声波波动方程正演模拟程序总结

声波波动方程正演模拟程序总结
声波波动方程正演模拟程序总结

声波波动方程正演模拟程序

程序介绍:

第一部分:加载震源,此处选用雷克子波当作震源。

编写震源程序后,我将输出的数据复制,然后我用excel做成了图片,以检验程序编写是否正确。以下为雷克子波公式部分的程序:

for(it=0;it

{

t1=it*dt;

t2=t1-t0;

source[it]=(1.0-2.0*pow(PI*fm*t1,2.0))*exp(-pow(PI*fm*t1,2.0));

fprintf(fp,"%.8f %.8f\n",t1,source[it]);

}

此处,为了成图完整,我用的是t2,而不是t1,也就是把雷克子波向右移动了一段距离,使主要部分都显示出来。(频率采用的是30hz)

从图中可以看出程序是正确的,符合理论上雷克子波的波形。

第二部分:主程序,编写声波正演模拟算子。

首先定义了各种变量,然后指定震源位置,选择权系数,给速度赋值,然后是差分算子的编写,这是主要部分,最后再进行时间转换,即把n-1时刻的值给n时刻,把n时刻的值给n+1时刻。

此处,我编写的是均匀介质声波方程规则网格的正演模拟程序,时间导数采用二阶中心差分、空间导数为2N阶差分精度,网格大小为200*200,总时间为400。

第三部分:这一部分就是记录文件。

首先记录Un文件,然后记录record文件。

模型构建与试算:

1、我首先建立了一个均匀介质模型,首先利用不同时间,进行了数值模拟,得到波场快照如图所示:

100ms 200ms 300ms

此处,纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,时间采样间隔为1ms,图中可以看出,波场快照中的同相轴是圆形的,说明在均匀各向同性介质中,点源激发的波前面是一个圆,这与理论也是吻合的。并且随着时间的增大,波前面的面积逐渐增大,说明地震波从震源中心向外传播。

2、我在建立的均匀模型的基础上,改变差分算子的精度,分别采用2阶、6阶、12阶精度进行试算。时间统一采用300ms的时候。得到的波长快照如下:

2阶精度6阶精度12阶精度

图中可以看出,在阶数较低时,出现很多同相轴,说明数值频散现象严重;随着算子阶数的增加,对于高阶差分算子来说,算子阶数越高,压制数值频散效果越好,精度越高。

3、最后,我又建立了一个层状介质模型,上层介质速度为v=2000m/s,下层介质速度为v=4000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,震源位于模型(70,100)处,时间采样间隔为1ms。采用12阶差分算子进行数值模拟。结果如下:

100ms

200ms 300ms

图中可以看出,在未遇到界面前,地震波在均匀介质中的波前面一个圆。当遇到地层界面之后,在界面处发生了反射、透射和折射现象.沿测线方向的单炮记录如下图所示。记录中存在两条直线状的同相轴和一条近似双曲线的同相轴。由于直达波的时距曲线是直线,因此两条直线同相轴对应直达波;由于反射波的时距曲线是近似双曲线,因此近似双曲线同相轴对应的是反射波。

叠加地震记录的相移波动方程正演模拟数值模拟实验共22页

《地震数值模拟》实验报告 一、实验题目 叠加地震记录的相移波动方程正演模拟

二、实验目的 1.掌握各向同性介质任意构造、水平层状速度结构地质模型的相移波动方程正演模拟基本理论 2.实现方法与程序编制 3.由正演记录初步分析地震信号的分辨率。 三、实验原理 1、地震波传播的波动方程 设(x,z)为空间坐标,t为时间,地震波传播速度为v(x,z),则二位介质中任意位置、任意时刻的地震波场为p(z,x,t):压缩波——纵波。则二维各向同性均匀介质中地震波传播的遵循声波方程为 2、傅里叶变换的微分性质 p(t)与其傅里叶变换的P(w)的关系: 3、地震波传播的相移外推公式 令速度v不随x变化,只随z变化,则利用傅里叶变换微分性质把波动方程(变换到频率-波数域,得: 4、初始条件和边界条件 按照爆炸界面理论,反射界面震源在t=0时刻同时起爆,此时刻的波场就是震源。根据不同情况,可直接使用反射系数脉冲或子波作震源。如果直接使用反射系数作震源脉冲,则初始条件可表示为: 5、边界处理

(1)边界反射问题 把实际无穷空间区域中求解波场的问题化为有穷区域求解时,左右两边使用零边界条件。物理上假设探区距Xmin与Xmax两个端点很远,在两个端点上收到的反射波很弱。但是,上述条件在实际中不能成立,造成零边界条件反而成为绝对阻止波通过的强反射面。在正演模拟的剖面上出现了边界假反射干涉正常界面的反射。 (2)边界强反射的处理 镶边法、削波法、吸收边界都能有效消除边界强反射。 削波法就是在波场延拓过程中,没延拓一次,在其两侧均匀衰减到零,从而消除边界强反射的影响。假设横向总长度为NX,以两边Lx道吸波为例,有以下吸波公式: 四、实验内容

