[6]。这种差分技巧比二阶时间差分有较高的精确度且计算用时短。 1时间积分 均匀介质中的二维声波方程可用下式表示[2] 式中:P=P(x,z,t),代表压力项;c=c(x,z),代表速度;s=s(s,z),代表震源函数;L2为差分算子。在密度!=!(x,z)变化的情况下,常用的是Vidale给出的公式[5] 波动方程的变步长有限差分数值模拟* 李胜军1,2) 孙成禹1) 张玉华1) 倪长宽1) 1)中国石油大学地球资源与信息学院;2)中石油勘探开发研究院西北分院 摘要:有限差分算法是常用的正演模拟方法之一,其包含的地震信息丰富,且实现简单。传统的有限差分方法通常都采用均匀网格步长,在对含低速/高速介质、 薄层/厚层介质的模型进行波场模拟时往往缺乏稳定性。文章介绍了一种可以有效解决上述问题的变网格算法,对常规有限差分法与变网格差分算法在内存需求、计算速率等方面的差别进行了比较,对变网格差分算法中的边界条件、 时间积分的快速展开算法作了阐述,进而总结了变网格算法的优点。关键词:变步长;边界条件;计算时间;快速展开法;数值模拟 !2 P!t2=-L2P+s (1) (2) -L2 =c 2 !2!x2+!2 !z 2" # (3) (4) !2 P!t 2=-L2P!"$ -1!L2P+PL21!+s -L2 =!c 2 2 !2!x2+!2 !z 2% $

2007射线追踪与波动方程正演模拟方法对比研究

47 科技资讯  科技资讯 SCIENCE & TECHNOLOGY INFORMATION2007 NO.12 SCIENCE & TECHNOLOGY INFORMATION 工 业 技 术 地震正演模拟作为反演解释的反过程,是验证解释成果的有效手段,进行必要可靠的正演模拟可以有效的监控反演解释。地震学一般可以分为几何地震学和物理地震学,在几何地震学中进行的正演模拟方法就是我们通常所说的射线追踪法,射线追踪法是在合成记录时用地震子波和界面或地质体的反射系数进行反褶积运算,即。运算的最大特点是说明了地震波传播的运动学特征。而在物理地震学中应用波动方程法合成的地震记录是通过求解波动方程的数值解来模拟地震波场的。在波动方程合成的地震记录中不单保持了地震波传播运动学特征,还说明了地震波传播的动力学特征。本文将分别用射线追踪和波动方程的方法合成地震记录。 1 基于射线追踪的合成地震响应 射线追踪法的主要理论基础是,在高频近 射线追踪与波动方程正演模拟方法对比研究 王志美 畅永刚 (长江大学油气资源与勘探技术教育部重点实验室 湖北荆州 434023) 摘 要:地震学一般可以分为几何地震学和物理地震学,几何地震学中进行正演模拟方法就是射线追踪法,射追踪法是在合成记录时用地震子波和界面或地质体的反射系数进行反褶积运算,即。运算的最大特点就是说明了地震波传播的运动学特征。而在物理地震学中的波动方程法合成的地震记录是通过求解波动方程的数值解来模拟地震波场。在波动方程合成的地震记录中不单保持了地震波传播 运动学特征外,还说明了地震波传播的动力学特征。本文将分别用射线追踪和波动方程的方法合成地震记录。关键词:射线追踪 波动方程 正演模拟 中图分类号:P315文献标识码: A 文章编号:1672-3791(2007)04(c)-0047-00 图1 射线追踪正演模拟(1) 图 2 逐段迭长示意图 图 3 射线追踪正演模拟(2) 图4 波动方程正演模拟结果 似条件下,地震波的主能量沿射线轨迹传播。基于这种认识,运用惠更斯原理和费马原理来重建射线路径,并利用程函方程来计算射线的旅行时。在旅行时计算中应用有限差分等方法,以获得快速的解。射线法的主要优点是概念明确,显示直观,运算方便,适应性强;其缺陷是应用有一定限制条件,计算结果在一定程度上是近似的,对于复杂构造进行两点三维射线追踪往往比较麻烦。为了计算波沿射线的旅行时和波的传播路径,叙述如下。 如图1所示,首先给出连接S(激发点)和R(接收点)之间的初始射线路径射线的振幅变化,首先必须知道地震波在实际地层中传播的射线路径。 由于地震波在整条路径上满足同一个射线参数,因此射线路径上任意连续三点也将满足同一个参数,而三点间的射线表现形式为Snell定律。按照Snell 定律,可导出一个求 取中间点的一阶近似公式。当前后两点位于界面两边时,中间点为透射点,所求路径为透射路径;当前后两点位于界面的同一边时,中间点为反射点,所求路径为反射路径。为此,可以从任一端点出发,连续地选取三点,通过一阶近似公式进行逐段迭代取中间点,利用新求出的点代替原来的点,然后以一点的跨跃作为步长,顺序地逐段迭代下去,直到另一端点。这样,新计算出的中间点和两个端点就构成了一次迭代射线路径,如图2中所示。如果整条射线路径上校正量的范数之和满足一定的精度要求,则认为射线追踪过程结束,否则从追踪出的射线路径开始,继续重复上述过程,直到满足精度要求为止。最后一次追踪到的中间点和两个端点,构成整条射线路径。图3基于多层倾斜界面模型通过射线追踪正演模拟地震响应。从模拟结果可以直观的看出基于几何地震学的原理正演模拟结果只能反映地震波的几何传播路径。在实际的工程设计中通过正演模拟可以在地表确定地下观测范围,节约设备提高工程效率,但不能反映 物理地震学中的地震属性,例如振幅,频率和相位等。更不能反映地震波的动力学特征。 2 波动方程的合成地震响应 2.1 波动方程的建立 非均匀介质的声波方程:  (1) (2) 可由对连续介质方程(1)式的两端对时间求导,并利用欧拉方程推得:  (3) 其中:P是波数,V是质点振动的速度向量,ρ是密度,c是波速,ρ和c是随着空间参数χ和z变化的,这里ρ给定为常数,只有c 是地质模型的控制参数。χ和Z分别是在地面水平距离和深度。这样(3)式就可以变为:  (4) 其中:c=ν (χ,z);(4)式即是所求的弹性波动方程。 2.2 数值计算及稳定性 求解弹性波动方程的方法有多种,付立叶变换法是对弹性波动方程的波场进行付立叶变换,优点是运算速度快。克希霍夫积分法是基于均匀模型,利用格林函数公式计算曲面积分,求出空间波场值,但这种方法不能适应