波动方程正演模型的研究与应用

波动方程正演模型的研究与应用 郑鸿明* 娄 兵 蒋 立 (新疆油田公司勘探开发研究院地物所) 摘要野外采集的地震数据是经过大地滤波后的畸变信号,处理的地震剖面只是间接地反映了地下构造和地质体的特征,虽然目前有很多方法和手段可以分析并提取相关的地质信息,但由于处理对波场的改造和噪声的存在以及方法本身的多解性问题降低了识别地质信息的可靠性。处理中每一步对有效信息的影响有多大,对地震属性解释的影响有多大,没有一个定量的标准,只能凭经验和认识来定性地判断。正演模型在弹性波理论指导下,遵循严格的数学公式,可以最佳模拟地下各种情况。各种处理方法和不同的处理流程所得到的结果能否符合或最佳逼近波动方程建立的数学模型,正演模型是判断处理工作合理性的良好准则。 主题词地质模型波动方程正演模型地震响应模块测试 1 引 言 随着地震勘探的不断深入,地震勘探也由构造型油气藏勘探进入精细的岩性勘探阶段,要求地震勘探能够反映地下地质体岩性变化,以及识别含油、气、水的地震响应特征,分辨薄互层、低幅度构造的能力。地球物理学家们在长期的实践中已经研究开发了很多相关的技术,虽然理论上这些方法都能够成立,这些技术应用成功的实例也很多,但也不乏有失败的教训,往往产生多解性,或与钻探的结论不符。这里除了复杂地表和复杂地下构造形成的复杂地震波场而不满足建立在简单地质模型处理理论的因素外,与处理过程对地震波场的改造也有很大关系。从地震数据的采集到最终处理的地震剖面,整个过程是一个系统工程,地下地质结构、地质体的岩性变化以及含流体的性质,对处理人员来说是看不见、摸不着的“黑匣子”,我们所看到的只是经过大地滤波后产生畸变的地震波场,如何从这个畸变的地震波场中去伪存真、恢复真实的构造形态、提取储层的相关地震属性信息,这是岩性处理的最终目标。处理中的每一步环环相扣、相互影响、相互制约,而我们对处理中的每一步产生的中间结果所应达到的标准只是凭经验、感觉进行定性判定,加入了很多人为因素,这些因素或多或少影响着我们对解释成果的正确认识。另外,处理技术发展很快,相应的地震处理软件越来越多,应用这些模块之前对各模块所起的作用以及它们所产生的结果都需要有一个定量的认识,以及验证处理流程的合理性是当前迫切需要解决的问题。究竟什么样的结果满足岩性解释的要求、什么样的结果反映的是真正地下地质体的响应、什么样的处理方法满足保振幅处理和地震属性分析的应用等等一系列问题,这都是当前岩性处理中迫切需要解决的主要问题。它直接关联着处理成果的真伪及后续解释的可靠性,关联着勘探的投资风险。 随着计算机运算能力发展迅猛,特别是微机群的出现,为波动方程算法提供了硬件环境,开展此项技术的研究与应用已成为可能。此次模型的设计全面考虑了地表和地下的典型地质特征并将这些特征容入到模型中,真实模拟了实际地质结构。应用该地质模型正演叠前炮集的地震响应。 2 模型的建立 模型分物理模型和数学模型两种,目前的物理模型只能做非常简单的模拟,只有用数学模型才能模拟各种复杂的地质现象。20世纪70年代,美国哥伦比亚大学在郭宗汾

波动方程的变步长有限差分数值模拟

收稿日期:2007-03-23;修订日期:2007-04-27 作者简介:李胜军,男,在读硕士研究生,研究方向为地震波传播理论。联系电话:(0546)8392055,E-mail:hdpulis@126.com,通讯地址:(257061)中国石油大学(华东)地球资信与信息学院。 *中国石油大学(华东)研究生创新基金资助,编号:S2006—06。 油气地球物理 2007年7月 PETROLEUMGEOPHYSICS 第5卷第3期 在地震资料采集、处理和解释中通常需要进行地震波场数值模拟:假设已知地下的地质情况,应用地震波运动学和动力学的基本原理,计算给定地质模型的地震响应。这种做法对正确认识地震波的运动学和动力学特征,以及准确分析油气藏的反射波场特征有着重要的指导意义。声波在介质中的正演模拟研究为我们精确模拟地震波在复杂介质中的传播提供了理论基础[1]。 傅立叶变换法和高阶有限差分法(FD)已成为计算声波方程空间导数的标准技术[2,3]。虽然常网格步长差分算法比较容易实现,但是它们对大部分模型都增大了不必要的计算量。例如,对存在浅层低速带的沉积盆地模型地面地震记录进行模拟时,由于低速地层阻抗小,地震波传入其中会引起较大的振幅和较长的延续时间(这与深层的高速层完全不同)。由于这些浅层低速层中地震波的波长较短、地层厚度较小,模拟时需要用小网格进行。这样,常网格步长算法就必须用小网格离散整个模型,从而增加了不必要的代价,如内存、计算量的增大。 因而,采用变网格算法将能改进有上覆低速层情况模拟结果的有效性(对地层中间有超薄夹层的情形,必须用精细网格覆盖才能精确的对地层进行模拟)。应用这种变网格算法既能实现对夹层的模拟,又能保障计算量不增加。因此这种通过函数实现在任意深度上网格步长变化的有限差分方法被 推广[4]。为了计算空间导数,在X方向用傅立叶变换法或有限差分算法,在Z方向使用高阶有限差分方法。通过时间积分快速展开法(REM)来保障差分方法的计算精度[6]。这种差分技巧比二阶时间差分有较高的精确度且计算用时短。 1时间积分 均匀介质中的二维声波方程可用下式表示[2] 式中:P=P(x,z,t),代表压力项;c=c(x,z),代表速度;s=s(s,z),代表震源函数;L2为差分算子。在密度!=!(x,z)变化的情况下,常用的是Vidale给出的公式[5] 波动方程的变步长有限差分数值模拟* 李胜军1,2) 孙成禹1) 张玉华1) 倪长宽1) 1)中国石油大学地球资源与信息学院;2)中石油勘探开发研究院西北分院 摘要:有限差分算法是常用的正演模拟方法之一,其包含的地震信息丰富,且实现简单。传统的有限差分方法通常都采用均匀网格步长,在对含低速/高速介质、 薄层/厚层介质的模型进行波场模拟时往往缺乏稳定性。文章介绍了一种可以有效解决上述问题的变网格算法,对常规有限差分法与变网格差分算法在内存需求、计算速率等方面的差别进行了比较,对变网格差分算法中的边界条件、 时间积分的快速展开算法作了阐述,进而总结了变网格算法的优点。关键词:变步长;边界条件;计算时间;快速展开法;数值模拟 !2 P!t2=-L2P+s (1) (2) -L2 =c 2 !2!x2+!2 !z 2" # (3) (4) !2 P!t 2=-L2P!"$ -1!L2P+PL21!+s -L2 =!c 2 2 !2!x2+!2 !z 2% $

声波方程数值模拟实验报告

声波方程数值模拟实验报告 一.基础理论知识 需要的已知条件包括: 1.1)震源函数 2)地层速度(波速) 3)边界条件 2.弹性波方程:?????????+??=??+??+??=??) ()()(222222 22222 222z w x w v t w t S z u x u v t u s p 声波方程的有限差分法数值模拟 对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述: )()(2222 222t S z u x u v t u +??+??=?? (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震 源函数。 为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。为此,先把空间模型网格化(如图4-1所示)。 设x 、z 方向的网格间隔长度为h ?,t ?为时间采样步长,则有: h i x ?= (i 为正整数) h j z ?= (j 为正整数)t n t =? (n 为正整数) k j i u , 表示在(i,j)点,k 时刻的波场值。 将1 ,+k j i u 在(i,j)点k 时刻用Taylor 展式展开: z ?,i j 1,i j +2,i j +1,i j -2,i j -,2 i j -,2 i j +,1i j +,1 i j -1,1i j -+1,2 i j -+2,1i j -+2,2 i j -+1,2 i j ++2,2 i j ++1,1 i j +-2,1i j +-1,1i j ++2,1i j ++1,1i j --1,2i j +-2,2i j +-2, 2i j --2,1 i j --1,2i j --x ?

声学中波动方程的建立

田佳星海洋技术12020041049 今天我介绍一下声学中波动方程得建立。我们首先介绍一下声学得基本概念。 声波就是机械振动状态在介质中得传播。存在声波得空间称为声场。理论上描述声场需要引入一些物理量:声压、位移、振速、密度压缩量与相位等。通常采用上述各物理量得时空分布函数描述声场。下面对这些物理量作简要介绍。 1、基本概念 1) 声压(标量) 声波为压缩波。描述“压缩”过程得一个物理量就是压强。然而,声波就是声扰动(如振动源)引起介质中得压强发生变化得部分。因此,我们引入声压得概念: 声压为介质压强得变化量: (2-1) 其中,就是压强,就是介质中得静态压强。 声压就是描述波动得物理量。为使用方便,还由声压引入了瞬时声压、峰值声压与有效声压。 声场中某瞬时得声压称为瞬时声压。一定时间间隔内得最大瞬时声压称为峰值声压。瞬时声压在一定时间间隔内得均方根值称为有效声压,即 (2-2) 对简谐声波,、与相互之间得关系与电压可作相同类比,即 。 一般仪器仪表测得就是有效声压。 2) 位移与振速(矢量) 质点位移就是指介质质点离开其平衡位置得距离、质点振速就是介质质点瞬时振动得速度。两者均就是有大小与方向得量,即矢量,相互关系为 (2—3) 对简谐振动,位移与振速都满足如下关系: , (2—4a) , (2-4b) 其中,与分别为位移幅值与振速幅值。