用公式法解一元二次方程教案

用公式法解一元二次方 程教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

优质课比赛教案 第23章 23.2 用公式法解一元二次方程 整体设计 教学分析 求根公式是直接运用配方法推导出来的,从数字系数的一元二次方程到字母系数的方程,体现了从特殊到一般的思路。用公式法解一元二次方程是比较通用的方法,它体现了一元二次方程根与系数最直接的关系,一元二次方程的根是由系数a,b,c决定的,只要将其代入求根公式就可求解,在应用公式时应首先将方程化成一般形式。 教学目标 知识与技能: 1、理解一元二次方程求根公式的推导过程 2、会用求根公式解简单系数的一元二次方程 过程与方法: 经历探索求根公式的过程,发展学生的合情推理能力,提高学生的运算能力并养成良好的运算习惯 情感、态度与价值观 通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习中获得成功的体验,建立学好数学的自信心。 重点: 掌握一元二次方程的求根公式,并能用它熟练地解一元二次方程

难点: 一元二次方程求根公式的推导过程 教学过程: 一、复习引入: 1、用配方法解下列方程: (1)4x 2-12x-1=0;(2)3x 2+2x-3=0 2、用配方法解一元二次方程的步骤是什么? 说明:教师引导学生回忆配方法解一元二次方程的基本思路及基本步骤,为本节课的学习做好铺垫。 3、你能用配方法解一般形式的一元二次方程ax 2+bx+c=0(a ≠0)吗? 二、问题探究: 问题1:你能用一般方法把一般形式的一元二次方程ax 2+bx+c=0(a ≠0)转化为(x+m)2=n 的形式吗? 说明:教师引导学生回顾用配方法解数字系数的一元二次方程的过程,让 学生分组讨论交流,达成共识,最后化成(x+a b 2)2=2244a a c b - ∵a ≠0,方程两边都除以a,得x 2+ 0=+a c x a b 移项,得x 2+ a c x a b -= 配方,得x 2+ 22)2(-)2(a b a c a b x a b +=+ 即(x+=2)2a b 2244a ac b -