需要注意得就是区分质点振速与声传播速度。声传播速度就是指振动状态在介质中传播得速度,而质点振速就是指在给定时间与给定空间位置得某一质点得振动速度。 3) 密度与压缩量 密度得变化也就是描述声波得一个物理量。这里引入压缩量得概念: (2-5) 其中,密度,为静态密度,为密度改变量。 压缩量s得含义为介质密度得相对变化量、 4) 相位 为描写简谐振动而引入得物理量。它描述质点简谐振动得状态。质点振动得一个周期对应着相位0—2π、相位与质点振动状态有一一对应得关系。 声波就是振动状态在介质中得传播,而相位描述得就是质点简谐振动得状态、由此可见相位在声场描述中得重要性。 以上物理量并不就是独立得,如根据位移由(2-3)式可以求出振速。实际应用时可根据需要选择使用哪些物理量来描述,如对简谐声波,只需要位移幅值与相位就可导出振速、加速度等基本物理量;更进一步,如果已知介质条件,只要知道位移幅值与相位得初值,就可计算声场得时空分布函数了。 2. 理想流体介质中得小振幅波 本节先建立描述声波得基本方程-波动方程,并讨论波动方程得线性特性;然后分别介绍波动方程在几种简单介质条件下得解-行波解、平面波解、球面波解与柱面波解,并对各种解中相关得物理量,如声场中得能量、介质特性阻抗与声阻抗率、相速度与群速度等概念,进行讨论,并重点分析在水声物理中应用较多得平面波在两种不同均匀介质界面上得反射与折射现象。 一、波动方程 2、1建立波动方程 为更清楚地了解声波得物理本质,我们先对介质条件与声波做出一定得限制,而得到形式简洁得波动方程,并通过它认识声波得物理本质。在后续得学习与研究过程中,将不断引入更为复杂得介质条件与放宽对声波得限制,再进行研究、这也就是物理中研究常用得方法之一。 假设条件: ?介质静止、均匀、连续得; ?介质就是理想流体介质,即忽略粘滞性与热传导; ?声波就是小振幅波。

2007射线追踪与波动方程正演模拟方法对比研究

47 科技资讯  科技资讯 SCIENCE & TECHNOLOGY INFORMATION2007 NO.12 SCIENCE & TECHNOLOGY INFORMATION 工 业 技 术 地震正演模拟作为反演解释的反过程,是验证解释成果的有效手段,进行必要可靠的正演模拟可以有效的监控反演解释。地震学一般可以分为几何地震学和物理地震学,在几何地震学中进行的正演模拟方法就是我们通常所说的射线追踪法,射线追踪法是在合成记录时用地震子波和界面或地质体的反射系数进行反褶积运算,即。运算的最大特点是说明了地震波传播的运动学特征。而在物理地震学中应用波动方程法合成的地震记录是通过求解波动方程的数值解来模拟地震波场的。在波动方程合成的地震记录中不单保持了地震波传播运动学特征,还说明了地震波传播的动力学特征。本文将分别用射线追踪和波动方程的方法合成地震记录。 1 基于射线追踪的合成地震响应 射线追踪法的主要理论基础是,在高频近 射线追踪与波动方程正演模拟方法对比研究 王志美 畅永刚 (长江大学油气资源与勘探技术教育部重点实验室 湖北荆州 434023) 摘 要:地震学一般可以分为几何地震学和物理地震学,几何地震学中进行正演模拟方法就是射线追踪法,射追踪法是在合成记录时用地震子波和界面或地质体的反射系数进行反褶积运算,即。运算的最大特点就是说明了地震波传播的运动学特征。而在物理地震学中的波动方程法合成的地震记录是通过求解波动方程的数值解来模拟地震波场。在波动方程合成的地震记录中不单保持了地震波传播 运动学特征外,还说明了地震波传播的动力学特征。本文将分别用射线追踪和波动方程的方法合成地震记录。关键词:射线追踪 波动方程 正演模拟 中图分类号:P315文献标识码: A 文章编号:1672-3791(2007)04(c)-0047-00 图1 射线追踪正演模拟(1) 图 2 逐段迭长示意图 图 3 射线追踪正演模拟(2) 图4 波动方程正演模拟结果 似条件下,地震波的主能量沿射线轨迹传播。基于这种认识,运用惠更斯原理和费马原理来重建射线路径,并利用程函方程来计算射线的旅行时。在旅行时计算中应用有限差分等方法,以获得快速的解。射线法的主要优点是概念明确,显示直观,运算方便,适应性强;其缺陷是应用有一定限制条件,计算结果在一定程度上是近似的,对于复杂构造进行两点三维射线追踪往往比较麻烦。为了计算波沿射线的旅行时和波的传播路径,叙述如下。 如图1所示,首先给出连接S(激发点)和R(接收点)之间的初始射线路径射线的振幅变化,首先必须知道地震波在实际地层中传播的射线路径。 由于地震波在整条路径上满足同一个射线参数,因此射线路径上任意连续三点也将满足同一个参数,而三点间的射线表现形式为Snell定律。按照Snell 定律,可导出一个求 取中间点的一阶近似公式。当前后两点位于界面两边时,中间点为透射点,所求路径为透射路径;当前后两点位于界面的同一边时,中间点为反射点,所求路径为反射路径。为此,可以从任一端点出发,连续地选取三点,通过一阶近似公式进行逐段迭代取中间点,利用新求出的点代替原来的点,然后以一点的跨跃作为步长,顺序地逐段迭代下去,直到另一端点。这样,新计算出的中间点和两个端点就构成了一次迭代射线路径,如图2中所示。如果整条射线路径上校正量的范数之和满足一定的精度要求,则认为射线追踪过程结束,否则从追踪出的射线路径开始,继续重复上述过程,直到满足精度要求为止。最后一次追踪到的中间点和两个端点,构成整条射线路径。图3基于多层倾斜界面模型通过射线追踪正演模拟地震响应。从模拟结果可以直观的看出基于几何地震学的原理正演模拟结果只能反映地震波的几何传播路径。在实际的工程设计中通过正演模拟可以在地表确定地下观测范围,节约设备提高工程效率,但不能反映 物理地震学中的地震属性,例如振幅,频率和相位等。更不能反映地震波的动力学特征。 2 波动方程的合成地震响应 2.1 波动方程的建立 非均匀介质的声波方程:  (1) (2) 可由对连续介质方程(1)式的两端对时间求导,并利用欧拉方程推得:  (3) 其中:P是波数,V是质点振动的速度向量,ρ是密度,c是波速,ρ和c是随着空间参数χ和z变化的,这里ρ给定为常数,只有c 是地质模型的控制参数。χ和Z分别是在地面水平距离和深度。这样(3)式就可以变为:  (4) 其中:c=ν (χ,z);(4)式即是所求的弹性波动方程。 2.2 数值计算及稳定性 求解弹性波动方程的方法有多种,付立叶变换法是对弹性波动方程的波场进行付立叶变换,优点是运算速度快。克希霍夫积分法是基于均匀模型,利用格林函数公式计算曲面积分,求出空间波场值,但这种方法不能适应

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

基于GPU的波动方程正演模拟的实现

基于GPU的波动方程正演模拟的实现 袁崇鑫;邓飞 【期刊名称】《电脑知识与技术》 【年(卷),期】2014(000)018 【摘要】随着计算机技术的发展,使得波动方程正演由理论研究应用到实际地震勘探中成为了可能。而有限差分技术作为地震波场模拟的一种有效数值方法,它具有实现简单,速度快,从而被广泛应用正演计算密集的波形正反演中。地震波正演的计算量大,通过CPU来计算地震波正演模拟严重影响整体运算效率,GPU通用计算技术的产生及其在内的数据并行性有望改变这一状况。该文主要研究波动方程正演在GPU上的模拟实现。%With the development of computer technology, the wave equation forward by the application of theory to real seismic exploration as possible. The finite-difference seismic wave field simulation technology as an effective numerical methods, it has a simple, fast, and thus is widely used computationally intensive forward modeling and inversion of the waveform. Computationally intensive seismic forward modeling of seismic waves through the CPU to calculate the forward modeling seriously affect the over-all operational efficiency, GPU general computing technologies, including the generation and data parallelism is expected to change this situation. This paper studies the wave equation forward simulation on the GPU. 【总页数】6页(4333-4337,4340)

声波波动方程正演模拟程序总结

声波波动方程正演模拟程序 程序介绍: 第一部分:加载震源,此处选用雷克子波当作震源。 编写震源程序后,我将输出的数据复制,然后我用excel做成了图片,以检验程序编写是否正确。以下为雷克子波公式部分的程序: for(it=0;it

模型构建与试算: 1、我首先建立了一个均匀介质模型,首先利用不同时间,进行了数值模拟,得到波场快照如图所示: 100ms 200ms 300ms 此处,纵波速度为v=3000m/s。模型大小为200×200,空间采样间隔为dx=dz=10m。采用30Hz的雷克子波作为震源子波,时间采样间隔为1ms,图中可以看出,波场快照中的同相轴是圆形的,说明在均匀各向同性介质中,点源激发的波前面是一个圆,这与理论也是吻合的。并且随着时间的增大,波前面的面积逐渐增大,说明地震波从震源中心向外传播。 2、我在建立的均匀模型的基础上,改变差分算子的精度,分别采用2阶、6阶、12阶精度进行试算。时间统一采用300ms的时候。得到的波长快照如下: 2阶精度6阶精度12阶精度