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

公式法解一元二次方程教案

公式法解一元二次方程 一、教学目标 (1)知识目标 1.理解求根公式的推导过程和判别公式; 2.使学生能熟练地运用公式法求解一元二次方程. (2)能力目标 1.通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思 想. 2.结合的使用求根公式解一元二次方程的练习,培养学生运用公式解决问题的能力,全面培养学生解方程的能力,使学生解方程的能力得到切实的提高。 (3)德育目标 让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感. 二、教学的重、难点及教学设计 (1)教学的重点 1.掌握公式法解一元二次方程的一般步骤. 2.熟练地用求根公式解一元二次方程。 (2)教学的难点: 理解求根公式的推导过程及判别公式的应用。 (3)教学设计要点 1.情境设计 上课开始,通过提问让学生回忆一元二次方程的概念及配方法解一元二次方程的一般步骤。利用昨天所学“配方法”解一元二次方程,达到“温故而知新”的目的和总结配方法的一般步骤,为下一步解一般形式的一元二次方程做准备。 然后让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0) 能否用配方法求出它的解?引出本节课的内容。 2.教学内容的处理 (1)回顾配方法的解题步骤,用配方法来解一般形式的一元二次方程ax2+bx+c=0(a≠0)。 (2)总结用公式法解一元二次方程的解题步骤,并补充理解判别公式的分类与应用。 (3)在小黑板上补充课后思考题:李强和萧晨刚学了用公式法解一元二次方程,看到一个关于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 李强说:“此方程有两个不相等的实数根”,而萧晨反驳说:“不一定,根的情况跟m的值有关”.那你们认为呢?并说明理由. 3.教学方法 在教学中由特殊的解法(配方法)引导探究一般形式一元二次方程的解的形

基于GPU的波动方程正演模拟的实现

基于GPU的波动方程正演模拟的实现 袁崇鑫;邓飞 【期刊名称】《电脑知识与技术》 【年(卷),期】2014(000)018 【摘要】随着计算机技术的发展,使得波动方程正演由理论研究应用到实际地震勘探中成为了可能。而有限差分技术作为地震波场模拟的一种有效数值方法,它具有实现简单,速度快,从而被广泛应用正演计算密集的波形正反演中。地震波正演的计算量大,通过CPU来计算地震波正演模拟严重影响整体运算效率,GPU通用计算技术的产生及其在内的数据并行性有望改变这一状况。该文主要研究波动方程正演在GPU上的模拟实现。%With the development of computer technology, the wave equation forward by the application of theory to real seismic exploration as possible. The finite-difference seismic wave field simulation technology as an effective numerical methods, it has a simple, fast, and thus is widely used computationally intensive forward modeling and inversion of the waveform. Computationally intensive seismic forward modeling of seismic waves through the CPU to calculate the forward modeling seriously affect the over-all operational efficiency, GPU general computing technologies, including the generation and data parallelism is expected to change this situation. This paper studies the wave equation forward simulation on the GPU. 【总页数】6页(4333-4337,4340)

有限差分法求解偏微分方程复习进程

有限差分法求解偏微 分方程

有限差分法求解偏微分方程 摘要:本文主要使用有限差分法求解计算力学中的系统数学模型,推导了有限差分法的 理论基础,并在此基础上给出了部分有限差分法求解偏微分方程的算例验证了推导的正确性及操作可行性。 关键词:计算力学,偏微分方程,有限差分法 Abstract:This dissertation mainly focuses on solving the mathematic model of computation mechanics with finite-difference method. The theoretical basis of finite-difference is derived in the second part of the dissertation, and then I use MATLAB to program the algorithms to solve some partial differential equations to confirm the correctness of the derivation and the feasibility of the method. Key words:Computation Mechanics, Partial Differential Equations, Finite-Difference Method

1 引言 机械系统设计常常需要从力学观点进行结构设计以及结构分析,而这些分析的前提就是建立工程问题的数学模型。通过对机械系统应用自然的基本定律和原理得到带有相关边界条件和初始条件的微分积分方程,这些微分积分方程构成了系统的数学模型。 求解这些数学模型的方法大致分为解析法和数值法两种,而解析法的局限性众所周知,当系统的边界条件和受载情况复杂一点,往往求不出问题的解析解或近似解。另一方面,计算机技术的发展使得计算更精确、更迅速。因此,对于绝大多数工程问题,研究其数值解法更具有实用价值。对于微分方程而言,主要分为差分法和积分法两种,本论文主要讨论差分法。 2 有限差分法理论基础 2.1 有限差分法的基本思想 当系统的数学模型建立后,我们面对的主要问题就是微分积分方程的求解。基本思想是用离散的只含有限个未知量的差分方程组去近似地代替连续变量的微分方程和定解条件,并把差分方程组的解作为微分方程定解问题的近似解。将原方程及边界条件中的微分用差分来近似,对于方程中的积分用求和或及机械求积公式来近似代替,从而把原微分积分方程和边界条件转化成差分方程组。有限差分法求解偏微分方程的步骤主要有以下几步: 区域离散,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格,这些离散点称作网格的节点;

公式法解一元二次方程(教案)

21.2.2公式法 教案设计(张荣权) 教学内容:用公式法解一元二次方程 教材分析:在解一元二次方程时,仅仅是直接开平方法、配方法解一元二次 方程是远远不够的。对于系数不特殊的一元二次方程,这两种方法就不方便了。而用求根公式法解较复杂的一元二次方程教方便了。因此,学习用公式法解一元二次方程很有必要,也是不可缺少的一个重要内容。而公式法是一元二次方程的基本解法,它为进一步学习一元二次方程的解法级简单应用起到铺垫作用。 教学目标: 知识与技能目标:1.理解一元二次方程求根公式的推导。 2.会用求根公式解简单数字的一元二次方程。 3.理解一元二次方程的根的判别式,并会用它判别一元二次方程根的情况。 过程与方法:在教师的指导下,经过观察、推导、交流归纳等活动导出一元二次方程的求根公式,培养学生的合情推理与归纳总结能力。 情感态度与价值观:培养学生独立思考的习惯和合作交流意识。 教学重点、难点及突破 重点:1.掌握公式法解一元二次方程的步骤。 2.熟练的利用求根公式解一元二次方程。 难点:理解求根公式的推导过程及判别公式的应用。 教学突破 本节课我主要采用启发式、探究式教学法。教学中力求体现“试——究——升”模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配方能力有限,所以,崩皆可借助于多媒体辅助教学,指导学生通过观察,分析,总结配方规律,从而突破难点。学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性,主动性和创造性。 教学设想 通过复习配方法解一元二次方程,导入对一般形式的一元二次方程的解法探讨,通过提问引导学生观察思考,产生问题,进行小组合作探讨,发现结论。加深对应用公式法的理解。渗透由特殊到一般和分类讨论及化归的数学思想,运用解一元二次方程的基本思想----开方降次,重视相关的知识联系,建立合理的逻辑过程,突出解一元二次方程的基本策略。 教学准备 教师准备:课件精选例题 学生准备:配方法解一元二次方程、二次根式的化简 教学过程:

声波波动方程正演模拟程序总结

声波波动方程正演模拟程序 程序介绍: 第一部分:加载震源,此处选用雷克子波当作震源。 编写震源程序后,我将输出的数据复制,然后我用excel做成了图片,以检验程序编写是否正确。以下为雷克子波公式部分的程序: for(it=0;it

模型构建与试算: 1、我首先建立了一个均匀介质模型,首先利用不同时间,进行了数值模拟,得到波场快照如图所示: 100ms 200ms 300ms 此处,纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,时间采样间隔为1ms,图中可以看出,波场快照中的同相轴是圆形的,说明在均匀各向同性介质中,点源激发的波前面是一个圆,这与理论也是吻合的。并且随着时间的增大,波前面的面积逐渐增大,说明地震波从震源中心向外传播。 2、我在建立的均匀模型的基础上,改变差分算子的精度,分别采用2阶、6阶、12阶精度进行试算。时间统一采用300ms的时候。得到的波长快照如下: 2阶精度6阶精度12阶精度

第九章 偏微分方程差分方法

170 第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

消元法解线性方程组

消元法解线性方程组 学校:青海师范大学 院系:数学系 专业:数学与应用数学 班级:10B 指导教师:邓红梅 学号:20101611218 姓名:梅增旺

摘要:线性方程组在数学的各个分支,在自然科学,工程技术,生产实际中经常遇到,而且未知元的个数及方程的个数可达成百上千,因此它的理论是很重要的,其应用也很广泛。本篇将就解线性方程组在此做一浅谈,以消元法为主要方法。消元法是解一般线性方程组行之有效的方法,早在中学大家都已经有接触,消元法的基本思想是通消元变形把方程组化成容易求解的同解方程组进行求解。 关键字:线性方程组消元法求解 Abstract: linear equations in various branches of mathematics, natural science,engineering technology, often encountered in actual production, and the unknown element number and the number of equations can be hundreds, so itis important in the theory, its application is very extensive. This article on thesolution of linear equations based on a discussion, mainly by means ofelimination method. Elimination method is the general linear equations ofeffective early in high school, everyone has a contact, the basic idea ofelimination method is through the elimination of the equations of deformationinto easy to solve with the solution of equations. Keywords:elimination method for solving linear equations

MATLAB之GAUSS消元法解线性方程组

Matlab之Gauss消元法解线性方程组 1.Gauss消元法 function x=DelGauss(a,b) %Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k);%计算行列式 end det=det*a(n,n); for k=n:-1:1%回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >>A=[1.0170-0.00920.0095;-0.00920.99030.0136;0.00950.0136 0.9898]; >>b=[101]'; >>x=DelGauss(A,b) x= 0.9739 -0.0047 1.0010 2.列主元Gauss消去法: function x=detGauss(a,b) %Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;%选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return;

相关文档
最新文档