毕设论文--粘声波正演模拟研究

本科毕业设计(论文)题目:粘声波正演模拟方法研究 学生姓名:xxx 学号:xxx 专业班级:xxx 指导教师:xxx 2015年 6月20日

粘声波正演模拟方法研究 摘要 地球上介质的黏滞性会引起大地的吸收效应,它会影响波场所有的频率成分,尤其对于高频的影响最大,导致地震分辨率降低。黏滞吸收作用会影响地震波波形、频带、振幅等因素。一个高效的粘声波正演模拟方法,可以考虑到由于实际介质造成的地震波的吸收衰减作用。可以更加准确模拟地震波在非完全弹性实际地层中的传播,在这里,本文通过编程建立不同的粘声波方程数值模拟模型跟正常的声波方程数值模拟模型进行对比分析,从而了解粘声波正演模拟方法的优越性。 关键词:粘声波;正演模拟;有限差分;

Study on the forward modeling of viscoelastic acoustic waves Abstract The absorption effect is mainly caused by the viscosity of the earth media itself.The viscous stagnation can affect all the frequency components of the wave field.And the effect of the high frequency components is bigger,which leads to the decrease of seismic resolution.The absorption of the absorption has a great influence on the wave, frequency and amplitude of the seismic wave.. A highly effective viscoelastic forward modeling method can take into account the absorption and attenuation of seismic waves by real media.. Accurate simulation of the propagation of seismic waves in the actual strata of the imperfect elasticity. Here. In this paper, the program, establish different visco acoustic wave equation numerical simulation model with normal acoustic wave equation numerical simulation model for comparative analysis, to understand the visco acoustic forward modeling method of superiority. Keywords:Viscoelastic acoustic wave;Viscoelastic acoustic wave;Finite difference;

声波方程有限差分正演

题目:使用Ricker 子波,刚性边界条件,并且初值为零,在均匀各向同性介质条件下,利用交错网格法求解一阶二维声波方程数值解。 解: 一阶二维声波方程: 22222221z P x P t P c ??+??=?? (1) 将其分解为: 21P c t P x P z x z x z V V x z V t V t ????=+????????=???????=???? (2) 对分解后的声波方程进行离散,可得到: 1 12211,-1,,,122[]N n n n n m i m j i m j xi j xi j m t V V c P P h + -+---=?=+-∑ 1 1 221 1,1,,,122 []N n n n n m i j m i j m zi j zi j m t V V c P P h +-++---=?=+-∑ 111121 2222,,m 1,,,,11 []N n n n n n n i j i j m xi j xi m j zi j m zi j m m tc P P c V V V V h +++++++-+--=?=+-+-∑ h z x =?=? 针对公式(1),使用二阶中心差商公式: 2P(,,1)2(,,)(,,1)i j n P i j n P i j n t +-+-?222(1,,)2(,,)(1,,)(,1,)2(,,)(,1,)P i j n P i j n P i j n x c P i j n P i j n P i j n z +-+-??+?????=??+-+-??????? (3) 变形: P(,,1)=2(,,)(,,1)i j n P i j n P i j n +--

波动方程

波动方程 波动方程或称波方程(英语:Wave equation)由麦克斯韦方程组导出的、描述电磁场波动特征的一组微分方程,是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波和水波。对于一个标量(quantity) 的波动方程的一般形式是: 这里a通常是一个固定常数,也就是波的传播速率(对于空气中的声波大约是330米/秒,参看音速)。对于弦的振动,这可以有很大的变化范围:在螺旋弹簧上(slinky),它可以慢到1米/秒。但若a作为波长的函数改变,它应该用 相速度代替: 注意波可能叠加到另外的运动上(例如声波的传播在气流之类的移动媒介中)。那种情况下,标量u会包含一个马赫因子(对于沿着流运动的波为正,对于反射波为负)。 u = u(x,t),是振幅,在特定位置x和特定时间t的波强度的一个测量。对于空气中的声波就是局部气压,对于振动弦就使从静止位置的位移。是相对于位置变量x的拉普拉斯算子。注意u可能是一个标量或向量。 波动方程抽象自声学,电磁学,和流体力学等领域。用波动方程来描述杆的振动,包含的信息有:杆的初始位置,杆振动的振幅,频率等等。 波动方程的推导:声学基础上关于声学波动方程的推导,来自理想流体媒质的三个基本方程,运动方程、连续性方程和物态方程(绝热过程)。而关于流体

力学也有三个方程,分别是质量守恒方程、动量守恒方程(N-S方程),以及能量守恒方程。事实上,在绝热过程中,小扰动下的流体方程也可以推导出声学方程。 波动方程在经典物理和量子物理里面的意义不一样的,给出波动方程更好分析。波动方程就是描述波动现象的偏微分方程,它的物理意义就太宽泛了。不过波动方程一个很重要的性质是传播速度有限(不像热传导方程)。电磁场的运动方程是波动方程这说明电磁相互作用只能以有限的速度传播(光速c),而没有瞬时的作用(即超距作用)。这是导致狭义相对论建立的一个重要思想。

三维波动方程正演及模型应用研究

三维波动方程正演及模型应用研究 1熊晓军,贺振华,黄德济 成都理工大学油气藏地质与开发工程国家重点实验室(610059) E-mail:xiongxiaojun@https://www.360docs.net/doc/7918096282.html, 摘 要:为了真实准确地反映三维地质体的波场特征,在频率-波数域将二维波场延拓算子推广到三维空间,采用三维波动方程延拓方法实现了三维地质模型的快速叠后正演。该方法采用傅立叶变换进行计算不仅计算迅速,算法稳定,而且可以采用相位移加插值方法处理一定的横向变速的情况,为更加灵活方便地模拟地下复杂的三维地质体提供了一种有效的工具。作为实例,首先进行了三维French 模型的数值模拟,得到了和实际物理模型实验结果相一致的正演记录,并对比分析了三维偏移剖面和二维偏移剖面的偏移效果,验证了该方法的正确性和适用性。然后进行了三维缝洞地质模型的正演计算,得到了高信噪比的正演记录,对认识和解释三维缝洞地质体的地震波场特征很有帮助。 关键词:三维地震正演,波动方程,波场延拓,French 模型,缝洞模拟 1. 引 言 在地震资料采集、处理和解释中通常要进行地震波场的数值模拟,即假设已知地下的地质情况,应用地震波的运动学和动力学的基本原理,计算给定地质模型的地震响应,其对正确认识地震波的运动学和动力学特征,以及准确地分析油气藏的反射波场特征有着重要的指导意义。常规的正演方法主要有波动方程法和几何射线法两大类[1]。几何射线法[2]将地震波波动理论简化为射线理论,主要考虑地震波传播的运动学特征,所得的地震波的传播时间比较准确,但是计算结果很难保持地震波的动力学特征,而且对复杂的地质构造会出现盲区。波动方程法通过求解地震波波动方程,建立地下地震波运动的波场,它包含了地震波传播的所有信息,在地震模拟中占有重要地位。目前,常规的波动方程正演方法,如有限差分法[3]、积分法[4]以及F-K 域[5]等方法,主要进行二维地质体的数值模拟,而实际的地下构造往往是三维的,因此,十分有必要研究基于三维地质体的数值模拟方法。本文在二维正演方法的基础上,将二维波场延拓算子推广到三维空间,在频率—波数域进行三维叠后正演模拟。该方法不仅算法稳定,计算速度快,具有处理一定横向变速的能力,而且可以得到高信噪比的零偏移距正演记录。 2. 方法原理 利用波动方程进行地震波场数值模拟的核心是波场延拓,对于垂向变速介质,利用二维 标量波动方程,在频率—波数域可以得到各个深度间隔内的相位移延拓的正演和偏移公式[6], i zi Z ik i x i x e z k P z k P ?+=),,(),,(1ωω (1) i zi Z ik i x i x e z k P z k P ??+=),,(),,(1ωω (2) 1 本课题得到高等学校博士学科点专项科研基金资助课题(SRFDP )资助,编号:20040616001。 - 1 -

二维频率域声波方程正演模拟

Open Journal of Natural Science 自然科学, 2020, 8(4), 258-263 Published Online July 2020 in Hans. https://www.360docs.net/doc/7918096282.html,/journal/ojns https://https://www.360docs.net/doc/7918096282.html,/10.12677/ojns.2020.84034 2D Acoustic Wave Equation Forward Modeling in the Frequency Domain Kun Han, Xiangchun Wang* School of Geophysics and Information Technology, China University of Geosciences (Beijing), Beijing Received: Jun. 23rd, 2020; accepted: Jul. 6th, 2020; published: Jul. 13th, 2020 Abstract Forward modeling in frequency domain plays an important role in the numerical simulation of seismic waves. Compared with time domain forward modeling, frequency domain forward mod-eling has many advantages, such as suitable multi shot parallel operation, no time dispersion, flexible frequency band selection and small error. The coefficient matrix of different frequencies is relatively independent in the frequency domain forward modeling, which is suitable for the acce-leration of parallel computing and greatly improves the computing efficiency. In this paper, for the optimal 9-point difference scheme of frequency domain acoustic equation, the implicit expression and sparse matrix solution are studied, and the seismic wave field is simulated forward. The ac-curacy and validity of the method are verified by model calculation. Keywords Frequency Domain, Forward Modeling, Acoustic Equation, Parallel Computing 二维频率域声波方程正演模拟 韩坤,王祥春* 中国地质大学(北京),地球物理与信息技术学院,北京 收稿日期:2020年6月23日;录用日期:2020年7月6日;发布日期:2020年7月13日 摘要 频率域正演在地震波数值模拟中占有十分重要的地位。相比于时间域正演,频率域正演具有适合多炮并*通讯作者。

地震波波动方程数值模拟方法

地震波波动方程数值模拟方法 地震波波动方程数值模拟方法主要包括克希霍夫积分法、傅里叶变换法、有限元法和有限差分法等。 克希霍夫积分法引入射线追踪过程,本质上是波动方程积分解的一个数值计算,在某种程度上相当于绕射叠加。该方法计算速度较快,但由于射线追踪中存在着诸如焦散、多重路径等问题,故其一般只能适合于较简单的模型,难以模拟复杂地层的波场信息。 傅里叶变换法是利用空间的全部信息对波场函数进行三角函数插值,能更加精确地模拟地震波的传播规律,同时,利用快速傅里叶变换(FFT)进行计算,还可以提高运算效率,其主要优点是精度高,占用内存小,但缺点是计算速度较慢,对模型的适用性差,尤其是不适应于速度横向变化剧烈的模型. 波动方程有限元法的做法是:将变分法用于单元分析,得到单元矩阵,然后将单元矩阵总体求和得到总体矩阵,最后求解总体矩阵得到波动方程的数值解;其主要优点是理论上可适宜于任意地质体形态的模型,保证复杂地层形态模拟的逼真性,达到很高的计算精度,但有限元法的主要问题是占用内存和运算量均较大,不适用于大规模模拟,因此该方法在地震波勘探中尚未得到广泛地应用。。 相对于上述几种方法,有限差分法是一种更为快速有效的方法。虽然其精度比不上有限元法,但因其具有计算速度快,占用内存较小的优点,在地震学界受到广泛的重视与应用。 声波方程的有限差分法数值模拟 对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述: )()(2222222t S z u x u v t u +??+??=?? (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震源函数。 为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。为此,先把空间模型网格化(如图4-1所示)。 设x 、z 方向的网格间隔长度为h ?,t ?为时间采样步长,则有: z ?,i j 1,i j +2,i j +1,i j -

FDMOD–声波方程有限差分正演模拟二维

FDMOD –声波方程有限差分正演模拟(二维) 格式: fdmod wfile nx= nz= tmax= xs= zs= [optional parameters] 必需的参数: wfile 波场输出文件(包含每个时间步的波场值wave[nx][nz])nx= x采样点个数(第二维) nz= z采样点个数(第一维) xs= 炮点x坐标 dxs= 炮点x坐标间隔 zs= 炮点z坐标 dzs= 炮点z坐标间隔 ns= 炮点个数 tmax= 最大记录时间 可选参数: nt=1+tmax/dt 时间采样点数(dt决定结果的稳定度) mt=1 波场输出时间切片的时间步长间隔 dx=1.0 x采样间隔 fx=0.0 x起始值 dz=1.0 z采样间隔 fz=0.0 z起始值 fmax = vmin/(10.0*h) 震源子波的最高频率 fpeak=0.5*fmax 雷克子波的峰值频率 dfile= 密度输入文件(包含密度值d[nx][nz]) vsx= 垂直测线的x坐标 hsz= 水平测线的z坐标 rsx= 水平测线的起始检波器x坐标 rlen= 水平测线长度 rivl= 水平测线检波器采样间隔 vsfile= 垂直测线的输出文件data[nz][nt] hsfile= 水平测线的输出文件data[nx][nt] ssfile= 震源点检波器的输出文件data[nt] verbose=0 =1 显示输出信息=2 更多输出信息 abs=1,1,1,1 模型的顶,底,左,右使用吸收边界条件 =0,1,1,1 顶部使用自由边界条件

波动方程

波动方程或称波方程是一种重要的偏微分方程,它通常表述所有种类的波,例如声波,光波和水波。它出现在不同领域,例如声学,电磁学,和流体力学。波动方程的变种可以在量子力学和广义相对论中见到。 概念: 波动方程或称波方程是一种重要的偏微分方程,它通常表述所有种类的波,例如声波,光波和水波。它出现在不同领域,例如声学,电磁学,和流体力学。波动方程的变种可以在量子力学和广义相对论中见到。 历史上,象乐器那样的振动弦问题曾被很多科学家研究,包括达朗贝尔,欧拉,丹尼尔·伯努利,和拉格朗日。 方程形式: 对于一个标量u的波动方程的一般形式。 这里c通常是一个固定常数,也就是波的传播速率(对于空气中的声波大约是330米/秒,参看音速)。对于弦的振动,这可以有很大的变化范围:在螺旋弹簧上(slinky),它可以慢到1米/秒。但若c作为波长的函数改变,它应该用相速度代替。 注意波可能叠加到另外的运动上(例如声波的传播在气流之类的移动媒介中)。那种情况下,标量u会包含一个马赫因子[1](对于沿着流运动的波为正,对于反射波为负)。 u=u(x,t),是振幅,在特定位置x和特定时间t的波强度的一个测量。对于空气中的声波就是局部气压,对于振动弦就使从静止位置

的位移。\nabla^2是相对于位置变量x的拉普拉斯算子。注意u 可能是一个标量或向量。 物理意义: 波动方程就是描述波动现象的偏微分方程,它的物理意义就太宽泛了。不过波动方程一个很重要的性质是传播速度有限(不像热传导方程)。电磁场的运动方程是波动方程这说明电磁相互作用只能以有限的速度传播(光速c),而没有瞬时的作用(即超距作用)。这是导致狭义相对论建立的一个重要思想。

相关文档
最新文档